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Abstract. We give an overview of the methods by which one can prove the uniqueness of
smooth structures on RRn for n ̸= 4, and then provide some interesting results in R4.

1. Introduction

All Euclidean spaces admit only one differentiable structure – except for R4. The first ex-
amples were found in 1982 by Michael Freedman and others, but it was a shock to individuals
to discover that 4-dimensional Euclidean space was so strange while the other dimensions
were so nice.

Since then, a variety of results have been proven: there is a continuum of non-diffeomorphic
differentiable structures on R4, but this is a brief overview of the lower-dimensional and
higher-dimensional cases, as well as some motivation for why they fail in 4-dimensions.

2. Lower Dimensions

For n ≤ 3, we have that there is a unique smooth structure on Rn. However, this happens
for a few different reasons.

2.1. Dimension 1. In one dimension, there is only one smooth structure (e.g. there is only
one smooth structure on the real number line). Therefore, there are no exotic structures.

2.2. Dimension 2. The proof of the uniqueness of a smooth structure on R2 can take many
forms. Primarily, this utilizes the fact that piecewise-linear structure and smooth structure
in dimensions less than or equal to 4 are identical.

Definition 2.1 (Piecewise linear manifold). A piecewise linear (PL) manifold is a topological
manifold with a piecewise linear structure. You can define it in terms of atlases much as
you can a smooth manifold, but instead of smooth mappings, the mappings are constructed
with piecewise linear functions.

One proves that there is only one PL structure on R2 with triangulations.

2.3. Dimension 3. There is, in fact, a unique smooth structure in R3. The approach is
much the same as dimension 2 - define a triangulation, and prove that the PL structures are
identical, therefore the smooth structures are identical.

Smooth equivalence is the same as PL equivalence in small dimensions, so this works.
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3. The h-Cobordism Theorem

Definition 3.1 (Cobordisms). A cobordism between two oriented manifolds M,N of dimen-
sion n is any such oriented manifold W of dimension (n+ 1) with boundary

∂W = M ∪N.

Here M denotes M with the opposite orientation.

Why do we flip the orientation of M? Take the manifold W = M × [0, 1] as an example.
We have that ∂W = M×0 ∪ M×1, and interestingly this ties into the fundamental theorem
of calculus resulting in f(b)− f(b) (go into more detail!)

Definition 3.2 (h-Cobordisms). A h-Cobordism is a cobordism which is homotopically
equivalent to the trivial cobordism M × [0, 1].

Then, we get the following result: that a homotopically-trivial cobordism is in fact also
smoothly-trivial.

Theorem 3.3 (h-Cobordism Theorem). Let Mn and Nn be simply connected oriented man-
ifolds of dimension n that are h-cobordant through the (n + 1) dimensional manifold W n+1.
Then, if n ≥ 5, there is a diffeomorphism

W ≡ M × [0, 1]

which can be chosen to be the identity from M ⊂ W to M × 0 ⊂ M × [0, 1]. M,N must be
diffeomorphic.

The proof of this theorem is long – we will go over a brief outline, which involves translating
the fact that the homology group ofW is zero into a more topological interpretation involving
a handle decomposition.

The way this is done is to first choose a Morse function on W that has distinct critical
points. This lets you construct a handlebody decomposition of W , which gives a formula for
converting M into N via handle addition.
Then, with a variety of techniques, you can ’cancel’ all the handles, which leaves W

diffeomorphic to the trivial h−cobordism, which implies that M,N are diffeomorphic.

Definition 3.4 (ρ-cobordism). Take a Morse function f : W → [0, 1].
We define the ρ-cobordism as

Wp = f−1[0, ρ)

where ρ ∈ [0, 1].

As ρ passes some critical value of the Morse function f, then the topology of W changes.
Essentially, the topology ofWρ−ϵ andWρ+ϵ differs by exactly one handle attachment. Passing
a critical point of degree k is the same as attaching a thickened k−disk handle.

3.1. Handle Decomposition. For each pair of handles with the boundary intersecting with
a k − 1 handle, we can cancel the handle by deleting intersection points with opposite signs
(insert figure here). Then, because this cancels all the handles, this gives us a handle-less
decomposition of W. Therefore, this is the trivial cobordism, and M,N are diffeomorphic.
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3.2. The Whitney Trick. We can consider two submanifolds P k and Qn−k of the manifold
Mm. Note that this is not an issue when they are of complementary dimensions, as they
intersect at some finite number of points, and getting rid of them can be reduced to getting
rid of pairs of intersection points with opposite signs.

Therefore, we have to consider when P,Q are the attaching/belt spheres of handles. For
any two intersection points of opposite signs, we can choose a path that connects them wholly
in P and another wholly in Q. These two paths bound a circle in neither P nor Q.

It is known that embeddings are dense in the space of mappings from An → B2n+1. There-
fore, immersions of disks in manifolds of dimension at least 5 can always be approximated
by embeddings. Therefore, this Whitney disk can be approximated by embeddings in this
case.

Using this Whitney disk as a guide (and some additional machinery) we can make the
intersection points ’disappear’ by pushing P past Q.

3.3. Homology Recovery. We can translate the handle decomposition into a chain com-
plex

Ck = Z{k − handles hk
α}

and boundary maps ∂k : Ck → Ck−1 given by

∂k(h
k
α) =

∑
⟨hk

α |hk−1
β ⟩ · hk−1

β

where ⟨hk
α |hk−1

β ⟩ is the incidence number of the two handles, which is just the handle inter-
section number.

The resulting homology groups

Hk(C∗) = Ker ∂k/Im ∂k+1

are just the relative homology groups of W,M.

Proof. Take a handle decomposition of W. Then, we can represent all of the boundary oper-
ators ∂k as matrices with only 1s along the diagonal via some combination of row operations
and orientation changes, because the relative homology of W,M is the 0 group. Since
∂k∂k+1 = 0, then for every k-handle hk

a there exists either a k + 1 or k − 1 handle such that
the boundary of the original handle is that handle. ■

Therefore, there are no exotic structures in Rn for n ≥ 5.

4. 4-Dimensions

Primarily, the Whitney trick fails in 4-dimensions because there is no guarantee that the
embeddings are dense for dimensions smaller than 5. There is no ’room’ to twist the Whitney
disk into such that the handle can be removed.

Theorem 4.1. There are uncountably many exotic differentiable structures on R4.

The proof is extremely involved and uses gauge theory heavily, but it is an important
result that should be noted.
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