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1Introduction

When studying manifold theory, there are two approaches one can take. The first is to endow
the manifold with a metric in order to study the manifold locally. This would be more geometric
in scope, and is commonly referred to as differential geometry. The second, however, is when
you do not endow such a metric on the manifold. Instead, one observes the global properties
of the manifold itself in comparison to other manifolds, usually endowing some kind of smooth
structure and comparing the manifolds through smooth maps. This approach, called differential
topology, concerns the study of smooth manifolds and the smooth maps (diffeomorphisms) between
them. While studying such a subject, it is natural to inquire about the possibility of classifying
all manifolds of each given dimension up to diffeomorphism.

As fate would have it, this proves to be quite a daunting task to approach head-on. It is
known that manifolds of dimension at least 4 can admit any finitely-presented group as a fun-
damental group, and the “group isomorphism problem” of algorithmically determining whether
two finitely-presented groups are isomorphic is undecidable. Needless to say, the classification of
compact manifolds is not a trivial problem, and requires more advanced machinery to solve in
some substantial capacity.

But where does one begin with such a problem? Two simpler options unfold: one must either
restrict to special cases of this problem, or introduce a coarser invariant than diffeomorphism. In
the 1950s, René Thom made substantial breakthroughs on the latter front, earning him the Fields
Medal in 1958. He came up with notions of equivalence that were both rich and easily-computable,
an equivalence known today as cobordism. We will examine cobordism of compact manifolds in its
unoriented and oriented flavors, but this journey to cobordism is quite the rocky road.

In order to reach our desired destination, some mathematical machinery will be assumed of the
reader. The authors assume that the reader is familiar with algebraic topology, but if the reader
would like a refresher on these topics, we point them to the work of tom Dieck in [Die08]. By using
homology and cohomology theory, we will engage in an exciting exposition on characteristic classes
covered in [MS74] and [Die08] and analyze how it relates back to our question of cobordism. We
will also freely reference the results on cobordism contained in [Hir76] and [Wal16].
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2Vector Bundles

When one studies differential topology for the first time, they learn about the so-called “tangent
bundle” and its many constructions. However, there is a far more general notion of the tangent
bundle that is encountered in a larger setting, called the vector bundle over a topological space.
In this section, we briefly discuss the most interesting properties that they possess. Our first
treatment of vector bundles begins with constructions from [MS74], [Spi05], and [Lee13], where we
will combine said treatments to create a more cohesive language to describe the vector bundle.

2.1 Vector Bundles and Basic Notions

When studying differential topology or geometry, one usually treats vector bundles as generaliza-
tions of a tangent bundle TM for some manifold M . However, we will do the opposite and treat
the vector bundle as the protagonist of our story.

Definition 2.1.1. Let B denote a fixed topological space, called the base space. A vector
bundle ξ over B is a five-tuple

ξ = (E(ξ), π, B, ⊕, ⊙)

consisting of the following objects and properties:

1. A topological space E = E(ξ) called the total space of ξ.

2. A continuous map π : E → B called the projection map from E to B.

3. For every x ∈ B, the two maps ⊕ and ⊙ are defined as

⊕ :
⋃

x∈B

π−1(x) × π−1(x) → E , ⊕ (v, w) = v + w ∈ E.

⊙ : R × E → E , ⊙ (a, v) = a · v = av ∈ E

such that π−1(x) is a vector space of R.

4. The local triviality condition is satisfied: for every point x ∈ B, there exists a neighbor-
hood U ⊆ B, an integer n ≥ 0, and a homeomorphism

h : U × Rn → π−1(U)

which is a vector space isomorphism from each x × Rn to the vector space π−1(x), for all
x ∈ U .

In reference to condition (4) of Definition 2.1.1, we call the pair (U, h) the local coordinate
system for ξ about x. It may very well be the case that U is equivalent to the base space B,
and in such an instance we say that the vector bundle ξ is a trivial bundle. Furthermore, we call
the vector space π−1(x) the fiber of the projection π over x. In some texts it is denoted as Fx or
Fx(ξ), and we make no apologies for using all three notations interchangeably.
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Example. The trivial bundle ϵn
B consists of a total space B × Rn with a projection map

π : B × Rn → B , π(x, a) = x,

and with its vector space structures in the fibers being defined by

⊕
(

⊙ (t1, (x, a1)), ⊙(t2, (x, a2))
)

= ⊙(t1, (x, a1)) + ⊙(t2, (x, a2))

= (x, t1a1 + t2a2).

This is well-defined since we can set (x, t1a1 + t2a2) = (x, a3) ∈ B × Rn.

Definition 2.1.2. A vector bundle ξ is an Rn-bundle if π−1(x) is an n-dimensional real vector
space for every x ∈ B.

The distinction between an Rn-bundle and an arbitrary vector bundle is subtle but must be
distinguished, because we must remember that the dimension of π−1(x) is a local condition. In
other words, it is dependent on each element x ∈ B. We impose another definition in a similar
way.

Definition 2.1.3. A vector bundle ξ is smooth if its total space E and base space B are smooth
manifolds, its projection map π is smooth, and for every x ∈ B the local coordinate system (U, h)
about x has h as a diffeomorphism.

Example. The tangent bundle τM of a smooth manifold M is an example of a smooth vector
bundle. Its total space is the disjoint union of tangent spaces

TM =
∐

x∈M

TxM = {(x, v) | x ∈ M, v is tangent to M at x},

and the projection map π : TM → M is defined by π(x, v) = x; the vector space structure of
π−1(x) is defined by

⊕
(

⊙ (t1, (x, v1)), ⊙(t2, (x, v2))
)

= ⊙(t1, (x, v1)) + ⊙(t2, (x, v2))

= (x, t1v1 + t2v2).

Using the above definition as motivation, we now use vector bundles to generalize the notion
of vector fields.

Definition 2.1.4. A section of a vector bundle ξ with base space B is a continuous function
σ : B → E(ξ) which takes each x ∈ B into the corresponding fiber Fx(ξ). If σ(x) is a nonzero
vector of Fx(ξ) for each x ∈ B, we say that σ is nowhere zero. Furthermore, let U ⊆ B be open.
We define the zero section of ξ over U as the function φ which takes every element x ∈ U to the
zero element of π−1(x).

Example. If E(ξ) = TM for some smooth manifold M , then s is a vector field.
It is important to realize how σ(x) is a vector contained in π−1(x). In other words, we can

apply ideas such as linear independence to these vectors, and we do so in the following definition.

Definition 2.1.5. The sections (σ1, . . . , σn) are nowhere dependent if, for each x ∈ B, the
vectors (σ1(x), σ2(x), . . . , σn(x)) are linearly independent.

Now that we have discussed vector bundles as an object, we can now describe how vector
bundles relate to other vector bundles under isomorphisms.
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Figure 2.1. Depiction of a section σ of a vector bundle ξ.

Definition 2.1.6. Let ξ and η be vector bundles. We say that ξ and η are isomorphic, which
we denote by ξ ∼= η, if there is a homeomorphism

f : E(ξ) → E(η)

between the total spaces mapping each vector space Fx(ξ) in E(ξ) to its corresponding vector
space Fx(η) in E(η).

One might initially question why f being a homeomorphism is necessary. Is it too strong of a
condition to have instead of something such as, say, continuity? Well, the choice is irrelevant since
both are treated the same way in this context. Here is why.

Theorem 2.1.7. Let ξ and η be vector bundles over B and let f : E(ξ) → E(η) be a continuous
function which maps each vector space Fx(ξ) isomorphically to the corresponding vector space
Fx(η). Then f is a homeomorphism and ξ ∼= η.

Proof. Fix x ∈ B and choose local coordinate systems (U, g) for ξ and (V, h) for η with x ∈ U ∩ V .
We show that the map

h−1 ◦ f ◦ g : (U ∩ V ) × Rn → (U ∩ V ) × Rn

is a homeomorphism. For the forward direction, define the map by h−1(f(g(x, a))) = (x, b). Then
we see that each component of b = {b1, . . . , bn} can be expressed as a linear combination such that

bi =
∑

j

fij(x)aj

where [fij(x)] denotes a nonsingiular matrix of real numbers. The entries of this matrix depend
continuously on x, so h−1 ◦ f ◦ g is continuous. To show that (h−1 ◦ f ◦ g)−1 is continuous, let
[Fji(x)] denote the inverse matrix of [fij(x)]. Then we see that

(h−1 ◦ f ◦ g)−1(x, b) = (g−1 ◦ f−1 ◦ h)(x, b) = (x, a)

where each real number a = (a1, . . . , an) can be written as the linear combination

aj =
∑

i

Fji(x)bi.
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Since the entries Fji(x) depend continuously on the entries fij(x) which depend continuously on
x, it follows that the entries Fji(x) depend continuously on b. This implies that g−1 ◦ f−1 ◦ h is
continuous, and the proof is complete. ■

Thus, our notion of bundle isomorphisms is precise. But what about restricting bundles, and
making bundles out of other bundles? This is what we shall look at next.

Definition 2.1.8. Let ξ be a vector bundle with projection π : E → B and let B ⊆ B. By setting
E = π−1(B) and letting π : E → B be the restriction of π to E, one obtains the restriction of ξ

to its subbase space B which we denote as the ξ|B . We write this formally as the five-tuple

ξ|B =

π−1(B), π|π−1(B),
⋃

x∈B

π−1(x) × π−1(x), ⊙|R × π−1(B)


=

E, π|E,
⋃

x∈B

π−1(x) × π−1(x), ⊙|R × E

 .

It is important to note that the local triviality condition of ξ|B is satisfied since it really is just
a local condition in the first place. Thus, one can safely view ξ|B as a vector bundle in its own
right.

Definition 2.1.9. Let ξ be a vector bundle over B and let B′ be an arbitrary topological space.
Given any map f : B′ → B, one can construct what is called the pullback (or induced) vector
bundle f∗ξ over B′ in the following way.

1. The total space E′ of f∗ξ is a subset of B′ × E, consisting of all pairs (x′, e) such that
f(x′) = π(e).

2. The projective map π′ : E′ → B′ is defined by π′(x′, e) = x′, and the following diagram
commutes where f̂(x′, e) = e:

E′ E

B′ B

f̂

π′ π

f

3. The vector space structure on π′(x′) is defined by

⊕
(

⊙ (t1, (x′, e1)), ⊙(t2, (x′, e2))
)

= ⊙(t1, (x′, e1)) + ⊙(t2, (x′, e2))

= (x′, t1e1 + t2e2).

4. The local triviality condition is satisfied as well. If (U, h) is a local coordinate system for ξ,
then set U ′ = f−1(U) and define

h′ : U ′ × Rn → π′−1(U ′),

by h′(x′, a) = (x′, h(f(x′), a)). By construction we have that (U ′, h′) is a local coordinate
system for f∗ξ and f∗ξ is locally trivial.

The construction of the pullback bundle presents two remarks. Firstly, it is immediate that
f∗ξ is smooth if ξ is smooth with f being a smooth map. Second, the map f̂ presents a more
general construction of a vector bundle isomorphism.
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Definition 2.1.10. Let ξ and η be vector bundles over base spaces B and B′ respectively. A
bundle map from ξ to η is a continuous function

f : E(ξ) → E(η)

which maps each vector space Fx(ξ) isomorphically to one of the vector spaces Fx′(η).

It is important to note the subtle difference between a vector bundle isomorphism and a bundle
map. Bundle maps are different than isomorphisms because the base space is not fixed. Further-
more, by setting f(x) = x′ it is clear from the above definition that

f : B(ξ) → B(η)

is continuous as well. Using this we prove the following.

Theorem 2.1.11. If f : E(ξ) → E(η) is a bundle map, and if f : B(ξ) → B(η) is the correspond-
ing base space map, then ξ ∼= f

∗
η.

Proof. Consider the function h : E(ξ) → E(f∗
η) defined by h(e) = (π(e), f(e)) where π denotes

the projection of ξ. Because h is continuous and maps each vector space Fx(ξ) isomorphically to
its corresponding vector space Fx(η), it follows from Theorem 2.1.7 that h is a homeomorphism,
which completes the proof. ■

2.2 New Vector Bundles From Old

Given that the vector bundle is the central object of this paper, we must also elaborate on the
various new kinds of bundles we can construct from old ones. One such example is immediate.

Definition 2.2.1. Let F = {ξi}i∈Λ be a family of vector bundles for some index set Λ, and let
πi : E(ξi) → B(ξi) be the projection maps for each vector bundle ξi ∈ F . Then the Cartesian
product bundle

∏
i∈Λ ξi is defined to be the vector bundle with projection map∏

i∈Λ

πi :
∏
i∈Λ

E(ξi) →
∏
i∈Λ

B(ξi)

where each fiber (or vector space)(∏
i∈Λ

πi

)−1

(x1, . . . , xi) =
∏
i∈Λ

Fx(ξi),

is given the obvious vector space structure, and it is easy to see that
∏

i∈Λ ξi is locally trivial
because each ξi ∈ F is.

Numerous properties are still preserved when we take the product of vector bundles. For
example, if M is the Cartesian product of smooth manifolds Mi, then the tangent bundle τM is
isomorphic to the cartesian product of each tangent bundle τMi

.

Definition 2.2.2. Let ξ1 and ξ2 be vector bundles over the same base space B, and define the
map

∆ : B → B × B

to be the diagonal embedding of ξ1 and ξ2. Then the pullback bundle with respect to ∆

∆∗(ξ1 × ξ2) = ξ1 ⊕ ξ2

is called the Whitney sum of ξ1 and ξ2. Each fiber Fx(ξ1 ⊕ ξ2) is cononically isomorphic to the
direct sum Fx(ξ1) ⊕ Fx(ξ2).
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Whitney sums allow us to build new vector bundles out of old ones in a different way from,
say, Cartesian products or pullbacks. To see what the Whitney sum does in particular, we need
to look at vector bundles as objects once again.

Definition 2.2.3. Let η and ξ be vector bundles over the same base space B with E(ξ) ⊂ E(η).
We say that ξ is a subbundle of η if each fiber Fx(ξ) is a subspace of the corresponding fiber
Fx(η). We denote this as ξ ⊂ η.

If ξ1, ξ2 ⊂ η such that Fx(η) = Fx(ξ1)⊕Fx(ξ2) then η ∼= ξ1 ⊕ξ2. To see this, let f : E(ξ1 ⊕ξ2) →
E(η) by f(x, e1, e2) = e1 + e2. This is continuous, and by Theorem 2.1.7 the result follows. But
this raises another question. If ξ ⊂ η, is there another subbundle ρ ⊂ η such that η = ξ ⊕ ρ? The
answer is yes, and to see why we need another definition.

Definition 2.2.4. Let ξ ⊂ η be a subbundle of η over B, and let Fx(ξ⊥) denote the subspace of
Fx(η) consisting of all vectors v such that v · w = 0 for all w ∈ Fx(ξ). In this case, we call ξ⊥ the
orthogonal complement of ξ with respect to η. Furthermore, we write E(ξ⊥) as the union of
all of the Fx(ξ⊥).

We use the above to answer our question from before. It can be proved (see [MS74]) that E(ξ⊥)
is the total space of the subbundle ξ⊥ and η ∼= ξ ⊕ ξ⊥. Thus, we can always insure that η can be
“broken down” into a Whitney sum of subbundles. We present one last definition which will be
very important throughout this exposition.

Definition 2.2.5. Let M and N be smooth manifolds and let N be endowed with a Riemannian
metric µ : TN → R; we call (N, µ) a Riemannian manifold in this case. Then the tangent
bundle τM is a subbundle of τN |M , and its orthogonal compliment ν = τ⊥

M is called the normal
bundle of M with respect to N .

One of the most important results that we will use with normal bundles is the following theorem,
known as the Tubular Neighborhood Theorem. We state it without proof, but we guide the reader
to a proof that can be found in [Hir76].

Theorem 2.2.6 (Tubular Neighborhood Theorem). There exists an open neighborhood of U in
M which is diffeomorphic to the total space of the normal bundle under a diffeomorphism which
maps each point x ∈ U to the zero normal vector at x.

Another important thing to note is the intimate relationship that Whitney sums and normal
bundles have with each other.

Theorem 2.2.7. For any smooth submanifold M of a smooth Riemannian manifold N , the normal
bundle ν is defined and τM ⊕ ν ∼= τN |M .

Proof. This follows immediately from the fact that ν = τ⊥
M . ■

While we have stated the above definition with a Riemannian metric, we define a new kind of
metric in order to define our next type of vector bundle.

Definition 2.2.8. A Euclidean vector bundle is a real vector bundle ξ together with a contin-
uous function µ : E(ξ) → R such the restriction of µ to each fiber in E(ξ) is positive definite and
quadratic. In other words, we can write

µ(v) =
∑

i

ℓi(v)ℓ′
i(v)

where ℓ and ℓ′ are linear functions.
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Another important example is when we define a vector bundle with respect to a quotient space.
We do this using projective spaces.

Definition 2.2.9. Let E(γ1
n) be a subset of Pn × Rn+1 consisting of pairs (±x, v} such that each

vector v is a multiple of x. Define the projection π : E(γ1
n) → Pn by {±x, v} 7→ {±x}. Then each

fiber π−1({±x}) is a line through x and −x in Rn+1 and is given the usual vector space structure.
The vector bundle γ1

n is called the cononical line bundle over its base space Pn.

While the above material has certainly been notable, we have reached a dead-end with the
current technology we have at the moment. In order to progress any further, we must turn to the
language of category theory. By doing so, we can define more operations on vector bundles, as
well as new kinds of vector bundles.

Definition 2.2.10. Let VectR be the category of all finite dimensional vector spaces V over R, and
all of the isomorphisms between them. We define a covariant functor T : VectR ×VectR → VectR
as an operation which assigns

• To each pair of vector spaces V, W ∈ VectR a vector space T (V, W ) ∈ VectR.

• To each pair of isomorphisms f : V → V ′ and g : W → W ′ an isomorphism

T (f, g) : T (V, W ) → T (V ′, W ′)

such that T (idV , idW ) = idT (V,W ) and the composition of isomorphisms behaves in such a
way that

T (f1 ◦ f2, g1 ◦ g2) = T (f1, g1) ◦ T (f2, g2).

This functor is said to be continuous if T (f, g) depends continuously on f and g.

This seems quite unrelated though, so we must make this relevant in the context of vector
bundles. We do this by recalling that Fx(ξ) is a vector space.

Definition 2.2.11. Let T : VectR × VectR → VectR be a continuous functor of n variables, and
let ξ1, . . . , ξn be a collection of vector bundles over the same base space B. Then for each x ∈ B,
let

Fx = T (Fx(ξ1), Fx(ξ2), . . . , Fx(ξn)).

Let the total space E be equivalent to the disjoint union of the spaces such that

E =
∐
x∈B

Fx,

and define the projection map π : E → B by π(Fx) = x. Using the necessary cononical topology
for E, this forms a tangent bundle and we denote it by T (ξ1, . . . , ξn).

Our reward for this category-theoretic work is that we can now define the tensor product
ξ ⊗ η of vector bundles ξ and η by using the tensor product functor. Furthermore, if we use the
duality functor V 7→ Hom(V,R), we obtain the functor ξ 7→ Hom(ξ, ϵ1) which is called the dual
vector bundle of ξ. There are many other extensions of this idea depending on one’s choice of
functor, and we leave it to the reader to explore.
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2.3 A Word on Fiber Bundles

Although vector bundles are quite a generalization themselves, we can take this one step further
by defining the fiber bundle.

Definition 2.3.1. Let B and F be fixed topological spaces. A fiber bundle over B with model
fiber F is a four-tuple

ϕ = (E, B, π, F )

with a surjective continuous projection π : E → B satisfying the following property: for every
x ∈ B, there exists a neighborhood U of x and a homeomorphism h : π−1(U) → U × F such that
the following diagram commutes:

π−1(U) U × F

U

h

π
π1

Remark 2.3.2. We can endow a smooth structure on ϕ if we so desire. If all four components of ϕ

are smooth, and h is a diffeomorphism, then we say that ϕ is a smooth fiber bundle.
A vector bundle is a special case of a fiber bundle, in the sense that we invoke a vector space

structure on the fibers π−1(x) and F . By removing the vector space structure for fiber bundles,
we are able to generalize vector bundles to a much larger class of spaces.

Definition 2.3.3. A trivial fiber bundle ϕ is one that admits a local trivialization over the
entire base space

hglobal : π−1(B) → B × F

which we call a global trivialization. We say that ϕ is smoothly trivial if ϕ is a smooth fiber
bundle and the global trivialization h is a diffeomorphism.

While vector bundles are a classic example of fiber bundles, there are other simpler examples
to consider as well.
Example. Every product space B × F is a fiber bundle (called a product fiber bundle) with
projection π1 : B ×F → B. It has a global trivialization hglobal : B ×F → B ×F , so every product
fiber bundle is trivial.
Example. Every covering space is a fiber bundle, where the projection is a local homeomorphism.
Its model fiber is a discrete space.
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3Stiefel-Whitney Classes

The idea of characteristic classes is to create topological invariants on a vector bundle by associating
it to some kind of cohomology class. Regarding the notation used in this section, we direct the
reader to the appendices of [MS74].

3.1 Definitions and Immediate Results

Definition 3.1.1. Let ξ be a vector bundle. The Stiefel-Whitney classes of ξ are a sequence
of cohomology classes

wi(ξ) ∈ Hi(B(ξ);Z/2Z)

where the following axioms are satisfied:

1. The class w0(ξ) is equal to the unit element 1 ∈ H0(B(ξ);Z/2Z).

2. If ξ is an Rn-bundle and i > n, then wi(ξ) = 0.

3. If f : B(ξ) → B(η) is covered by a bundle map from ξ to η, then wi(ξ) = f∗wi(η).

4. If ξ and η are vector bundles over B, then

wk(ξ ⊕ η) =
k∑

i=0
wi(ξ) ⌣ wk−i(η) =

∑
i+j=k

wi(ξ)wj(η).

5. If γ1
1 is the line bundle over the circle P1, the first Stiefel-Whitney class w1(γ1

1) ̸= 0.

There are a couple of things that need to be clarified regarding the statement of Definition
3.1.1. Firstly, why the choice of coefficients in Z/2Z? Well, recall the following result from
algebraic topology.

Theorem 3.1.2 ((Poincaré Duality). Let M be a compact and orientable n-dimensional manifold.
Then Hi(M ; Λ) ∼= Hn−i(M ; Λ) by the mapping a 7→ a ∩ µM .

Thus, the orientability of B(ξ) takes center stage. If it is orientable, there is nothing to worry
about and we can move freely between homology and cohomology to establish invariants. But
what happens if B(ξ) is not orientable?

Theorem 3.1.3. If M is an n-dimensional unorientable manifold, then Hn(M ;Z) = 0.

In other words, something goes really wrong when we look at unorientable manifolds with
cohomology class coefficients in Z. But this does not happen in Z/2Z. In fact, it is the only
possible choice of coefficients where Theorem 3.1.2 still holds for unorientable manifolds.
Remark 3.1.4. An intuitive way of looking at the final Stiefel-Whitney classe axiom is that the
nonzero cohomology “detects” the twist in the Möbius bundle; that is, the obstruction to it
assuming the global structure of a product space.
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Now that we have defined the axioms we need (and while it is not obvious that such a class
can be constructed), it is time to produce some results. There is one that is quite immediate.

Theorem 3.1.5. If ξ ∼= η then wi(ξ) = wi(η).

Proof. The isomorphism ξ ∼= η induces the identity map as its base map, which means that by
axiom (3),

wi(ξ) = f∗wi(η) = id∗wi(η) = wi(η).

This completes the proof. ■

This establishes Stiefel-Whitney classes as an invariant of vector bundles. What is interesting
about Stiefel-Whitney classes, however, is that they encode more topological invariants beyond
this. We continue our exploration to establish these invariants.

Theorem 3.1.6. Let ϵn
B be a trivial vector bundle over B. Then wi(ϵn

B) = 0 for i > 0.

Proof. By definition we know that the total space of ϵn
B is equivalent to B × Rn with projection

map π1 : B × Rn → B. Consider another projection map π2 : B × Rn → Rn.

B × Rn Rn

B {∗}

π2

π1 π3

π4

From the above diagram, we use two additional projections from B and Rn to the singleton {a}, or
rather that there is a bundle map to a vector bundle over a point. However, the higher cohomology
groups of a point are trivial, and by taking the pullback we see that wi(ϵn

B) = 0 for i > 0 by axiom
(3). ■

Another result that is important to note is when the Whitney sum of two Stiefel-Whitney
classes cancels out, which allows for another vanishing criterion.

Theorem 3.1.7. Let ϵn
B be a trivial vector bundle. Then for any vector bundle ξ over some base

space, the Whitney sum wi(ϵn
B ⊕ ξ) = wi(ξ).

Proof. Applying axiom (4), we see that

wi(ϵn
B ⊕ ξ) =

i∑
j=0

wj(ϵn
B) ⌣ wi−j(ξ) = wi(ξ)

since wj(ϵn
B) vanishes for j > 0 by Theorem 3.1. This completes the proof. ■

3.2 Stiefel-Whitney Numbers and Unoriented Cobordism

Because of the invariant properties that Stiefel-Whitney classes possess, how are we supposed to
compare them? This is where a new type of invariant comes into play, and we focus more on
its theoretical applications rather than its uses in computation. To begin, we define a notational
definition.
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Definition 3.2.1. Let M be a closed smooth n-dimensional manifold. Recall (see [MS74]) that
there is a unique fundamental homology class µM ∈ Hn(M ;Z/2Z) using mod 2 coefficients. For
any cohomology class v ∈ Hn(M ;Z/2Z) we define the Kronecker index v[M ] = ⟨v, µM ⟩ ∈ Z/2Z
as the composition of the cap product

∩ : Hi(M ;Z/2Z) ⊗ Hn(M ;Z/2Z) → Hn−i(M ;Z/2Z) , v ∩ µM ∈ H0(M ;Z/2Z)

with the point evaluation map p : Hn−i(X;Z/2Z) → Z/2Z.

The idea of the Kronecker index is that if we take an element from a cohomology group and
another from its corresponding homology group, we can operate on those two elements to get an
element contained in their coefficient domain. The next definition has a surprising usage of the
tangent bundle.

Definition 3.2.2. Let r1, . . . , rn be non-negative integers such that
∑n

i=1 iri = n. If ξ = τM for
some manifold M with the previously described conditions, then we define the Stiefel-Whitney
number of M as the Kronecker index of the monomial w1(τM )r1 . . . wn(τM )rn . In other words,
it is equivalent to

w1(τM )r1 · · · wn(τM )rn [M ] = ⟨w1(τM )r1 · · · wn(τM )rn , µM ⟩.

As previously stated, we are not necessarily concerned with the computation of these numbers.
Rather, we are interested in how these numbers produce results related to cobordism. A result
from Pontryagin is a good start.

Theorem 3.2.3 (Pontryagin). If M ′ is a smooth compact (n + 1)-manifold with boundary equal
to M (which has the previous conditions imposed on it), then the Stiefel-Whitney numbers of M

are all zero.

Proof. Denote the fundamental homology class of the pair (M ′, M) as µM ′ ∈ Hn+1(M ′, M ;Z/2Z).
Then the homomorphism

∂ : Hn+1(M ′, M ;Z/2Z) → Hn(M ;Z/2Z)

maps µM ′ to the fundamental homology class µM . By taking any arbitrary cohomology class
v ∈ Hn(M ;Z/2Z), we see that the identity

⟨v, ∂µM ′⟩ = ⟨δv, µM ′⟩ (⋆)

holds where δ : Hn(M ;Z/2Z) → Hn+1(M ′, M ;Z/2Z) (see the appendix of [MS74]). Consider the
tangent bundle τM ′|M , and choose a Euclidean metric on τM ′ . Then there is a unique outward
normal vector along M which spans the trivial line bundle ϵ1

Pn , and by Theorem 2.2.7 we have
τM ′|M ∼= τM ⊕ ϵ1

Pn . By Theorem 3.1 we know that wi(τM ⊕ ϵ1
Pn) ∼= wi(τM ), so by axiom (3) we see

that wi(τM ) ∼= wi(τM ′|M ). Because the sequence

Hn(M ′;Z/2Z) ⊂−→ Hn(M ;Z/2Z) δ−→ Hn+1(M ′, M ;Z/2Z)

is exact, we see that δ(wr1
1 . . . wrn

n ) = 0, and by (⋆) this implies that

⟨(wr1
1 · · · wrn

n ), ∂µM ′⟩ = ⟨δ(wr1
1 · · · wrn

n ), µM ′⟩

so all Stiefel-Whitney numbers of M are zero. ■

The converse is also true, actually, although we will not prove this here. This surprisingly
nontrivial result is due to Thom, and it is stated as follows.
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Theorem 3.2.4 (Thom). If all Stiefel-Whitney numbers of M (assuming the above conditions)
are zero, then M is the boundary of some smooth compact manifold.

The two theorems from Pontryagin and Thom allow us to establish our first result on cobordism.
To do this, we first define what we mean by “cobordism”.

Theorem 3.2.5. Two smooth n-manifolds M and M ′ belong to the same unoriented cobordism
class if and only if their disjoint union M ⊔ M ′ is the boundary of a smooth compact (n + 1)-
manifold.

Cobordism is extremely easy to visualize, which is why this theory is so rich. In essence, two
smooth n-manifolds are cobordant if their (disjoint, so there is no overlap) union consists of all
the boundary points of an (n + 1)-dimensional manifold. The entire rest of this paper is devoted
to developing enough machinery to determine when two manifolds M and M ′ satisfy this simple
condition. For our first result, we state the following.

Definition 3.2.6. Two smooth (closed) n-manifolds M and M ′ belong to the same unoriented
cobordism class if and only if all of their Stiefel-Whitney numbers are equal.

Proof. This is immediate from Theorems 3.2.3 and 3.2.4. ■

Our journey to cobordism has just begun from this point onward. Later, we will see how
Pontryagin classes solve the oriented case, and how we can use homotopy theory to solve the
cobordism problem once and for all.
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4Universal Bundles and Oriented Bundles

4.1 Universal Bundles

One of the most common vector bundles that we will use involves slicing Euclidean space with
n-dimensional planes. We briefly formalize this idea with a special kind of base space, which we
define now. Consider the set of all n-dimensional planes through the origin of Rn+k. This is a
topological space, and we topologize it in the following way.

Definition 4.1.1. An n-frame in Rn+k is an n-tuple of linearly independent vectors in Rn+k.
The collection of all n-frames in Rn+k forms an open subset of the cartesian product

Rn+k × . . . × Rn+k︸ ︷︷ ︸
n-many times

which we call the Stiefel manifold Vn(Rn+k).

Using this idea of n-frames, we can construct a (canonical) function ρ from Vn(Rn+k) to our
desired set by mapping each n-frame to each n-space that it spans. In particular, we define strong
continuity by saying that a subset U in this space is open if and only if its preimage ρ−1(U) is
open in Vn(Rn+k). With its topology defined, we state our space’s definition in full.

Definition 4.1.2. The space Grn(Rn+k) is the nk-dimensional compact manifold consisting of all
n-dimensional planes through the origin of Rn+k, called the Grassmann manifold.

The justifications that are needed in order to show that Grn(Rn+k) is an nk-dimensional and
compact manifold are contained in [MS74], but we omit the details. Using the idea of the Grass-
mann manifold, our next objective is to talk about the vector bundle which we take over Grn(Rn+k).

Definition 4.1.3. The universal bundle γn(Rn+k) over Grn(Rn+k) possesses a total space

E(γn(Rn+k)) = (n-plane in Rn+k, vector in that n-plane) ⊆ Grn(Rn+k) × Rn+k.

It has the projection map π : E → Grn(Rn+k) defined by π(X, x) = X, with its fibers being
defined by

⊕
(

⊙ (t1, (X, x1)), ⊙(t2, (X, x2))
)

= ⊙(t1, (X, x1)) + ⊙(t2, (X, x2))

= (X, t1x1 + t2x2).

Constructed in this way, we see that local triviality is satisfied as well. For the details, consider
the exposition contained in [MS74].

The “universal” name for this bundle seems quite strong, but it is certainly warranted. The
reason why is because every Rn-bundle over a compact base space can be mapped into γn(Rn+k)
as long as k is sufficiently large. We will not prove this here, but we encourage the reader to see
the proof in [MS74].
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Definition 4.1.4. The infinite Grassmann manifold Grn = Grn(R∞) is the set of all n-
dimensional subspaces of R∞, whose topology is obtained from the the direct limit of the sequence

Grn(Rn) ⊂ Grn(Rn+1) ⊂ Grn(Rn+2) ⊂ Grn(Rn+3) · · · .

Hence, a subset Grn(Ri) ⊆ Grn is open or closed if and only if its itersesection Grn(Ri) ∩ Grn(Rj)
is open or closed for some other Grn(Rj) ⊆ Grn. It is evident that

Grn =
∞⋃

i=0
Grn(Rn+i)

such that the universal bundle γn is the vector bundle with base space Grn

4.2 Oriented Bundles and Euler Classes

Until now, we have only looked at cohomology with coefficients in Z/2Z. While we have gone quite
far with this choice of coefficients (especially Theorem 3.2.6), we will be able to incorporate even
more information if we allow our coefficients to be in Z. It turns out that in order to do this, we
will need to impose the additional structure of an orientation on our vector bundles. To get things
started, let us discuss the notion of an orientation on a single finite-dimensional vector space V .

Definition 4.2.1. An orientation of a real vector space V of dimension n > 0 is an equivalence
class of bases, where two (ordered) bases v1, . . . , vn and v′

1, ..., v′
n are said to be equivalent if and

only if the matrix [aij ] defined by the equation v′
i =

∑
aijvj has positive determinant. It follows

that every such vector space has exactly two possible orientations.

Just like how manifolds are orientable, we can also define something similar for vector bundles.
Put simply, in order to make a vector bundle ξ orientable, we make each fiber orientable as a vector
space.

Definition 4.2.2 (Vector Space Version). Let ξ be a vector bundle of fiber dimension n > 0. An
orientation for ξ is a function which assigns to each fiber F of ξ an orientation as a vector space,
subject to the following compatibility condition: for every x ∈ B, there exists a local coordinate
chart (M, θ) containing x with

θ : M × Rn → π−1(M)

such that for each fiber π−1(x) = F over M , the homomorphism y 7→ θ(x, y) from Rn to F is
orientation preserving.

In order to do anything involving characteristic classes with our new definition above, we have to
rephrase Definition 4.2.2 in the (equivalent) language of cohomology theory. In algebraic topology,
we can orient an arbitrary n-simplex Σn in such a way that we can label its vertices and form an
orientation with them.

Definition 4.2.3. Let Σn be an n-simplex that is linearly embedded into an n-dimensional vector
space V , composed of ordered vertices A0, . . . , An. Each vector in V connecting Ai to Ai+1 for
i ∈ {0, . . . , n − 1} forms a basis vector Bi for V . The set of ordered bases {B}i comprise the
corresponding orientation of the vector space V .

An important thing to note here is that a choice of orientation for V corresponds to a choice
of the two possible generators of the homology group Hn(V, V0;Z). With such a choice, we have
to pick one, and we define rigorously what we mean by “preference” when making such a choice.
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Definition 4.2.4. Let ∆n be a standard n-simplex, let V be an oriented n-dimensional vector
space, and let σ : ∆n → V be an orientation preserving linear embedding which maps the barycen-
ter of ∆n to V0. Then σ is a singular n-simplex in Zn(V, V0;Z), and the homology class of σ is
the preferred generator µV for Hn(V, V0;Z). A similar construction unfolds for the cohomol-
ogy group Hn(V, V0;Z) and we denote its preferred generator as κV where it satisfies the identity
⟨κV , µV ⟩ = 1.

Now we are prepared to translate Definition 4.2.2 into the language of cohomology. In essence,
what we will do is assign each fiber a preferred generator in the cohomology class of the fiber and
its boundary.

Definition 4.2.5 (Cohomology Version). Let ξ be a vector bundle of fiber dimension n > 0.
An orientation for ξ is a function which assigns to each fiber F of ξ a preferred generator
κF ∈ Hn(F, F0;Z) subject to the following local compatibility condition: for every x ∈ B there
exists a neighborhood U of x and a cohomology class κ ∈ Hn(π−1(U), π−1(U)0;Z) such that, for
every fiber F over U , the restriction κ|F,F0 ∈ Hn(F, F0;Z) is equivalent to κF .

But this is only for fibers of the vector bundle. Does this definition still hold when we consider
the entire total space E of ξ? The answer is yes, and we will state this result without proof.

Theorem 4.2.6 (Thom). Let ξ be an oriented Rn bundle. Then the cohomology group Hn(E(ξ), E0;Z) =
0 for i < n, and Hn(E(ξ), E0;Z) contains precisely one cohomology class κ (called the Thom
class) whose restriction κ|F,F0 ∈ Hn(F, F0;Z) is equal to the preferred generator κF for every fiber
F of ξ. Additionally,

Hk(E(ξ);Z) ∼= Hk+n(E(ξ), E0;Z)

for each integer k by the isomorphism ρ 7→ ρ ⌣ κ.

Let B be the base space of ξ. Then the above implies that Hk(B(ξ);Z) ∼= Hk+n(E(ξ), E0;Z),
and in a more general sense we call this the Thom isomorphism

Θ : Hk(B(ξ);Z) → Hk+n(E(ξ), E0;Z) , Θ(ρ) = π∗ρ ⌣ κ

where π∗ is the canonical isomorphism π∗ : Hk(B(ξ);Z) → Hk(E(ξ);Z). Surprisingly, all of this
theory is actually used to create a new kind of characteristic class. Let ξ be an oriented Rn-
bundle with total and base spaces E and B respectively. By considering the cohomology class
κ ∈ Hn(E(ξ), E0;Z), we can restrict this to the total space to achieve a new cohomology class
κ|E ∈ Hn(E(ξ);Z) ∼= Hn(B(ξ);Z).

Definition 4.2.7. Let ξ be an oriented Rn-bundle. The Euler class of ξ is the cohomology class
e(ξ) ∈ Hn(B(ξ);Z) which corresponds to κ|E with respect to the canonical isomorphism π∗ written
above.

For lack of a better phrase, it should soon become apparent to the reader that Euler classes
should behave “as they should be” so to speak. We see why this is in the following results.

Theorem 4.2.8 (Naturality and Sign Change). If f : B → B′ is covered by an orientation
preserving bundle map ξ → ξ′, then e(ξ) = f∗e(ξ′). Additionally, if the orientation of ξ is reversed,
then e(ξ) changes sign.

Proof. These are immediate. The first follows from the uniqueness of the Thom class in Theorem
4.2.6, and the second follows from the “parity” property of the fundamental class (and thus the
Thom class). ■
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Another key result is when the fibers of ξ have odd dimension. When this happens, the Euler
class of ξ changes sign.

Theorem 4.2.9. If ξ is an oriented Rn-bundle with odd fiber dimension, then e(ξ) = −e(ξ).

Proof. Because we defined the Thom isomorphism as

Θ : Hn(B(ξ);Z) → Hn+k(E(ξ), E0;Z),

we can take e(ξ) ∈ Hn(B(ξ);Z) such that

Θ(e(ξ)) = π∗e(ξ) ⌣ κ = κ|E ⌣ κ = κ ⌣ κ

and taking inverses gives e(ξ) = Θ−1(κ ⌣ κ). But note the identity which states

κ ⌣ κ = (−1)(dim κ)(dim κ)κ ⌣ κ,

so we see that e(ξ) has order 2 when ξ has odd fiber dimension. ■

There is one last result that we will cover, since it basically concludes our discussion of the
“arithmetic” properties of the Euler class.

Theorem 4.2.10. If ξ and ξ′ are oriented Rn-bundles, then the Euler class of the product bundle
e(ξ × ξ′) = e(ξ) × e(ξ′) and the Euler class of the Whitney sum is e(ξ ⊕ ξ′) = e(ξ) ⌣ e(ξ′).

Proof. Let ξ and ξ′ be of fiber dimension m and n respectively. Notice that (by accounting for
sign) the fundamental cohomology class of the product is equivalent to

κ(ξ × ξ′) = (−1)mnκ(ξ) × κ(ξ′). (⋆)

Hence, by applying the restriction homomorphism

Hm+n(E(ξ) × E′(ξ), E0 × E′
0;Z) −→ Hm+n(E(ξ), E′(ξ);Z) ∼= Hm+n(B(ξ), B′(ξ);Z)

to both sides of (⋆), we get the desired relation e(ξ × ξ′) = (−1)mne(ξ) × e(ξ′). For the second,
suppose that ξ and ξ′ are oriented Rn-bundles over the same base space B. Then “lifting” the
previous product back to B via the diagonal embedding B → B × B gives e(ξ ⊕ ξ′) = e(ξ) ⌣

e(ξ′). ■

We will be using Euler classes and their properties to define other kinds of characteristic classes,
mainly Chern and Pontryagin classes.

4.3 Gysin Sequences

Since orientation is the topic at hand, we will study an important sequence of cohomology classes
of the base space and total space of an oriented Rn-bundle ξ.

Definition 4.3.1. Let ξ be an oriented Rn-bundle. The Gysin sequence of ξ is the exact
sequence

· · · −→ Hi(B(ξ);Z) ⌣e−→ Hn+i(B(ξ);Z) π∗
0−→ Hn+i(E0;Z) −→ Hi+1(B(ξ);Z) ⌣e−→ · · ·

where ⌣ e denotes the map ρ 7→ ρ ⌣ e(ξ).
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Hopefully the importance of the Gysin sequence is clear. If such a Gysin sequence exists, we
can effortlessly relate the cohomology of the base space of ξ to its total space, a connection that
will prove vital when building more complicated characteristic classes. Thankfully, this question
of existence is not an issue at all.

Theorem 4.3.2. Every oriented Rn-bundle ξ has a Gysin sequence.

Proof. We start with the following exact sequence of cohomology groups

· · · −→ Hj(E(ξ), E0;Z) −→ Hj(E(ξ);Z) −→ Hj(E0;Z) δ−→ Hj+1(E(ξ), E0;Z) −→ · · · .

By Theorem 4.2.6 we have Hj−n(E(ξ);Z) ∼= Hj(E(ξ), E0;Z), so we can replace these components
of this sequence to get another exact sequence

· · · −→ Hj−n(E(ξ);Z) ℓ−→ Hj(E(ξ);Z) −→ Hj(E0;Z) −→ Hj−n+1(E(ξ);Z) −→ · · ·

where ℓ(ρ) = ρ ⌣ κ|E . Because κ|E ∈ Hj(E(ξ);Z) corresponds to the Euler class e(ξ) ∈
Hj(B(ξ);Z), we finish by seeing that this results in the desired exact sequence

· · · −→ Hi(B(ξ);Z) ⌣e−→ Hn+i(B(ξ);Z) π∗
0−→ Hn+i(E0;Z) −→ Hi+1(B(ξ);Z) ⌣e−→ · · ·

by substituting Hj(B(ξ);Z) in place of Hj(E(ξ);Z) and setting i = j − n. ■
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5Complex Vector Bundles and Chern Classes

In this chapter, we move onward in the rabbit hole of characteristic classes and into the realm of
complex vector bundles. Our goal is to associate new kinds of cohomology classes with complex
vector bundles, which we call Chern classes. These complex characteristic classes serve as the final
stepping stone to Pontryagin classes.

5.1 Complex Vector Bundles

We have worked with vector bundles whose fibers have the structure of finite-dimensional vector
spaces over R. Now we extend naturally to vector bundles over C.

Definition 5.1.1. A complex n-vector bundle ω over B (or equivalently a Cn-bundle) consists
of a topological space E and a projection map π : E → B, together with the structure of a complex
vector space in each fiber π−1(x), subject to the following local triviality condition: for every point
x ∈ B, there exists a neighborhood U ⊆ B, an integer n ≥ 0, and a homeomorphism

h : U × Cn → π−1(U)

which is a vector space isomorphism from each x × Cn to the vector space π−1(x), for all x ∈ U .

This definition should not be shocking, considering how similar it is to its real analogue. The
main difference with complex vector bundles is how we construct them. One way to do this is
to start with a R2n-bundle, and attempt to give each fiber the additional structure of a complex
vector space.

Definition 5.1.2. Let ξ be a R2n-bundle. A complex structure on ξ is a continuous mapping

J : E(ξ) → E(ξ)

satisfying the identity (J ◦ J)(v) = −v for every v ∈ E(ξ).

Using Definition 5.1.2, we transform each Fx(ξ) into a complex vector space by setting

zv = (x + iy)v = xv + J(yv)

for every z ∈ C, and since local triviality follows naturally we see that our R2n-bundle ξ is also a
complex vector bundle. But what happens in the opposite case? Can we take some Cn-bundle ω

and turn it into a R2n-bundle? Yes.

Definition 5.1.3. Let ω be a Cn-bundle. By omitting J, we see that each fiber Fx(ω) is a
2n-dimensional real vector space in its own right, forming the underlying real R2n-bundle ωR.

Now that we have established what complex vector bundles are, we can now examine cohomol-
ogy classes associated with them.
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5.2 Chern Classes

In short, Chern classes are characteristic classes that are associated with complex vector bundles.
Before we define them, we must first remark on the orientability of complex vector bundles, since
we still have not dropped the orientability condition.

Theorem 5.2.1. If ω is a complex vector bundle, then the underlying real vector bundle ωR has a
canonical preferred orientation.

Proof. Let V be any finite dimensional complex vector space. Choosing an ordered basis v1, . . . , vn

for V over C, note that the vectors v1, iv1, v2, iv2, . . . , vn, ivn form a new R-basis for the underlying
vector space VR. This basis determines the required orientation for VR, and it is important to realize
that this is not basis-dependent; since GLn(C) is connected, we can pass from any given complex
basis to any other complex basis by some continuous deformation, which leaves fixed the induced
orientation. This completes the proof. ■

Remark 5.2.2. If we apply this lemma to tangent bundles of manifolds, it follows that any complex
manifold has a canonical preferred orientation. Every orientation for the tangent bundle of a
manifold gives rise to a unique orientation on the manifold itself. Now, if ω is a complex vector
bundle, applying this construction to every fiber of ω yields the required orientation for ωR.

As an application, for any Cn-bundle ω over a base space B, we see that the Euler class
e (ωR) ∈ H2n(B(ω);Z) is well-defined. This allows us to conclude the following theorem.

Theorem 5.2.3. If ω′ is a Cm-bundle over the same base space B, then

e ((ω ⊕ ω′)R) = e (ωR) e (ω′
R) .

Proof. This is just a simple argument among bases. If a1, . . . , an is a basis of a fiber F for
ω, and b1, . . . , bm is a basis of the corresponding fiber F ′ of ω′, then the preferred orientation
a1, ia1, . . . , an, ian for FR followed by the preferred orientation b1, ib1, . . . , bm, ibm for F ′

R yields the
preferred orientation a1, ia1, . . . , ian, b1, ib1, . . . , ibm for (F ⊕ F ′)R. Thus ωR ⊕ ω′

R is isomorphic as
an oriented bundle to (ω ⊕ ω′)R. ■

While Euclidean metrics play an important role in the study of real vector bundles, there is a
suitable analogue for complex vector bundles.

Definition 5.2.4. A Hermitian metric on a complex vector bundle ω is a Euclidean metric

v 7→ |v|2 ≥ 0

on the underlying real vector bundle, which also satisfies the identity

|iv| = |v|.

Given a Hermitian metric, there exists a unique complex-valued inner product defined by the
identity

⟨v, w⟩ = 1
2
(
|v + w|2 − |v|2 − |w|2

)
+ 1

2 i
(
|v + iw|2 − |v|2 − |iw|2

)
defined for v and w in the same fiber of ω, which

1. is complex linear as a function of v for fixed w,

2. is conjugate linear as a function of w for fixed v (that is ⟨v, λw⟩ = λ̄⟨v, w⟩, and
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3. satisfies ⟨v, v⟩ = |v|2. The two vectors v and w are said to be orthogonal if this complex
inner product ⟨v, w⟩ is zero. The Hermitian identity

⟨w, v⟩ = ⟨v, w⟩

is easily verified, hence v is orthogonal to w if and only if w is orthogonal to v.

Remark 5.2.5. Note that if B is paracompact, then every complex vector bundle over B admits a
Hermitian metric.

Here is an inductive approach to defining characteristic classes for a Cn-bundle ω. It is first
necessary to construct a canonical Cn−1-bundle ω0 over the deleted total space E0. (Note that
E0 = E0(ω) denotes the set of all non-zero vectors in the total space E(ω) = E (ωR).) A point in
E0 is specified by a fiber F of ω together with a non-zero vector v in that fiber. First, suppose
that a Hermitian metric has been specified on ω. Then the fiber of ω0 over v is by definition the
orthogonal complement of v in the vector space F . This is a complex vector space of dimension
n − 1, and these vector spaces can be considered as the fibers of a new vector bundle ω0 over E0.
Remark 5.2.6. We do not necessarily need the Hermitian metric here. The fiber of ω0 over v can
be defined as the quotient vector space F/Cv where Cv is the 1-dimensional subspace spanned by
the vector v ̸= 0. In the presence of a Hermitian metric, it is of course clear that this quotient
space is canonically isomorphic to the orthogonal complement of v in F .

Second, note that by Theorem 4.3.2 an oriented R2n-bundle ξ possesses an exact Gysin sequence
of the form

. . . −→ Hi−2n(B(ξ);Z) ⌣e−→ Hi(B(ξ);Z) π∗
0−→ Hi (E0;Z) −→ Hi−2n+1(B(ξ);Z) −→ . . . .

For i < 2n−1, the cohomology groups Hi−2n(B(ξ);Z) and Hi−2n+1(B(ξ);Z) are zero. This implies
that π∗

0 : Hi(B(ξ);Z) −→ Hi (E0;Z) is an isomorphism.

Definition 5.2.7. The Chern classes ci(ω) ∈ H2i(B(ω);Z) are defined as follows, by induction
on the complex dimension n of ω. The top Chern class cn(ω) is equal to the Euler class e (ωR).
For all i < n, we set the Chern class equal to

ci(ω) = π∗−1
0 ci (ω0) .

Finally, for i > n the class ci(ω) is defined to be zero.

Remark 5.2.8. Note that the definition of the Chern class makes sense for i < n since π∗
0 :

H2i(B(ξ);Z) −→ H2i (E0;Z) is an isomorphism for i < n.
The formal sum c(ω) = 1 + c1(ω) + · · · + cn(ω) in the ring HΠ(B;Z) is called the total Chern

class of ω. We see that c(ω) is a unit, so it has an inverse

c(ω)−1 = 1 − c1(ω) +
(
c1(ω)2 − c2(ω)

)
+ . . .

which is well-defined. Our next goal is to use the definition above to build some new theory.

Theorem 5.2.9 (Naturality). If f : B −→ B′ is covered by a bundle map from the Cn-plane
bundle ω over B to the Cn-bundle ω′ over B′, then c(ω) = f∗c (ω′).

Proof. We proceed with a proof by induction on n. The top Chern class is natural, cn(ω) =
f∗cn (ω′), since Euler classes are natural by 4.2.8. To prove the corresponding statement for lower
Chern classes, first note that the bundle map ω −→ ω′ gives rise to a map
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f0 : E0(ω) −→ E0 (ω′)

which is covered by a bundle map ω0 −→ ω′
0 of Cn−1-bundles. Hence ci (ω0) = f∗

0 ci (ω′
0) by

hypothesis. Using the commutative diagram below

E0(ω) E0(ω′)

B B′

f0

π′
0 π0

f

and the identities ci (ω0) = π∗
0ci(ω) and ci (ω′

0) = π′∗
0 ci (ω′) where π′

0 is an isomorphism for i < n,
it follows that ci(ω) = f∗ci (ω′). ■

Theorem 5.2.10. If ϵk
B is the trivial Ck-bundle over B = B(ω), then c

(
ω ⊕ ϵk

B

)
= c(ω)

Proof. We prove this only for the base case of k = 1, since this generalizes easily to all other k by
induction. Let ϕ = ω⊕ϵ1

B . Since the Cn+1-bundle ϕ has a non-zero cross-section, it follows that the
top Chern class cn+1(ϕ) = e (ϕR) is zero, and hence equal to cn+1(ω). Let s : B −→ E0

(
ω ⊕ ϵ1

B

)
be the natural cross-section. Clearly s is covered by a bundle map ω −→ ϕ0, hence

s∗ci (ϕ0) = ci(ω)

by the preceding lemma. Substituting π∗
0ci(ϕ) for ci (ϕ0), and using the formula s∗ ◦ π∗

0 = id, it
follows that ci(ϕ) = ci(ω), as desired. ■

5.3 Complex Grassmann Manifolds

Like most results in this chapter, we will now observe how Grassmann manifolds have complex
analogues, too. Like the real case, we define the complex Grassmann manifold Grn

(
Cn+k

)
to be the set of all complex n-planes through the origin in Cn+k. The complex Grassmann
Grn

(
Cn+k

)
also has a natural complex structure, which we can view as a complex analytic mani-

fold of (complex) dimension nk. Furthermore there is a canonical Cn-bundle which we denote by
γn = γn

(
Cn+k

)
over Grn

(
Cn+k

)
. By definition, the total space of γn consists of all pairs (X, v)

where X is a complex n-plane through the origin in Cn+k and v is a vector in X.
Applying the Gysin sequence to the canonical line bundle γ1 = γ1 (Ck+1) over Pk(C), and

using the fact that c1
(
γ1) = e

(
γ1
R
)
, we have

. . . −→ Hi+1 (E0;Z) −→ Hi
(
Pk(C);Z

) c1−→ Hi+2 (Pk(C);Z
) π∗

0−→ Hi+2 (E0;Z) −→ . . . .

Furthermore, we can describe the space E0 = E0
(
γ1 (Ck+1)) as the set of all pairs

(line through 0 in Ck+1 , some nonzero vector in that line)

This can be identified with Ck+1\{0}, and hence has the same homotopy type as the unit sphere
S2k+1. Due to this, our Gysin sequence reduces to

0 −→ Hi
(
Pk(C);Z

) ⌣1−→ Hi+2 (Pk(C);Z
)

−→ 0

for 0 ≤ i ≤ 2k − 2, which implies that

H0 (Pk(C);Z
) ∼= H2 (Pk(C);Z

) ∼= . . . ∼= H2k
(
Pk(C);Z

)
.
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Since Pk(C) is clearly connected, it follows that each H2i
(
Pk(C)

)
is infinite cyclic generated c1

(
γ1)i

for i ≤ k. Similarly

H1 (Pk(C);Z
) ∼= H3 (Pk(C);Z

) ∼= . . . ∼= H2k−1 (Pk(C);Z
)

and using the portion of the Gysin sequence,

· · · −→ H−1 (Pk(C);Z
)

−→ H1 (Pk(C);Z
)

−→ H1 (E0;Z) −→ . . .

we see that these odd-dimensional groups are all zero. In other words, we have obtained the
following theorem.

Theorem 5.3.1. The cohomology ring H∗ (Pk(C);Z
)

is a truncated polynomial ring terminating
in dimension 2k, and generated by the Chern class c1

(
γ1 (Ck+1)).

Now, let k → ∞. The canonical Rn-bundle γn (C∞) over Grn (C∞), for sanity’s sake, will be
denoted as γn. Note that H∗ (Gr1 (C∞)) is the polynomial ring generated by c1

(
γ1), which allows

one to state the following (for a proof, see [MS74]).

Theorem 5.3.2. The cohomology ring H∗ (Grn (C∞) ;Z) is the polynomial ring over Z gener-
ated by the Chern classes c1 (γn) , . . . , cn (γn). There are no polynomial relations between these n

generators.

As exhibited previously for Rn bundles, we can prove the following result for Cn-bundles.

Theorem 5.3.3. Every Cn-bundle over a paracompact base space B possesses a bundle map into
the canonical Cn-bundle γn = γn (C∞) over Grn = Grn (C∞)

Here is another way of saying this: every Cn-bundle over a paracompact base B is isomorphic
to an induced bundle f∗ (γn) for some f : B −→ Grn. Just as in the real case, one can actually
prove the sharper statement that two induced bundles f∗ (γn) and g∗ (γn) are isomorphic if and
only if f is homotopic to g. For this reason the bundle γn = γn (C∞) is called the universal
Cn-bundle, and its base space Grn (C∞) is called the classifying space for Cn-bundles.

Theorem 5.3.4 (Chern Product Theorem). Consider two complex vector bundles ω and ϕ over
a common paracompact base space B. Then the chern class of the whitney sum of ω and ϕ is
multiplicative. That is,

c(ω ⊕ ϕ) = c(ω)c(ϕ)

which expresses the total Chern class of a Whitney sum ω ⊕ ϕ in terms of the total Chern classes
of the individual bundles ω and ϕ.

The proof of this theorem is surprisingly involved, and we guide the reader to a proof found
in [MS74]. We remark that so-called “product formulae” are extremely common in characteristic
classes, and while they are simple in statement that does not imply the simplicity of the proof!

5.4 Chern Numbers and Partitions

Just like Stiefel Whitney numbers, Chern classes have their own characteristic numbers. However,
in order to properly define them, we need to formalize our understanding of partitions.

Definition 5.4.1. A partition of a non-negative integer k is an (unordered) sequence I =
i1, . . . , ir of positive integers which sum to k. We denote the number of partitions of k as p(k),
which we call the partition function.
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Remark 5.4.2. A simple argument can be used to prove that the set of all partitions of all non-
negative integers is a free commutative monoid on the generators 1, 2, 3, . . ..

Now, it is perfectly reasonable to wonder why partitions come into the conversation here. Recall
the statement of Theorem 5.3.2, which implies that H2n(Grn(C∞);Z) is a free abelian group of
rank p(n), and the product of Chern classes

cI(γn) =
∏
ia∈I

cia(γn)

forms a basis (or a generating set) for this cohomology group. If we take any n-dimensional
compact complex manifold M , its tangent bundle τM can be classified by the map

f : M → Grn(C∞)

such that we can take the pullback to obtain f∗(γn) = τM . Using our new map f , we find that
the fundamental homology class µ2n ∈ H2n(M ;Z) of M induces a new homology class f∗(µ2n) ∈
H2n(Grn(C∞);Z). Our next objective is to “identify” this homology class, and to do this we
directly compute the p(n)-many Kronecker indices it possesses. These are of the form

⟨ci1(γn) · · · cir (γn), f∗(µ2n)⟩.

As fate would have it, these Kronecker indices have an equivalent form.

Definition 5.4.3. Let I = i1, . . . , ir be a partition of a non-negative integer n, and let M be a
compact complex n-dimensional manifold. We define the I-th Chern number as the Kronecker
index

cI [M ] = ci1(τM ) · · · cir (τM )[M ]
= ⟨ci1(τM ) · · · cir

(τM ), µ2n⟩
= ⟨f∗(ci1(γn) · · · cir (γn)), µ2n⟩
= ⟨ci1(γn) · · · cir

(γn), f∗(µ2n)⟩.

If I is a partition of some other non-negative integer k ̸= n, then we adopt the convention that
cI [M ] = 0.

Now that we have defined Chern numbers, our next objective is to find an algebraic way to
manipulate linear combinations of them. The motivation for doing so will be made clear as we
progress, but we first begin with the following (familiar) definition.

Definition 5.4.4. Let t1, . . . , tn be indeterminates (or variables, both are equivalent terms). A
polynomial f(t1, . . . , tn) with integral coefficients is called symmetric if permuting the indeter-
minants has no effect on the value of f(t1, . . . , tn).

When studying differential forms, symmetric polynomials play a critical role when describing
symmetric tensors. However, we will take a different direction with this mathematical technology,
and instead look at the subring SP ⊂ Z[t1, . . . , tn] of symmetric polynomials. In order to analyze
this subring, we need to establish the “building blocks” of symmetric polynomials.

Definition 5.4.5. Let t1, . . . , tn be indeterminates. The i-th elementary symmetric polyno-
mial is defined as

σi(t1, . . . , tn) =
∑

1≤j1<j2<...<ji≤n

tj1tj2 · · · tji
.

Alternatively, if I = i1, . . . , ir is a partition of n, then we define it as the product

σI(t1, . . . , tn) =
∏
ij∈I

σij
(t1, . . . , tn).
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It turns out that every symmetric polynomial can be written as a polynomial in elementary
symmetric polynomials. To formalize what we mean by this, consider the classic theorem from
algebra.

Theorem 5.4.6 (Fundamental Theorem of Symmetric Polynomials). Let Λ be a commutative
ring and let f(t1, . . . , tn) ∈ Λ[t1, . . . , tn] be a symmetric polynomial. Then there exists another
polynomial g ∈ Λ[t1, . . . , tn] such that f(t1, . . . , tn) = g(σ1(t1, . . . , tn), . . . , σn(t1, . . . , tn)).

Proof. This follows from a simple induction argument. ■

Using the Fundamental Theorem of Symmetric Polynomials, we are able to state an important
corollary that justifies our previous remarks.

Corollary 5.4.7. The subring SP ∼= Z[σ1(t1, . . . , tn), . . . , σn(t1, . . . , tn)].

Now that we have an explicit isomorphism for SP, our next task is to endow a graded ring
structure on SP. To do this, we make Z[t1, . . . , tn] into a graded ring by assigning each ti the
degree of 1 such that

SP∗ = (SP1, SP2, SP3, . . .)

is a graded ring with each σk(t1, . . . , tn) having degree k. In particular, each SPk is an additive
group of (homogeneous) symmetric polynomials with a basis

BSPk =

∏
ij∈I

σij
(t1, . . . , tn) | I = i1, . . . , ir is a partition of k

 .

Instead of dragging the discussion further without motivation, we present our end goal to
provide context for the rest of this section. Ultimately, we claim the following.

Theorem 5.4.8. The graded ring SP∗ ∼= H∗(Grn(C∞);Z).

In order to show this, we need to construct an equivalent basis (generating set) for SPk while
also showing that it generates H2k(Grn(C∞);Z). To do this, consider the following definition.

Definition 5.4.9. Let I = i1, . . . , ir be a partition for k. The k-th Newtonian power sum is
defined

sI(σ1(t1, . . . , tn)), . . . , σk(t1, . . . , tn)) = ti1
1 + . . . tir

r .

Thankfully, the Newtonian power sum is easy to compute using the following identity.

Theorem 5.4.10 (Newton’s Formula for Power Sums). Assuming the above definitions and ter-
minology, the summation

n∑
i=0

(−1)n−iσn−i(t1, . . . , tn)si(σ1(t1), . . . , σi(tn)) = 0.

Proof. Using the convention that σ0 = 1, we see that
n∑

i=0
σi(t1, . . . , tn) =

n∏
i=1

(1 + ti),

which follows by factoring the terms on the left hand side. Generalizing this idea shows that
n∑

i=0
xiσi(t1, . . . , tn) =

n∏
i=1

(xi + ti),
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and we use this identity to prove the claim. By substituting xi = −ti, we see that we have

n∑
i=0

(−1)n−iσn−i(t1, . . . , tn)si(σ1(t1), . . . , σi(tn)) = (−1)n
n∑

i=1

 n∑
j=0

(−ti)jσn−i(t1, . . . , tn)


= (−1)n

n∑
i=1

 n∏
j=0

(−ti + tj)


which vanishes, since at some point we would have i = j. ■

The above theorem shows how we can recursively compute sI , and it directly follows that the
p(k)-many sI(σ1(t1, . . . , tn)), . . . , σk(t1, . . . , tn)) also form a basis for SPk. Now, let ω be a complex
Cn-bundle that splits as a Whitney sum

ω =
n⊕

i=1
ηi = η1 ⊕ . . . ⊕ ηn.

Then applying Theorem 5.3.4 shows that

1 + c1(ω) + c2(ω) + . . . + cn(ω) =
n∏

i=1
(1 + ci(ηi)).

We have seen this before. Using the above discusion, we see that this implies that

σi(c1(η1), . . . , ci(ηi)) = ci(ω).

However, recall the equivalence of bases

sI(σ1, . . . , σk) = BSPk =

∏
ij∈I

σij (t1, . . . , tn) | I = i1, . . . , ir is a partition of k

 .

As mentioned before, the product of Chern classes

cI(γn) =
∏
ia∈I

cia
(γn)

already forms a basis of H2k(Grn(C∞);Z), but this is precisely BSPk with σij = cia(γn), so we see
that sI(c1(ω), . . . , ck(ω)) is an alternative basis for H2k(Grn(C∞);Z). This implies Theorem 5.4.8.

Definition 5.4.11. Let M be a compact complex n-dimensional manifold. For each partition I

of n, the notation sI [M ], will be used in replacement of the product ⟨sI(c(τM )), µ2n⟩.

In order to prove our final result for Chern classes, we need the following result from Thom,
which we state without proof since its proof is not relevant (for a proof, see [MS74]).

Theorem 5.4.12 (Thom). The characteristic class sI(c(ω ⊕ ω′)) of a Whitney sum is equivalent
to the sum ∑

IJ=1
sI(c(ω))sJ(c(ω′)).

In other words, we are able to split a Whitney sum into a product of Newtonian power sums.
Our final stepping stone to the last result of this section is the following.
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Theorem 5.4.13. Let M and N be compact complex n and m dimensional manifolds respectively.
Then the number

sI [M × N ] =
∑

IJ=1
sI [M ]sJ [N ].

Proof. The Cartesian product of the tangent bundles of M × N

τM × τN
∼= (π∗

M τM ) ⊕ (π∗
N τN )

where πM : M × N → M and πN : M × N → N . Hence, referencing the definition above and
Theorem 5.4.12 shows that

sI [M × N ] = ⟨sI(τM × τN ), µ2n × µ2m⟩
= ⟨sI((π∗

M τM ) ⊕ (π∗
N τN )), µ2n × µ2m⟩

=
〈∑

IJ=1
sI(c(τM ))sJ(c(τN )), µ2n × µ2m

〉
=
∑

IJ=1
sI [M ]sJ [N ]

which is what we wanted to prove. ■

We have finally arrived at our destination for this section. We state it as follows.

Theorem 5.4.14. Let M1, . . . , Mn be complex manifolds with sk[Mk] ̸= 0. Then the p(n) × p(n)
matrix

M = (ci1 · · · cir [Mj1 × . . . × Mjs ]) ,

where I = i1, . . . , ir and J = j1, . . . , js are partitions of n, is nonsingular.

Remark 5.4.15. An identical result holds for Pontryagin numbers, which we talk about in the next
section.

Proof. This is precisely why we went through all of that trouble with redefining bases. Instead
of using the Chern numbers themselves, which would make this proof a nightmare, we use linear
combinations of sI(c). Generalizing Theorem 5.4.13 to multiple partitions, we see that

sI [Mj1 × . . . × Mjp
] =

∑
I1···Ip=1

sI1 [Mj1 ] · · · sIp
[Mjp

].

Note that sI [Mj1 × . . . × Mjp ] = 0 only when r ≥ p, so this matrix is lower triangular if the
partitions are arranged in a sufficient order. Applying a special case of Theorem 5.4.13 shows that
each entry in the diagonal can be written as a nonzero product, and the result follows. ■
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6Pontryagin Classes

We have now arrived at our final characteristic class, the Pontryagin class. Not surprisingly,
defining these characteristic classes requires all of the previously derived theory, but we hope that
the reader can appreciate the reward of this work.

6.1 Pontryagin Classes

Consider the following (familiar) definition.

Definition 6.1.1. Let V be a real vector space, and let V ⊗C = V ⊗R C denote the complexifi-
cation of V . In a way, one can say that complexifying each fiber F of the real Rn-bundle ξ yields
a complex Cn-bundle with generic fibers F ⊗C over the same base space. We will denote this new
bundle as ξ ⊗ C and we will call it the complexification of the real vector bundle ξ.

We begin by describing what the elements in F ⊗ C look like. They can be decomposed
(uniquely) as a sum x + iy where x, y ∈ F . This yields a direct sum expression

F ⊗ C = F ⊕ iF,

which means that the underlying real vector bundle (ξ ⊗ C)R is canonically isomorphic to the
Whitney sum ξ ⊕ ξ.

Theorem 6.1.2. The complexification ξ ⊗ C of a real vector bundle is isomorphic to its own
conjugate bundle ξ ⊗ C.

The correspondence f : x + iy 7→ x − iy maps the total space E(ξ ⊗C) homeomorphically onto
itself, and is R-linear where each fiber f(i(x + iy)) is equivalent to −if(x + iy). In fact, let us
consider the total Chern class

c(ξ ⊗ C) = 1 + c1(ξ ⊗ C) + c2(ξ ⊗ C) + · · · + cn(ξ ⊗ C)

of this complexified Rn-bundle. If we set this equal to

c(ξ ⊗ C) = 1 − c1(ξ ⊗ C) + c2(ξ ⊗ C) − · · · ± cn(ξ ⊗ C),

we see that all of the odd Chern classes

c1(ξ ⊗ C), c3(ξ ⊗ C), · · ·

are all elements of order 2. This leads us to defining our final characteristic class.

Definition 6.1.3. Ignoring all of the pesky elements of order 2, the i-th Pontryagin class is
defined to be the (integral) cohomology class (−1)ic2i

(ξ⊗C), which we write as pi(ξ) ∈ H4i(B(ξ);Z)
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Remark 6.1.4. By definition, pi(ξ) is zero for i > n/2. The total Pontryagin class is defined to be
the unit

p(xi) = 1 + p1(ξ) + · · · + p⌊n/2⌋(ξ)

in the ring HΠ(B;Z).
We state the following naturality result without proof (see [MS74]).

Theorem 6.1.5. Pontryagin classes are natural with respect to bundle maps. Also, if εk
B is a

trivial Rk-bundle, then p
(
ξ ⊕ εk

B

)
= p(ξ).

Just like all of the previously-discussed characteristic classes, we would like the Pontryagin class
to satisfy a ”product formula”. However, since the odd Chern classes of ξ ⊗C have been discarded,
the best we can do is the following.

Theorem 6.1.6. The total Pontryagin class p(ξ ⊕ η) of a Whitney sum is congruent to p(ξ)p(η)
modulo elements of order 2. That is to say,

2(p(ξ ⊕ η) − p(ξ)p(η)) = 0.

Proof. Since (ξ ⊕ η) ⊗ C is isomorphic to (ξ ⊗ C) ⊕ (η ⊗ C) we have

ck((ξ ⊕ η) ⊗ C) =
∑

i+j=k

ci(ξ ⊗ C)cj(η ⊗ C).

Ignoring the odd Chern classes, which are all elements of order 2, it follows that

c2k((ξ ⊕ η) ⊗ C) =
∑

i+j=k

c2i(ξ ⊗ C)c2j(η ⊗ C)

modulo elements of order 2. Multiplying both sides of this congruence by (−1)k = (−1)i(−1)j , it
follows that

pk(ξ ⊕ η) =
∑

i+j=k

pi(ξ)pj(η)

as required. ■

For any Cn-bundle ω, the Chern classes ci(ω) determine the Pontryagin classes pk (ωR) by the
formula

1 − p1 + p2 − · · · ± pn = (1 − c1 + c2 − · · · ± cn) (1 + c1 + c2 + · · · + cn) .

Thus, pk (ωR) is equal to

ck(ω)2 − 2ck−1(ω)ck+1(ω) + · · · ± 2c1(ω)c2k−1(ω) ∓ 2c2k(ω).

Example. Here is an interesting combinatorial example. Let τ be the tangent bundle of n-
dimensional complex projective space Pn(C). Since the total Chern class c(τ) equals (1 + a)n+1,
it follows that the Pontryagin classes pk (τR) are given by

(1 − p1 + · · · ± pn) = (1 − c1 + · · · ± cn) (1 + c1 + · · · + cn)

= (1 − a)n+1(1 + a)n+1 =
(
1 − a2)n+1

.
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Therefore the total Pontryagin class 1 + p1 + · · · + pn is equal to
(
1 + a2)n+1. In other words

pk (Pn(C)) =
(

n + 1
k

)
a2k

for 1 ≤ k ≤ n/2, and the higher Pontryagin classes are zero since H4k (Pn(C)) for k > n/2.
Remark 6.1.7. Note that there is a slight amount of notational abuse here. In this example we are
abbreviating the tangential Pontryagin class pk (τ(M)R) as pk(M) for simplicity.

Now suppose we start with an oriented R2n-bundle ξ. If we complexify and pass to the under-
lying real vector bundle, we obtain a R2n-bundle (ξ ⊗ C)R with a preferred orientation.

Theorem 6.1.8. The R2n-bundle (ξ ⊗ C)R ∼= ξ ⊕ ξ under an isomorphism which either preserves
or reverses orientation according as n(n − 1)/2 is even or odd.

Proof. Let v1, · · · , vn be an ordered basis for a typical fiber F of ξ. Then the vectors v1, iv1, · · · , vn, ivn

form an ordered basis determining the preferred orientation for (F ⊗C)R. Identifying this with the
real direct sum F ⊕ iF ∼= F ⊕ F , the basis v1, · · · , vn for F followed by the basis iv1, · · · , ivn for
iF gives a different ordered basis. Evidently the permutation which transforms one ordered basis
to the other has sgn(−1)(n−1)+(n−2)+···+1 = (−1)n(n−1)/2. ■

Using this theorem, we can establish a very intersting result that unites Pontryagin and Euler
classes. This should not come as a surprise, however; because characteristic classes are so inter-
connected theoretically, there are plenty of areas of crossover. This just happens to be one of
them.

Corollary 6.1.9. If ξ is an oriented R2k-plane bundle, then the Pontryagin class pk(ξ) is equal
to the square of the Euler class e(ξ).

Proof. Because pk(ξ) = (−1)kc2k(ξ ⊗ C) = (−1)ke ((ξ ⊗ C)R), the previous result and Theorem
4.2.10 imply that the Euler class

e ((ξ ⊗ C)R) = e(ξ ⊕ ξ) = e(ξ)2

multiplied by the sign(−1)2k(2k−1)/2 = (−1)k. ■

6.2 Cohomology of the Oriented Grassmann Manifold

In this section we make brief remarks about applying the ideas of orientation to Grn(Rn+k), and
looking at their cohomology.

Definition 6.2.1. The oriented Grassmann manifold G̃rn(Rn+k) is the quotient space con-
sisting of all oriented n-planes in (n + k)-space, which are oriented as vector spaces.

Note that G̃rn(Rn+k) is a compact CW–complex of dimension nk. Passing to the direct limit
we obtain an infinite CW-complex G̃rn = G̃rn(R∞). Some authors like to use the notation BSO(n)
and BO(n) to denote G̃rn and G̃rn(Rn+k) respectively, and we use both notations interchangeably.

Definition 6.2.2. The oriented universal bundle γ̃n is the bundle obtained by lifting γn over
Grn to an oriented Rn-bundle over G̃rn.

In order to observe the cohomology of oriented Grassmann manifolds, we need to specify the
coefficients in our cohomology class. We will observe its cohomology with coefficients in a com-
mutative ring Λ containing 1

2 . The motivation for choosing such a specific coefficient domain is
because this nullifies 2-torsion, allowing us to use Pontryagin classes.
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Example. An immediate example of such a domain Λ is the ring Z [1/2] of rational integers.
However, our arguments will work equally well with coefficients in the field of rational numbers
Q, or in any field of characteristic other than 2. The result will be only slightly more complicated
than the cases of cohomology mod 2, but there is no need to worry about this.

Theorem 6.2.3. If Λ is a commutative ring containing 1
2 , then the cohomology ring H∗

(
G̃r2m+1; Λ

)
is a polynomial ring over Λ generated by the Pontryagin classes

p1
(
γ̃2m+1) , . . . , pm

(
γ̃2m+1) .

In a similar way, H∗
(

G̃r2m; Λ
)

is a polynomial ring over Λ generated by the Pontryagin classes
p1
(
γ2m

)
, . . . , pm−1

(
γ2m

)
and the Euler class e

(
γ̃2m

)
.

6.3 Pontryagin Numbers and Oriented Cobordism

Just as we defined Chern numbers using integer partitions, we will define the so-called Pontryagin
numbers in a similar way. This provides us with sufficient machinery to delve into the theory of
cobordism, and how the characteristic classes and numbers that we have defined in this paper yield
information about cobordism problems.

Definition 6.3.1. Let M be a 4n-dimensional smooth compact and oriented manifold. For each
partition I = i1, . . . , ir of the dimension n, the I-th Pontryagin number is the integer

pI [M ] = pi1 · · · pir
[M ] = ⟨pi1(τM ) · · · pir

(τM ), µ4n⟩.

Remark 6.3.2. If we change the orientation of M , the Pontryagin class does not change. However,
the fundamental homology class µ4n does change sign, so the Pontryagin number changes sign as
well. Thus, if the Pontryagin number is nonzero, then M cannot possess any orientation reversing
diffeomorphism.

Finally, we present C.T.C. Wall’s deep result (see [Wal16] for a proof ) that solves, as we saw
with Stiefel-Whitney numbers and unoriented cobordism, the problem of oriented cobordism using
Stiefel-Whitney numbers alongside Pontryagin numbers.

Theorem 6.3.3 (Wall). Stiefel-Whitney and Pontryagin numbers completely classify closed man-
ifolds up to oriented cobordism. That is, two (sufficiently defined) manifolds are cobordant if and
only if their Stiefel Whitney and Pontryagin numbers are equivalent to each other respectively.
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7Cobordism

It is at this point where we arrive at our destination. As we saw in Chapters 2 and 6, unoriented
and oriented cobordism problems can be solved elegantly using characteristic classes and numbers.
In this final chapter, we will see how we can evaluate cobordism groups and rings.

7.1 Cobordism Groups and Rings

While we have previously defined cobordism in cases where we need specific assumptions in order
to use characteristic classes, the definition we state below will be the one we use from here on out.

Definition 7.1.1. Let M and N be two smooth n-dimensional compact oriented manifolds. We
say that the M and N are cobordant (or belong to the same cobordism class) if there exists
an (n + 1)-dimensional manifold W with boundary (with the same conditions of M and N) such
that ∂W is diffeomorphic to M ⊔ N as an oriented n-manifold. We call W the cobordism of M

and N in this case, and when M and N are cobordant we write M ⋒ N when W is irrelevant.

Remark 7.1.2. Note that the notation N denotes a manifold with the opposite orientation of N .
Also, certain authors such as [Hir76] prefer to define cobordism slightly differently, but we will not
use their conventions.

It is immediate from the above definition that all diffeomorphic manifolds are cobordant to
each other. However, an idea that we have not seen with cobordisms yet is how we can associate
algebraic objects to them. It turns out that the following holds.

Theorem 7.1.3. Cobordism forms an equivalence relation.

Proof. To prove reflexivity, let M be a manifold with the above assumptions. Then M × [0, 1] is
a cobordism of M and M ; just note that ∂(M × [0, 1]) ∼= (M ∪ {0}) ⊔ (M ∪ {1}) ∼= M ⊔ M . Thus,
M⋒M in this case. To show symmetry, let W be a cobordism of M and N such that M ⊔N ∼= ∂W .
Then W is a cobordism for N and M , since we clearly have N ⊔ M = ∂W . Hence, if M ⋒ N then
N ⋒ M . To show transitivity, let M ⋒ N and N ⋒ P such that M ⊔ N = ∂W and N ⊔ P = ∂V .
Then the union W ∪ V is a cobordism for M and P , so M ⋒ P . ■

Using this equivalence relation, we can start creating algebraic objects from cobordisms. We
will do it for the oriented case (the unoriented case is similar, and we leave it as a remark).

Definition 7.1.4. The oriented cobordism group (Ωn, ⊔) is the group of n-dimensional oriented
manifolds up to cobordism, modulo the equivalence relation of cobordism. Note the following:

• (Identity) The identity element in Ωn is just the equivalence class of ⊘.

• (Inverses) Every manifold M ∈ Ωn has an inverse M , and the cobordism of M and M is the
boundary of M × [0, 1] ⋒ ⊘.

• (Associativity) This follows from the properties of ⊔.
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Remark 7.1.5. Note that the commutative group operation ⊔ makes Ωn into an abelian group.
Additionally, some authors use the notation Rn to denote the unoriented cobordism group,
which has the same properties as the above. However, we will not focus on Rn as much in this
work.

Since we are working with algebraic objects instead of topological ones, it would help to compute
some of them for small values of n. While computing Ωn for n ≥ 2 involves complicated techniques
from surgery theory, we can compute Ωn for n = 1, 2 fairly easily. We rely on the classification of
1 and 2-manifolds to help us.
Example. The most beautiful example is the computation of Ω1. Note that the only compact
(boundaryless) 1-manifold is the circle S1 (or alternatively that every 1-manifold is the disjoint
union of circles), so it suffices to show that S1 ⋒ ⊘. Consider the following diagram.

Figure 7.1. A visual depiction of why S1 ∼= ∂D2, implying that S1 ⋒ ⊘.

Hence, we see that Ω1 = 0 by considering Figure 7.1. A similar computation can be made for Ω2,
since all 2-manifolds are properly classified by their genus. All of these are cobordant to ⊘, since
they are the boundaries of handlebodies, so we see that Ω2 = 0.

Because ⊔ is a commutative operation, we can transform cobordism groups into rings.

Definition 7.1.6. Let M and N be n and m-dimensional manifolds with the above assumptions
respectively. Taking their Cartesian product M ×N gives rise to an associative and bilinear product
Ωn × Ωm → Ωn+m. Thus, the sequence

Ω∗ = (Ω0, Ω1, Ω2, . . .) =
∞⊕

n=0
Ωn

has the structure of a graded ring with a two-sided identity 1 ∈ Ω0, and it is a commutative ring
since

M × N ∼= (−1)mnN × M

as oriented manifolds. We call this commutative graded ring Ω∗ the oriented cobordism ring.

A natural question is whether Ω∗ is computable. While the answer is yes (see [Sto68]), the
result is quite involved. While not presenting the full computation of Ω∗, we do show a nice relation
of Ω∗ at the end of this chapter.

7.2 A Precursor to Thom’s Theory

The heart of Thom’s theory is about computing Ωn and Ω∗ using homotopy theory. Before we get
into this computation, some definitions are in order.
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Definition 7.2.1. Let ξ be an Rk-bundle with a Euclidean metric, and let P ⊂ E(ξ) be the subset
P = {v ∈ E(ξ) : |v| ≥ 1}. Then the quotient space E(ξ)/P (where P is “pinched” to a single
point) is called the Thom space Th(ξ). The Thom space has a specific base point which we
denote as t0 such that

Th(ξ)\{t0} = {v ∈ E(ξ) : |v| < 1}.

Furthermore, if the base space of ξ is compact, then we define Th(ξ) to be the Alexandroff com-
pactification of E(ξ), such that Th(ξ) = E(ξ) ∪ {∞}. In this case our base point t0 would be some
point at infinity.

Remark 7.2.2. If the base space B is a CW–complex, then Th(ξ) is a (k−1)–connected CW–complex
possessing one (n + k)–cell corresponding to each n–cell of B. For a proof, see [MS74].

Our primary focus at the moment is on the homology groups of Th(ξ), since that will naturally
lead to homotopy-theoretic ideas.

Theorem 7.2.3. If ξ is an oriented Rk-bundle over B, then Hk+i(Th(ξ), t0;Z) ∼= Hi(B(ξ);Z).

Proof. Note that from Definition 2.1.4 that B is embedded as the zero section of the space E\P ∼=
Th(ξ)\{t0}. Let Th0(ξ) = E0/P be the compliment of the zero section in Th(ξ). The compliment
Th0(ξ) is contractible, which means that the long homology sequence of the triple (Th(ξ), Th0, t0)

−→ Hn(Th0(ξ), t0;Z) −→ Hn(Th(ξ), t0;Z) −→ Hn(Th(ξ), Th0(ξ);Z) ∂−→ Hn−1(Th0(ξ), t0;Z) −→

is exact since Hn(Th0(ξ), t0;Z) is trivial. This means that we have a canonical isomorphism

Hn(Th(ξ), t0;Z) ∼= Hn(Th(ξ), Th0(ξ);Z),

and by excision we have Hn(Th(ξ), t0;Z) ∼= Hn(E(ξ), E0;Z). The result follows from Theorem
4.2.6. ■

Definition 7.2.4. The set Afinite denotes the class of finite abelian groups. A homomorphism
φ : G → H for G, H ∈ Afinite is called an Afinite-isomorphism if ker(φ), coker(φ) ∈ Afinite.

In order to prove a key result in this section, we rely on the following theorem from Serre that
we state without proof (see [MS74]), since its proof is not relevant to this work.

Theorem 7.2.5. Let X be a finite complex which is (k − 1)–connected for k ≥ 2. Then the
Hurewicz homomorphism πr(X) → Hr(X;Z) is an Afinite-isomorphism for r < 2k − 1.

Using the above result, we can now prove a corollary which will be used later when computing
the oriented cobordism group Ωn.

Corollary 7.2.6. If Th(ξ) is the Thom space of an oriented Rk-bundle over the finite complex B,
then there is an Afinite-isomorphism πn+k(Th(ξ), t0) → Hn(B;Z) for all dimensions n < k − 1.

Proof. This follows from Theorem 7.2.3 and Theorem 7.2.5. ■

7.3 Thom’s Theory and Ending Cobordism

Given some oriented Rk-bundle ξ, our next objective is to see how we can approximate a continu-
ous map f : Sm → Th(ξ) via a smooth map. However, the Thom space Th(ξ) is not a manifold, so
approximating f by a smooth map does not make sense. To patch this issue, we take the compli-
ment Th(ξ)\t0, which is a manifold. Doing so allows us to use a smooth map f0 to approximate f ,
which coincides on the (open) subset f−1(t0) = f−1

0 (t0) and is smooth throughout f−1
0 (Th(ξ)\t0).

Our first result (for a proof, see [MS74]) sets the stage for the rest of Thom’s theory.
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Theorem 7.3.1. Let ξ be an oriented Rk-bundle, and let f : Sm → Th(ξ) be continuous. Then
f is homotopic to a smooth function f0, which is smooth throughout f−1

0 (Th(ξ)\t0) and f0 ⋔ B,
where B is the zero section (and the base space of ξ). Furthermore, the oriented cobordism class of
the (m − k)-dimensional smooth manifold f−1

0 (B) only depends on the homotopy class of f0, and
thus the correspondence g 7→ g−1(B) gives rise to a group homomorphism

Φorient : πm(Th(ξ), t0) → Ωm−k

from the homotopy group of the Thom space to its corresponding oriented cobordism group.

While Theorem 7.3.1 establishes Φorient has a group homomorphism, we can do better if we
restrict ξ to the oriented universal Rk-bundle γ̃k with base space G̃rk(R∞). Doing so gives the
iconic result due to Thom, which states that this restriction gives rise to a group isomorphism
instead.

Theorem 7.3.2 (Thom’s Theorem). For k > n + 1, there is a canonical group isomorphism

Φorient : πn+k(Th(γ̃k), t0) → Ωn.

In the unoriented case (i.e. taking γk), this also produces a group isomorphism

Φorient : πn+k(Th(γk), t0) → Rn.

We will prove one part of this theorem, mainly the fact that Φorient is a surjective map. For
a proof of injectivity, results can be found in [Hir76] and other works on the subject. We will use
this (partial) result to prove other information regarding Ωn as well.

Theorem 7.3.3. Let k ≥ n and p ≥ n. Then the group homomorphism

Φorient : πn+k(Th(γ̃p
k), t0) → Ωn

is a surjective map.

Proof. Let M be an n-dimensional compact oriented smooth manifold. By the Whitney Embed-
ding Theorem, M can be embedded into Rn+k, and by Theorem 2.2.6 we can choose an open
neighborhood U ⊆ Rn+k of M that is diffeomorphic to E(νk) for some normal bundle νk. Using a
Gauss map, we can map the total spaces U ∼= E(νk) 7→ E(γ̃n

k) ⊆ E(γ̃p
k), and composing this with

E(γ̃p
k) → Th(γ̃p

k) gives a smooth map f0 : U → Th(γ̃p
k) such that f0 ⋔ B and f−1

0 (B) = M . In
order to apply Theorem 7.3.1, we need to extend U to the sphere Sn+k. To do this, we can extend
f0 to the Alexandroff compactification Rn+k ∪ {∞} ∼= Sn+k by forcing the map Sn+k\U 7→ t0.
This gives a new map

f̂0 : Sn+k → Th(γ̃p
k),

and by Theorem 7.3.1 this gives rise to the oriented cobordism class of M . ■

Using the above theorem, all of our work with characteristic classes pays off. Let I = i1, . . . , ir

be a partition for k. We state the following result, which follows naturally from our work on
Pontryagin classes and Pontryagin numbers in Chapter 6.

Theorem 7.3.4. Let M be a 4k-dimensional compact oriented smooth manifold. Then the map
M 7→ pI [M ] gives rise to a group homomorphism from Ω4k to Z, where Z is understood to be the
group (Z, +).
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Proof. If M is the boundary of a (4k + 1)-dimensional compact oriented smooth manifold with
boundary, then we use the fact that pI [M ] vanishes. Otherwise, the identity pI [M + M ′] =
pI [M ] + pI [M ′] is clearly satisfied in the general sense, which completes the proof. ■

Before we continue onward on our path to our next result, we must recall a definition from
Group Theory that is a common misconception.

Definition 7.3.5. Let G be an abelian group. The cardinality of a maximal linearly independent
set in G is called the rank of G, which we denote as rank(G).

Using Theorem 5.4.14, we can first prove a lower bound on the rank of Ω4k. Note that the
notion of “rank” is with respect to Ω4k as an abelian group.

Theorem 7.3.6. The products of projective spaces∏
ik∈I

P2ik (C) = P2i1(C) × P2i2(C) × · · · × P2ir (C)

represent linearly independent elements of Ω4k, which means that rank(Ω4k) ≥ p(k) where p(k) is
the number of partitions of k.

Proof. This follows from the above discussion and Theorem 5.4.14. ■

While this is a nice result on its own, we can do better. We claim that the rank of Ω4k is
precisely p(k), and we put an end to the oriented cobordism problem once and for all.

Theorem 7.3.7. The oriented cobordism group Ωn is finite for n ̸≡ 0 (mod 4), and is finitely
generated with rank(Ωn) = p(k) where n = 4k.

Proof. By Theorem 7.3.3, Ωn is the homomorphic image of the homotopy group πn+k(Th(γ̃p
k)), t0)

for k ≥ n and p ≥ n, and by Corollary 7.2.6 we have that

πn+k(Th(γ̃p
k), t0) ∼= Hn(Grn(R∞);Z)

as an Afinite-isomorphism. Using Theorem 6.2.3, the homology group Hn(Grn(R∞);Z) is finite for
n ̸≡ 0 (mod 4) with rank p(k) for n = 4k. Hopping across maps, this implies that Ωn is also finite
for n ̸≡ 0 (mod 4) and that rank(Ωn) ≤ p(k) for n = 4k. By Theorem 7.3.6 we reach equality,
which completes the proof. ■

All of this exposition has been on cobordism groups so far, however. What about the oriented
cobordism ring Ω∗? While there are more involved techniques to directly compute it using spectra
(see [Sto68] for details), there is an interesting result that immediately follows from the above
discussion when we remove torsion by tensoring with the rationals.

Theorem 7.3.8. Let I = i1, i2, . . . , ir be a partition for k. Then∏
ik∈I

P2ik (C) = P2i1(C) × P2i2(C) × · · · × P2ir (C)

forms a basis of the vector space Ω4k ⊗Q. Thus, Ω4k ⊗Q is a polynomial algebra with (independent)
generators P2(C),P4(C),P6(C), . . ..
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