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1. Introduction

In the realm of differential geometry and topology, the study of differential forms provides
a powerful framework for understanding the geometric properties of manifolds and their as-
sociated tangent vector fields. From the intuitive idea of measuring tangent vectors to the
profound insights of curvature and integration, the language of forms allows us to inves-
tigate the deepest aspects of geometry. At the heart of this exploration lies a remarkable
mathematical concept known as De Rham cohomology.

De Rham cohomology is a mathematical tool that captures the essential topological infor-
mation of a manifold through its differential forms. Developed by the French mathematician
Georges de Rham in the mid-20th century, this branch of mathematics has since become a
cornerstone of modern differential geometry and topology. It provides a powerful language
to classify and understand the topological structure of manifolds by examining the behavior
of differential forms under the operations of differentiation and integration.

The primary objective of this expository paper is to guide through the captivating world
of De Rham cohomology. We will embark on a journey that takes us from the basic concepts
of differential forms to the intricacies of cohomology theory, unraveling its significance and
applications along the way. By delving into the essential ideas and techniques, we will gain a
comprehensive understanding of how De Rham cohomology captures the topological essence
of a manifold.

This paper will first start off with background results from exterior algebra and exterior
calculus that will aid us in our discussion about De Rham cohomology. Then we will actually
define these cohomology groups and prove the remarkable property that they are homotopy
invarient. In this paper, we will talk a lot about manifolds so when we do so, we are actually
mean smooth manifolds.

2. Exterior Alegbra

Before we get into cohomolgies, we need some background in differential forms which starts
with exterior algebra.

Definition 2.1 (Tensor). A p-tensor on a vector space V is any real-valued function T such
that on V p that is multilinear i.e.

T (v1, ..., vj + av′j, ..., vp) = T (vi, ..., vj, ..., vp) + aT (vi, ..., v
′
j, ..., vp).

We call the collection of all p-tensors J p(V ∗).

Tensors are like measurements we can take of vectors in some vector space since it assigns
a set of vectors to a real value.
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Example. We can see that a 1-tensor is T : V → R so it is a linear form. This means that
J p(V ∗) = V ∗ or the dual space of V . Additionally, there is also a familiar 2-tensor which
is the dot product. This is like a measurement of how orthogonal two vectors are. We can
also measure the volume of the parallelipiped formed by the vectors using the determinant
which is a p-tensor on Rp. Specifically, this tensor is defined by

T (v1, ..., vp) = det
(
v1 · · · vp

)
and we know that this determinant is multilinear.

We can also multiply tensors:

Definition 2.2 (Tensor Product). If T is a p-tensor and S is a q-tensor, then T ⊗ S is a
p+ q tensor defined by

T ⊗ S(v1, ..., vp, u1, ..., uq) = T (v1, ..., vp) · S(u1, ..., uq)

Notice that tensor products are not commutative and

T ⊗ S ̸= S ⊗ T.

Next we introduce alternating tensors. Let Sp be the set of permuations of {1, 2, ..., p} and
let π ∈ Sp be a permutation. Now notice that π can be decomposed into a series of swaps of
two elements of the set. We can assign the parity of π as the parity of the number of swaps
π decomposes into. Then we can write (−1)π which is +1 when π is even and −1 when π is
odd.

Definition 2.3 (Alternating Tensor). A p-tensor T is called alternating if

T = (−1)πT π

where

T π(v1, v2, ..., vp) = T (vπ(1), vπ(2), ..., vπ(p))

Intuitively, this means that every time we swap to vectors, the sign of the tensor switches.
Conveniently, the sum and scalar multiples of alternating tensors are still alternating tensors
so the set of all alternating tensors which we call Λp(V ∗) is a subspace of J p(V ∗). Unfortu-
nately, the tensor product of two alternating tensors does not produce another alternating
tensor so for this, we introduce the wedge product. First we define how we can construct
alternating tensors:

Definition 2.4. Let T be a p-tensor. We define the function Alt(T ) as

Alt(T ) =
1

p!

∑
π∈Sp

(−1)πT π.

Let us indeed verify that Alt(T ) produces an alternating tensor.

Proposition 2.5. If T is a p-tensor, the tensor Alt(T ) is alternating.

Proof. Let σ ∈ Sp be a permutation. We have

[Alt(T )]σ =
1

p!

∑
π∈Sp

(−1)π(T π)σ.
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Now notice that (−1)π◦σ is +1 when π and σ have the same parity and −1 when π and σ
have different parities. Therefore, we see that

(−1)π◦σ = (−1)π(−1)σ =⇒ (−1)π = (−1)π◦σ(−1)σ.

Plugging this in gives us

[Alt(T )]σ = (−1)σ
1

p!

∑
π∈Sp

(−1)π◦σT π◦σ.

Next we let τ = π ◦ σ. Since Sp is a group under composition, when π spans Sp, so does τ .
Therefore,

[Alt(T )]σ = (−1)σ
1

p!

∑
τ∈Sp

(−1)τT τ = (−1)σ Alt(T )

which proves that Alt(T ) is alternating. ■

Example. If T is a 1-tensor, we must check if (−1)πT π = T for every π ∈ S1 but this is
clearly true since π is the identity permutation so it is even and T π = T . This shows us that
all 1-tensors or linear forms are alternating.

Example. When T is alternating,

Alt(T ) =
1

p!

∑
π∈Sp

(−1)πT π =
1

p!

∑
π∈Sp

T = T

where we are using the fact that T = (−1)πT π. This is why we have a factor of 1/p! in the
front.

Definition 2.6 (Wedge Product). If T ∈ Λp(V ∗) and S ∈ Λq(V ∗), the wedge product is the
p+ q tensor T ∧ S ∈ Λp+q(V ∗) defined by

T ∧ S = Alt(T ⊗ S).

Clearly, this product distributes over addition and scalar multiplication since Alt is a
linear operation. Additionally, with some work, we can also see that the wedge product is
associative.

This allows us to derive a basis for Λp(V ∗). If T is a p-tensor, then we can write

T =
∑
I

ti1,...,ikϕi1 ⊗ · · · ⊗ ϕip

where {ϕ1, ..., ϕk} is a basis of V ∗ and the sum ranges over all index sequences I = (i1, ..., ip)
with 1 ≤ i1, ..., ip ≤ k. If T is alternating, then

T = Alt(T ) =
∑
I

ti1,...,ip Alt(ϕi1 ⊗ · · · ⊗ ϕip) =
∑
I

ti1,...,ipϕi1 ∧ · · · ∧ ϕip .

We denote ϕi1 ∧ · · · ∧ ϕik by ϕI . We have shown that the ϕI ’s span Λp(V ∗) but they are not
linearly independent.

Lemma 2.7. The set {ϕI : 1 ≤ i1 < i2 < · · · < ip ≤ k} is linearly independent.
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Proof. Let {v1, ..., vk} be the basis of V dual to {ϕ1, ..., ϕk}. This means that

ϕi(vj) = δij =

{
1 if i = j

0 if i ̸= j
.

For any increasing index sequence I = (i1, ..., ip), we let vI = (vi1 , ..., vip). We see

ϕI(vI) =
1

p!

∑
π∈Sp

(−1)π(ϕi1 ⊗ · · · ⊗ ϕip)
π(vI) =

1

p!

∑
π∈Sp

(−1)πϕi1(vπ(i1)) · · ·ϕip(vπ(ip)).

Notice that the product inside the sum is 0 unless π is the identity permutation where the
product is 1. This is because if π(in) ̸= in for n ∈ {1, 2, ..., p}, then ϕ(vπ(in)) = 0. Therefore,
this shows us that ϕI(vI) = 1/p!. Now if J is a different increasing index sequence than
I, there is always going to be at least one value of n such that π(jn) ̸= in so ϕI(vJ) = 0.
Therefore, if

∑
I aIϕI = 0, for any J , we know that

0 =
∑
I

aIϕ(vJ) =
1

p!
aJ =⇒ aJ = 0.

Since all the weights are 0, we have proved that {ϕI} is linearly independent. ■

Putting our discussion together gives us following result:

Proposition 2.8. If {ϕ1, ϕ2, ..., ϕk} is a basis of V ∗, then {ϕI : 1 ≤ i1 < i2 < · · · < ip ≤ k}
is a basis of Λp(V ∗). Additionally,

dimΛp(V ∗) =

(
k

p

)
.

Finally, consider two linear forms ϕ, ψ ∈ Λ1(V ∗). We have

ϕ ∧ ψ = Alt(ϕ⊗ ψ) =
1

2

∑
π∈S2

(−1)π(ϕ⊗ ψ)π =
1

2
(ϕ⊗ ψ − ψ ⊗ ϕ).

This means that ϕ ∧ ψ = −ψ ∧ ϕ so the wedge product is anticommutative. Additionally,
we can see that ϕ ∧ ϕ = 0. It can be seen that this extends to

ϕI ∧ ϕJ = (−1)pqϕJ ∧ ϕI

so by Proposition 2.8, we have

T ∧ S = (−1)pqS ∧ T
where T and S are p and q alternating tensors, respectively.

3. Exterior Calculus

So far, we have generalized linear algebra from talking about one dimensional vectors to
talking about ”p dimensional” vectors. Just like in vector calculus, we can do calculus on
this generalized version linear algebra and this is called exterior calculus.

Definition 3.1 (Differential p-forms). Let X be a manifold. A differential p-form (or a
p-form for short) on X is a function ω that assigns each point x ∈ X to an alternating
p-tensor ωx on the tangent space of X at x. This means that ωx ∈ Λp(Tx(X)∗). The set of
all p-forms on X is denoted by Ωp(X).
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Recall that tensors are like measuring devices for a vector space. Now in a differential
form, we assign each point on a manifold to these measuring devices so a differential form
tells us how to measure tangent vectors at each point on a manifold.

We can do operations on these forms. We can add two p-forms:

(ω + ω′)x = ωx + ω′
x.

We can also take the wedge product of a p and q form:

(ω ∧ θ)x = ωx ∧ θx.

Anticommutativity follows from the result from before

ω ∧ θ = (−1)pqθ ∧ ω.

Example. A 0-form is a function that assigns each point x ∈ X to an alternating 0-tensor
which is just a real value. Therefore a 0-form is just a real-valued function on X.

Example. Now a 1-form is a function that assigns each point x ∈ X to an alternating 1-
tensor on Tx(X). If ϕ : X → R is a smooth real-valued function, then dϕx : Tx(X) → R is
a 1-tensor on Tx(X). This is alternating since all 1-tensors are alternating. Therefore the
mapping x 7→ dϕx defines a 1-form dϕ on X called the differential of ϕ.

Consider the coordinate functions x1, x2, ..., xk of Rk that map a vector to its ith coordi-
nate. These coordinate functions give us the differentials dx1, dx2, ..., dxk so for any z ∈ Rk,
the linear forms (dx1)z, (dx2)z, ..., (dxk)z are just the standard basis of (Rk)∗. Let U be some
open subset of Rk containing z. By Proposition 2.8, the set {(dxI)z} where I is an increasing
index sequence and

(dxI)z = (dxi1)z ∧ · · · ∧ (dxip)z

is a basis of Λp((Rk)∗) = Λp(Tz(U)
∗). This means that any alternating tensor ω(z) on Tz(U)

can be uniquely written as ∑
I

aI(dxI)z =
∑
I

aI(z)(dxI)z

where the aI ’s are real-valued functions on U . This gives us the following result:

Proposition 3.2. Every p-form on an open set U ⊆ Rk can be uniquely written as
∑

I aIdxI
where the sum ranges over increasing index sequences and the aI are real-valued functions
or 0-forms on U .

This allows us to take the derivative of differential forms.

Definition 3.3 (Exterior Derivative). Let ω =
∑

I aIdxI be a smooth p-form on an open
set of Rk. The exterior derivative of ω is the (p+ 1)-form

dω =
∑
I

daI ∧ dxI .

We can generalize this definitions to any manifold X by converting a local neighborhood
of x ∈ X in Euclidean space with a coordinate chart.
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Example. Let ω1 =
∑

I aIdxI and ω2 =
∑

I bIdxI be two p-forms. Since ω1 + ω2 =
∑

I(aI +
bI)dxI , we have

d(ω1 + ω2) =
∑
I

d(aI + bI) ∧ dxI

=
∑
I

(daI + dbI) ∧ dxI

=
∑
I

daI ∧ dxI +
∑
I

dbI ∧ dxI

= dωI + dω2.

which is the sum rule for exterior derivatives.

Example. Let ω =
∑

I aIdxI be a p-form and let θ =
∑

J bJdxJ be a q form. Let us compute
d(ω ∧ θ) to derive the prodcut rule. We have,

d(ω ∧ θ) = d

((∑
I

aIdxI

)
∧

(∑
J

bJdxJ

))
=
∑
I

∑
J

d(aIdxI ∧ bJdxJ).

(We have implicitly used the sum rule when we brought the derivative to the inside.) Now
we derive the derivative inside the sum. Let ω′

I = aIdxI and θ′J = bJdxJ . We have

d(aIdxI ∧ bJdxJ) = d(aIbJ) ∧ dxI ∧ dxJ
= (bj daI + aI dbJ) ∧ dxI ∧ dxJ
= bJ daI ∧ dxI ∧ dxJ + aI dbJ ∧ dxI ∧ dxJ
= (daI ∧ dxI) ∧ (bJ ∧ dxJ) + (−1)p(aI ∧ dxI) ∧ (dbJ ∧ dxJ)
= dω′

I ∧ θ′J + (−1)pω′
I ∧ dθ′J .

Notice that the reason (−1)p arrises is because we switch the order of dxI , which is a p-form,
and dbJ , which is a 1-form. Plugging this back into the sum gives us

d(ω ∧ θ) =
∑
I

∑
J

d(aIdxI ∧ bJdxJ)

=
∑
I

∑
J

dω′
I ∧ θ′J + (−1)pω′

I ∧ dθ′J

=
∑
I

∑
J

dω′
I ∧ θ′J + (−1)p

∑
I

∑
J

ω′
I ∧ dθ′J

=

(∑
I

dω′
I

)
∧

(∑
J

θ′J

)
+ (−1)p

(∑
I

ω′
I

)
∧

(∑
J

dθ′J

)
= dω ∧ θ + (−1)pω ∧ dθ

which is the product rule.

Example. Let θ =
∑

I aIdxI . This means that

dθ =
∑
I

daI ∧ dxI =
∑
I

(
k∑

i=1

∂aI
∂xi

dxi

)
∧ dxI .
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This gives us

d(dθ) =
∑
I

d

(
k∑

i=1

∂aI
∂xi

dxi

)
∧ dxI −

(
k∑

i=1

∂aI
∂xi

dxi

)
∧ d(dxI)

=
∑
I

d

(
k∑

i=1

∂aI
∂xi

dxi

)
∧ dxI

=
∑
I

k∑
i=1

d

(
∂aI
∂xi

)
∧ dxi ∧ dxI

=
∑
I

k∑
i=1

(
k∑

j=1

∂2aI
∂xi∂xj

dxj

)
∧ dxi ∧ dxI

=
∑
I

(
k∑

i=1

k∑
j=1

∂2aI
∂xi∂xj

dxj ∧ dxi

)
∧ dxI

by the product rule and since the derivative of dxI is 0. Since

∂2aI
∂xi∂xj

=
∂2aI
∂xj∂xi

and dxi ∧ dxj = −dxj ∧ dxi, the terms in the parenthesized sum cancel out so the sum is 0.
This is called the cocycle condition.

So far, we have been discussing p-forms on a single manifold but we can map p-forms from
one manifold to another.

Definition 3.4 (Pullback Map). If f : X → Y be a smooth map and let dfx : Tx(X) →
Tf(x)(Y ) be the derivative. The linear map f ∗ω : Ωp(Y ) → Ωp(X) is called the pullback by f
at x and maps a p-form on Y , ω, to a p-form on x, f ∗ω, defined by

(f ∗ω)x(v1, ..., vk) = ωf(x)(dfx(v1), ..., dfx(vk)).

One of the most important properties of the pullback

Proposition 3.5. The pullback commutes with the exterior derivative.

We will not prove this result in this paper but it can be seen by these other properties of
the pullback map:

Proposition 3.6. Let f : X → Y be a smooth map.

(a) f ∗ is linear over all R
(b) f ∗(ω ∧ θ) = f ∗ω ∧ f ∗θ
(c) In any smooth chart on Y ,

f ∗

(∑
I

aIdyI

)
=
∑
I

(aI ◦ f)d(yi1 ◦ f) ∧ · · · ∧ d(yip ◦ f).
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4. De Rham Cohomology Groups

Now we have built up the background necessary to talk about De Rham cohomolgies.

Definition 4.1. A p-form ω on X is closed if dω = 0 and exact if ω = dθ for some (p− 1)-
form θ. The set of all closed p-forms on X is denoted by Zp(X) and the set of all exact
p-forms on X is denoted by Bp(X)

Proposition 4.2. All exact forms are closed.

Proof. If ω is exact, then dω = d(dθ). By the cocycle condition, we have d(dθ) = dω = 0 so
ω is closed. ■

Notice that the reverse does not hold i.e. closed ≠⇒ exact. In order to investigate this
further, we define an equivalence relation of closed p-forms. We call two closed p forms ω1,
ω2 cohomologous if ω1 − ω2 is exact and this is denoted by ω1 ∼ ω2. The set of equivalence
classes is the De Rham cohomology group:

Definition 4.3 (De Rham Cohomology Group). Consider the following sequence

0 → Ω0 d0−→ Ω1 d1−→ Ω2 d2−→ · · ·
where dp is the exterior derivative on p-forms. The pth De Rham cohomology group (or pth
cohomology group for short) is Hp(X) = ker(dp)/ im(dp−1).
An element of Hp(X) is called a cohomology class and the cohomology class containing

the p-form ω is denoted by [ω] i.e.

[ω] = {ω + dp−1ω′ : ω′ ∈ Ωp−1}.

First, we know that Hp(X) is well defined since dp(dp−1(ω)) = 0 so im(dp−1) ⊆ ker(dp).
Second, notice that ker(dp) is the same as Zp(X) and im(dp−1) is the same as Bp(X). This
why Hp(X) = Zp(X)/ ∼ (which is what we said before the definition) since two closed
p-forms ω1, ω2 will be in the same coset iff ω1 − ω2 ∈ im(dp−1) =⇒ ω1 ∼ ω2.
The pth De Rham cohomology group is much more than just a set of cosets: it has a

natural vector space structure. Notice that if ω1 ∼ ω′
1 and ω2 ∼ ω′

2, then ω1 + ω2 ∼ ω′
1 + ω′

2.
Additionally, we have cω ∼ cω1. Therefore, the normal vector operations on closed p-forms
can be extended to the elements of Hp(X).

5. Homotopy Invarience

Now one of the amazing things about the pth cohomology group is that it is invarient
to homotopies. That is, if we deform X, its cohomology groups will remain the same (or
more specifically be isomorphic to the original). Before we get into this, we must prove
preleminary results.

Proposition 5.1. Let f : X → Y between a smooth map. The pullback f ∗ : Ωp(Y ) → Ωp(X)
carries Zp(Y ) into Zp(X) and Bp(Y ) into Bp(X).

Proof. If ω is closed, then d(f ∗ω) = f ∗(dω) = 0 so f ∗ω is closed. If ω = dθ is exact, then
f ∗ω = f ∗(dθ) = d(f ∗θ) so f ∗ω is exact. ■

Definition 5.2. If f : X → Y is a smooth map, the pullback f ∗ induces a linear map from
Hp(Y ) to Hp(X), still denoted by f ∗, (because of Proposition 5.1) defined naturally as

f ∗[ω] = [f ∗ω]
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and this is called the induced cohomology map.

Now if ω′ ∼ ω =⇒ ω′ = ω + dθ,

f ∗ω′ = [f ∗ω′] = [f ∗ω + d(f ∗ θ)] = [f ∗ω]

so the map from the definition above is well-defined.

Proposition 5.3. Let f : X → Y be a smooth map. The induced cohomology map follows
the these properties:

(a) If g : Y → Z is another smooth map, then

(g ◦ f)∗ = f ∗ ◦ g∗.

(b) Id∗
X = IdHp(X).

Proof. ■

Now we are ready to discuss homotopy invarience of cohomology groups. The underlying
fact behind the proof is that homotopic smooth maps induce the same cohomology map.
Let us look at what f ∗ = g∗ means for f, g : X → Y . If ω ∈ Ωp(Y ), we need to find a
(p− 1)-form θ such that

f ∗ω − g∗ω = dθ

which would mean that f ∗[ω] − g∗[ω] = [f ∗ω] − [g∗ω] = [dθ] = 0 so the two cosets are the
same. We can produce this θ with a linear map h : Zp(Y ) → Zp−1(X) which gives us

f ∗ω − g∗ω = d(hω).

We can generalize h as a map from Ωp(Y ) to Ωp−1(X) but our condition for f ∗ = g∗ changes
to

f ∗ω − g∗ω = d(hω) + h(dω).

Notice that when ω is closed, we have dω = 0 so the above condition reduces to our original
condition. To summarize, if there exists a linear map h such that the above condition is
satisfied, then f ∗ = g∗. The map h is called a homotopy operator between f ∗ and g∗.
If X is a manifold and t ∈ I, let it : X → X × I be the map

it(x) = (x, t).

(Notice that we are using the symbols it and I again so depending on the context, they will
mean different things.) They key to proving homotopy invarience is to construct a homotopy
operator between i∗0 and i∗1 to prove that they are equal.

Lemma 5.4. For any manifold X, there exists a homotopy operator between i∗0 and i∗1 for
every p.

The proof of this is out of the scope of this paper and involes Lie Algebra so we will be
omitting it.

Lemma 5.5. If X and Y are manifolds and f, g : X → Y are homotopic smooth maps. For
every p, the induced cohomology maps f ∗, g∗ : Hp(Y ) → Hp(X) are equal.

Proof. By the Lemma 5.4, the maps i∗0 and i
∗
1 are equal. Since f and g are homotopic smooth

maps, they are smoothly homotopic so there is a smooth function H : X × I → Y such that
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H(x, 0) = f(x) and H(x, 1) = g(x). This means that f = H ◦ i0 and g = H ◦ i1 so by
Proposition 5.3,

f ∗ = (H ◦ i0)∗ = i∗0 ◦H∗ = i∗1 ◦H∗ = (H ◦ i1)∗ = g∗.

■

Now we are ready to prove the main theorem of the section.

Theorem 5.6 (Homotopy Invarience). If X and Y are homotopy equivalent manifolds, then
their pth cohomology groups are isomorphic for every p i.e. Hp(X) ∼= Hp(Y ).

Proof. Let f : X → Y be a homotopy equivalence with homotopy inverse g : Y → X. By
the Whitney approximation theorem, there exists smooth maps f̃ : X → Y homotopic to f
and g̃ : Y → X homotopic to g. This means that f̃ ◦ g̃ ≃ f ◦ g ≃ IdY . By Lemma 5.5 and
Proposition 5.3, we have

(f̃ ◦ g̃)∗ = (IdY )
∗ =⇒ g̃∗ ◦ f̃ ∗ = IdHp(Y )

Similarly, we have g̃◦ f̃ ≃ g◦f ≃ IdX so f̃ ∗◦ g̃∗ = IdHp(X). Therefore, the map f̃ ∗ : Hp(Y ) →
Hp(X) is an isomorphism. ■

Because all homeomorphisms are homotopy equivalences, we get the following result:

Corollary 5.7 (Topological Invarience). If X and Y are homeomorphic manifolds, then their
cohomology groups are isomorphic i.e. the cohomology groups are topologically invarient.

This is truly an amazing result since this is something we wouldn’t expect based on the
definition of cohomology groups. De Rham cohomology groups were defined on smooth
structures on manifolds so we have no reason to expect that differentiable smooth structures
on topologically equivalent manifolds produce the same cohomoloy groups.

Now recall that when we introduced the De Rham cohomology groups, it was to investigate
when closed forms are exact since this is not necessarily the case. This is what the Poincaré
lemma tells us:

Theorem 5.8 (Poincaré Lemma). If U is a star-shaped open subset of Rn, then Hp(X) = 0,
or the trivial group, for p ≥ 1.

Recall that a star-shaped set U is a set where there exists a c ∈ U such that for every
x ∈ U , the line segment between c and x is contained in U . Before we go on to the proof,
one of the most important consequences is this:

Corollary 5.9. Every closed form on X is locally exact i.e. each point in X has a neigh-
borhood on which every closed form is exact.

Proof. Every point on X has a neighborhood that is diffeomorphic to an open ball in
Rn. Since Rn is star-shaped and cohomology groups are diffeomorphically invarient, by
the Poincaré Lemma or Theorem 5.8, we are done. ■

Now we prove the Poincaré Lemma.

Lemma 5.10. If X is a contractible manifold, then Hp(X) = 0, or the trivial group, for
p ≥ 1.
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The idea behind contractibe manifolds is that we can squeeze it until it becomes a point.
The cohomology group for a point is clearly the trivial group so we use homotopy invarience
to prove the rest of this lemma.

Proof. Because X is contractible, there exists an x such that the constant map cx : X → X,
which sends all of X to x, is homotopic to the identity map. Now let ιx : {x} → X be
the inclusion map. This means that cx ◦ ιx = Id{x} and ιx ◦ cx ≃ IdX so ιx is a homotopy
equivalence. By Theorem 5.6, we have Hp(X) = Hp({x}) = 0 since {x} is a 0-manifold. ■

Proof of the Poincaré Lemma. A star-shaped domain is contractible because of the straight-
line homotopy:

H(x, t) = c+ t(x− c)

so the constant and identity map are homotopic. By Lemma 5.10, we have Hp(U) = 0. ■
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