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Abstract.
In this paper, we introduce the machinery to define integration on manifolds. We first
consider differential forms, and then understand how to integrate forms over manifolds.

1. Introduction

Manifolds allow us to abstractly define different kinds of surfaces and forms, which help
us to rigorously generalize various properties to more abstract shapes. In particular, we will
look into how integration can be generalized to arbitrary manifolds. Because of the definition
of manifolds in terms of charts, we can define our operation over each individual chart in a
parametrization of our manifolds.

As a result, one of the challenges is to make sure that the definition of integration is
independent of the choice of charts used. To ensure that the definition holds regardless of
the charts used, we define integration in terms of oriented charts.

2. Differential Forms

We first provide some useful definitions related to manifolds, so that we can develop the
notion of differential forms.

Definition 2.1. Let M be a manifold. We define a covector to be a linear functional on the
tangent space TxM at a point x ∈ M. We define the cotangent space T ∗

xX to be the vector
space consisting of all covectors at a point x ∈ M. For an arbitrary vector space V, we define
a covector to be a real-valued functional on V. The space of all covectors on V is denoted
V ∗ and is called the dual space of V.

Definition 2.2. The tangent bundle TM of a manifoldM is the disjoint unions of all tangent
spaces at all points of M. Similarly, the cotangent bundle T ∗M is the disjoint union of all
cotangent spaces at all points of M.

We introduce the concept of multilinear algebra in order to understand the behavior of
tensors and rigorously define differential forms.

Definition 2.3. Let V1, . . . , Vk andW be finite-dimensional vector spaces. We say a function
f : V1× . . .×Vk → W is multilinear if it is linear in each variable. We write L(V1, . . . , Vk;W )
for the set of multilinear maps from V1 × . . .× Vk to W.

Definition 2.4. Let F(V1 × . . . × Vk) be the free vector space formed by all finite linear
combinations of k tuples (v1, . . . , vk) such that for 1 ≤ i ≤ n, we have vi ∈ Vi. Additionally,
let R be the subspace of F(V1, . . . , Vk) spanned by vectors of the forms

(v1, . . . , vi + v′i, . . . , vk)− (v1, . . . , v
′
i, . . . , vk)− (v1, . . . , vi, . . . , vk)
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and
(v1, . . . , avi, . . . , vk)− a(v1, . . . , vi, . . . , vk).

Definition 2.5. We define the tensor product of the spaces V1, . . . , Vk to be the quotient
space given by

V1 ⊕ . . .⊕ Vk = F(V1 × . . .× Vk)/R.

We denote the equivalence class of an element (v1, . . . , vk) such that vi ∈ Vi for all 1 ≤ i ≤ k
by v1 ⊕ . . . ⊕ vk = Π(v1, . . . , vk), where Π : F(V1, . . . , Vk) → V1 ⊕ . . . ⊕ Vk is the natural
projection.

Note that we want the tensor product to satisfy linear properties, so we form an equivalence
class over scalar multiplication and addition.

Proposition 2.6. If V1, . . . , Vk are finite-dimensional vector spaces, there is a uniquely-
defined isomorphism

V ∗
1 ⊕ . . .⊕ V ∗

k
∼= L(V1, . . . , Vk;R).

Proof. Consider a map Φ : V1 ⊕ . . .⊕ Vk → L(V1, . . . , Vk;R) such that

Φ(ω1, . . . , ωk)(v1, . . . , vk) = ω1(v1) . . . ωk(vk).

Φ(ω1, . . . , ωk) is linear in each variable vi, so Φ(ω1, . . . , ωk) ∈ L(V1, . . . , Vk;R). As a result,
we can uniquely define a map Φ̃ that takes V ∗

1 ⊕ . . .⊕ V ∗
k to L(V1, . . . , Vk;R) satisfying

Φ̃(ω1 ⊕ . . .⊕ ωk)(v1, . . . , vk) = ω1(v1) . . . ωk(vk).

then Φ̃ takes the basis of V ∗
1 ⊕. . .⊕V ∗

k to the basis of L(V1, . . . , Vk;R), so it is an isomorphism.
■

This isomorphism allows us to use whichever definition is most convenient for each par-
ticular case.

Definition 2.7. Let V be a finite-dimensional vector space. A covariant k-tensor on V is
an element of the product V ∗ ⊕ . . .⊕ V ∗︸ ︷︷ ︸

k times

. This is generally a real-valued function

t : V × . . .× V︸ ︷︷ ︸
k times

→ R.

We let T k(V ) be the vector space of covariant k-tensors on V, and we call k the rank of t
for any t ∈ T k(V ).

We denote the vector space of all k-covectors on a vector space V by Λk(V ∗).

Definition 2.8. We say a tensor is symmetric if it is invariant under any change of indices,
and we say it is antisymmetric or alternating if it changes sign under any change of indices.

In other words, if an alternating tensor is permuted, it should be multiplied by the sign
of the permutation.

Definition 2.9. We define the projection Alt : T k(V ∗) → Λk(V ∗) to satisfy

(Altα)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

(sgn σ)α(vσ(1), . . . , vσ(n)),

where Sk is the symmetric group of size k.



INTEGRATION ON MANIFOLDS 3

The idea of Alt is to create a map that takes non-alternating tensors to alternating tensors,
and alternating tensors to themselves. By multiplying by the sign of the permutation for
each permutation, we ensure that the result is alternating.

Definition 2.10 (Wedge Product). We define the wedge product of x ∈ Λk(V ∗) and y ∈
Λl(V ∗) to be

x ∧ y =
(k + l)!

k!l!
Alt(x⊕ y).

The wedge product preserves multilinearity, and the wedge product of two tensors on
different dimensions is another tensor on the cross product of those dimensions, so we can
use the wedge product to extend tensors to multiple different dimensions. This property will
be useful in discussion about integration, as it will allow us to integrate independently in
each chart.

Definition 2.11. Let M be a smooth n-manifold (possibly with boundary). Consider the
subset

ΛkT ∗M =
⊔
p∈M

Λk(T ∗
pM)

of the bundle of covariant k-tensors on M consisting of alternating tensors. We call a section
of ΛkT ∗M a differential k-form. We say k is the degree of the form.

The vector space of smooth differential k-forms is denoted by Ωk(M). We can define
integration naturally over differential forms on manifolds, which will allow us to extend our
definition of integrals.

The final piece of machinery that we will need to develop before defining integration will
be an operation called the pullback. This operation will allow us to define an analog to the
antiderivative in terms of the differential.

Definition 2.12. We define a rough vector field to be an arbitrary map X : TM → M such
that x 7→ Xp satisfying Xp ∈ TpM.

Note that this definition is similar to that of a vector field, except the map is not necessarily
continuous.

Definition 2.13. Let F : M → N be a smooth map between manifolds, and let x ∈ M be
a point. We call the linear map

dF ∗
x : T ∗

F (x)N → T ∗
xM

the pullback by F at x. If ω is a covector field of N, we say the pullback of ω by F is the
rough vector field given by

(F ∗ω)x = dF ∗
x (ωF (x)).

3. Integration

In order to define integration on manifolds, we first define integration on simpler forms
and then extend our definition to incorporate the various structures that we wish to integrate
over.

Definition 3.1. A domain of integration is a bounded subset of Rn such that its boundary
has n-dimensional measure zero.
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Definition 3.2. Let D ⊂ Rn be a domain of integration, and ω be a continuous n-form on
f . Then ω can be written as f dx1 ∧ . . . ∧ dxn for some continuous function f : D → R. We
define the integral of ω over U to be∫

D

ω =

∫
D

ω dV =

∫
D

f dx1 ∧ dx2 . . . ∧ dxn.

To extend our definition from domains of integration to arbitrary open sets, we need to
first restrict the kind of differential n-form that we are working with.

Definition 3.3. Let U ⊂ Rn be open and let v be a vector field on U . Its support is the set

supp(v) = {q ∈ U | v(q) ̸= 0}.
We say v is compactly supported if supp(v) is compact.

Definition 3.4. Let U ⊂ Rn be open, and suppose ω is a compactly supported n-form on
U. Then ∫

U

ω =

∫
D

ω

for any domain of integration D such that supp(ω) ⊆ D.

Essentially, we cover our open set as closely as possible with a domain of integration, and
then integrate over the domain.

To extend our integral to arbitrary manifolds, we need to consider the concept of orienta-
tions.

Definition 3.5. If F is a smooth map that restricts to an orientation preserving or reversing
isomorphism, let orient(F ) be −1 if F is orientation preserving and 1 if F is orientation
reversing.

Proposition 3.6. Let D and E be open domains of integration in Rn. If G : D → E is a
smooth map that restricts to an orientation preserving or reversing diffeomorphism from D
to E and ω is an n-form on E, then∫

D

G∗ω = orient(G)

∫
E

ω.

Proof. We consider coordinates (y1, . . . , yn) over E and (x1, . . . , xn) over D. Considering ω
as f dx1 ∧ . . . ∧ dxn, we find∫

E

ω =

∫
E

f dV =

∫
D

(f ◦G)| detDG|dV,

where the proof of the validity of the last manipulation is not proven here but is given
in [Lee12]. We can then simplify further to find∫

D

(f ◦G)| detDG|dV =

∫
D

(f ◦G) orient(G)(detDG)dV

=

∫
D

(f ◦G) orient(G)(detDG) dx1 ∧ . . . ∧ dxn

=

∫
D

G∗ω.

■
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Proposition 3.7. Let U and V be open subsets of Rn. If G : U → V is an orientation
preserving or reversing diffeomorphism and ω is a compactly supported n-form on V, then∫

V

ω = orient(G)

∫
U

G∗ω. [Lee12]

Proof. Consider an open domain of integration E satisfying ω ⊆ E ⊆ E ⊆ V. ThenG−1(E) ⊆
U is an open domain of integration satisfying G−1(E) ⊇ suppG∗ω, so by Proposition 3.6,
we are done. ■

Definition 3.8. Let M be a smooth, oriented n-manifold, and ω be a compactly supported
differential n-form in the domain of an oriented smooth coordinate chart (U,φ).

We define the integral of ω over M to be∫
M

ω =

∫
φ(U)

(φ−1)∗ω. [GH18]

Essentially, we can integrate independently over the pullback of the inverse of each chart
at every point in the image of the chart, which allows us to define a concept of the ’oriented’
integral on a manifold. This allows integration to be independent of the choice of charts
used.

4. Conclusion

Given this definition, we can expand multivariable calculus to apply over manifolds of any
dimension. In particular, the generalized Stokes’ theorem also holds with this definition.
Last, our definition of integration agrees with all definitions from multivariable calculus,
which makes it convenient to use generally.
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