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1. Introduction

The purpose of this paper is to present the basic ideas of Hodge theory on Riemannian manifolds and to

develop the proof of the Hodge Decomposition Theorem. We begin in Section 2 by recalling the definitions

of differential forms, the exterior derivative, and de Rham cohomology. In Section 3 we introduce the Hodge

star operator and the codifferential, which allow us to define the Laplace–de Rham operator and the notion

of harmonic forms. Section 4 is devoted to the proof of the Hodge Decomposition Theorem, which shows

that every differential form can be written uniquely as the sum of an exact, coexact, and harmonic part. As

a corollary, we deduce that each de Rham cohomology class has a unique harmonic representative.

2. Differential Forms

Before we introduce the main material some preliminaries must be developed, first of which differen-

tial forms. Simply put, differential forms are objects which we integrate on manifolds. Throughout this

exposition, we follow the terminology and notation of [Lee06].

Definition 2.1. Let n ∈ N. A smooth n-dimensional manifold is a second-countable Hausdorff topo-

logical space M together with a maximal smooth atlas A such that each chart (U,φ) ∈ A satisfies:

(1) U ⊂M is open.

(2) φ : U → φ(U) ⊂ Rn is a homeomorphism onto an open subset of Rn.

(3) For any two charts (U,φ), (V, ψ) ∈ A with U ∩ V ̸= ∅, the transition map

ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V )

is smooth (C∞) between open subsets of Rn.

On these manifolds we define something called the tangent space, which is the set of all tangent vectors

to a point on a manifolds.

Definition 2.2. Let M be a smooth n-dimensional manifold and p ∈M . The tangent space at p, denoted

TpM , is the real vector space of derivations at p:

TpM := {X : C∞(M) → R | X is linear and satisfies X(fg) = X(f)g(p) + f(p)X(g)} .

Each tangent vector X ∈ TpM represents an equivalence class of curves through p or, equivalently, a direc-

tional derivative at p.
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We call the disjoint union of all of the tangent spaces the tangent bundle which we denote

TM :=
∐
p∈M

TpM.

The cotangent space is the dual space to the tangent space and it is the vector space of linear maps

T ∗
pM := {l : TpM → R}.

An element l ∈ T ∗
pM is called a covector.

Definition 2.3. Let T ∗
pM be the cotangent space of the manifold M at the point p. The kth exterior power

of T ∗
pM , denoted ΛkT ∗

pM , is the vector space consisting of all alternating multilinear maps

ω : TpM × · · · × TpM︸ ︷︷ ︸
k times

→ R.

Definition 2.4. Given a smooth manifold M , a differential k-form is an assignment p 7→ ωp for a point

p ∈ M where ωp ∈ ΛkT ∗
pM is an alternating linear map. The space of smooth differential k-forms on M is

denoted Ωk(M).

In other words, a k-form takes k different tangent vectors at a point and outputs a real number. This

means that 0-forms are just smooth functions, 1-forms are regular differentials (which are covectors) and

2-forms are area elements to integrate. For example, f(x) dx is a differential 1-form.

We want to be able to generalize these 1-forms into k-forms and the way this is done is by using something

called the wedge product or exterior product.

The wedge operator denoted ∧ takes in 1-forms and spits out a higher dimensional form. Given k 1-forms

ω1, ω2, . . . , ωk ∈ Ω1(M) and k points in the tangent space v1, v2, . . . , vk the wedge product is defined as

(ω1 ∧ ω2 ∧ · · · ∧ ωk)(v1, v2, . . . , vk) := det


ω1(v1) · · · ωk(v1)

... dots
...

ω1(vk) · · · ωk(vk)


To generalize we can write it in terms of a tensor product, defined as (T1 ⊗ T2)(v1, v2) := T1(v1) · T2(v2).

For k-form ω and l-form η we have the (k + l)-form

ω ∧ η :=
1

k!l!

∑
σ∈Sk+1

sgn(σ)(ω ⊗ η) ◦ σ.

where σ is a permutation of the (k + l)th symmetric group and sgn is the sign of the permutaton. This

definition is the same as the alternating tensor for ω ⊗ η.

Lemma 2.1. The following is true about wedge products if ω, η, ξ are differential forms.

(a) (aω + bη) ∧ ξ = a(ω ∧ ξ) + b(ν ∧ ξ).
(b) ω ∧ (η ∧ ξ) = (ω ∧ η) ∧ ξ.
(c) For k-form ω and l-form η, ω ∧ η = (−1)kl η ∧ ω.

It is in fact true that we can decompose all differential forms into the sum of wedge products.
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Proposition 2.5. For a k-form ω, given a local coordinate basis {xi}, we can write

ω =
∑

i1<···<ik

fI dx
i1 ∧ dxi2 ∧ · · · ∧ dxik .

for 0-form fI . Let dxI = dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

Now that we have this, it is possible to define the derivative of a differential form, called the exterior

derivative. This takes k-forms to (k + 1)-forms.

Definition 2.6. Let ω =
∑
fI dx

I then we denote the exterior derivative of ω as dω and define it as

dω :=
∑

dfI ∧ dxI .

By plugging in and simplifying one can check that there exists a wedge product rule for the exterior

derivative similar to the product rule from calculus.

Lemma 2.2. For k-form ω and l-form η we have that d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

Lemma 2.3. d ◦ d = 0, i.e. d(dω) = 0 for every differential form ω.

Proof. It suffices to check the identity locally in coordinates. First consider a 0-form (smooth function) f .

In local coordinates (x1, . . . , xn)

df =

n∑
i=1

∂if dx
i,

so

d(df) =
∑
i,j

∂j∂if dx
j ∧ dxi = 1

2

∑
i,j

(
∂j∂if − ∂i∂jf

)
dxj ∧ dxi = 0,

since mixed partials commute.

For a general k-form ω =
∑

I fI dx
I (summed over increasing multi-indices I), the exterior derivative acts

only on the coefficient functions fI , so

d(dω) =
∑
I

d(dfI) ∧ dxI = 0

by the 0-form case. Thus d ◦ d = 0 on all forms. □

With the exterior derivative in hand, we can now distinguish between two important classes of differential

forms.

Definition 2.7. A k-form ω is called closed if dω = 0, and exact if there exists a (k− 1)-form η such that

ω = dη.

Since d2 = 0, every exact form is automatically closed, but the converse need not hold. This leads us

naturally to de Rham cohomology, which measures the “difference” between closed forms and exact forms.

We denote closed and exact forms as Zk(M) and Bk(M) respectively. Formally, we have

Zk(M) = ker{d : Ωk(M) → Ωk+1(M)},
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Bk(M) = im{d : Ωk−1(M) → Ωk(M)}.

From before we know that Bk(M) ⊆ Zk(M) so we define the de Rham group as the quotient.

Definition 2.8. We say that the kth de Rham cohomology group is the quotient vector space

Hk
dR(M) =

Zk(M)

Bk(M)
.

3. The Hodge Star Operator

So far we’ve been dealing with a general manifold M but for Hodge theory we want to focus on a specific

type of manifold called a Riemannian manifold, which is a smooth manifold with a Riemannian metric on

it. Our treatment of the Hodge star operator follows [Ros97].

Definition 3.1. Let M be a smooth manifold. A Riemannian metric is a smooth assignment g : p 7→ gp

for p ∈M where each gp is an inner product on the tangent space

gp : TpM × TpM → R.

Definition 3.2. A Riemannian manifold is a just a pair (M, g) of a smooth manifold and a Riemannian

metric.

This means that for a curve γ : [0, 1] →M we define the length of γ to be∫ 1

0

√
gγ(t)(γ′(t), γ′(t)) dt.

Notice that for Euclidean space Rn the metric is just g(u, v) = u · v.
Let (M, g) be a Riemannian manifold of dimension n, so that for each point p ∈M the metric gp defines

an inner product on the tangent space TpM .

We now define a pointwise inner product for differential forms and then a global inner product, called the

L2 inner product.

Definition 3.3. Given p ∈ M , let dx1, dx2, . . . , dxn be an orthonormal basis of the cotangent space T ∗
pM

with respect to g. Then for

α =
∑
I

aIdx
i1 ∧ · · · ∧ dxik , β =

∑
I

bIdx
i1 ∧ · · · ∧ dxik ∈ ΛkT ∗

pM,

define the inner product

⟨α, β⟩p :=
∑
I

aIbI .

Using the metric g, we obtain a globally defined volume form volg ∈ Ωn(M), which satisfies

volg = dx1 ∧ dx2 ∧ · · · ∧ dxn.

Definition 3.4. For M , define an inner product on the space of smooth k-forms Ωk(M) by

⟨α, β⟩ :=
∫
M

⟨αp, βp⟩p volg.
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We can now define the Hodge star operator, which takes k-forms to (n− k)-forms.

Definition 3.5 (Hodge star operator). For each p ∈M , the Hodge star operator

∗ : ΛkT ∗
pM → Λn−kT ∗

pM

is the unique linear map satisfying

α ∧ ∗β = ⟨α, β⟩p volg,

for all α, β ∈ ΛkT ∗
pM .

The operator ∗ extends smoothly to all of Ωk(M) by applying it pointwise.

Proposition 3.6. The Hodge star satisfies

∗ ∗ α = (−1)k(n−k)α,

for all α ∈ Ωk(M).

Definition 3.7. Define the codifferential operator δ : Ωk(M) → Ωk−1(M) by

δ := (−1)nk+n+1 ∗ d∗,

where d is the exterior derivative.

Lemma 3.1. The codifferential δ is the adjoint of d with respect to the L2 inner product, i.e., for all

α ∈ Ωk−1(M) and β ∈ Ωk(M),

⟨dα, β⟩ = ⟨α, δβ⟩.

Proof. We have

⟨dα, β⟩ =
∫
M

⟨dα, β⟩ volg =

∫
M

dα ∧ ∗β.

Applying the product rule we get∫
M

dα ∧ ∗β =

∫
M

d(α ∧ ∗β)− (−1)k−1

∫
M

α ∧ d(∗β).

By Stokes’ Theorem the first term goes to 0 leaving us with

(−1)k
∫
M

α ∧ d ∗ β.

By using Proposition 3.6 we can rewrite this to get

(−1)nk+n+1

∫
M

α ∧ ∗(∗d ∗ β) = ⟨α, δβ⟩.

□

Definition 3.8. A form ω is called coexact if it can be written as ω = δη.
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4. Hodge Decomposition

Now we can get to the Hodge Theory, which eventually builds to prove the Hodge Decomposition Theorem.

The proof of the theorem will follow [War83]. We start by defining the Laplace–de Rham operator, a second

order differential operator acting on k-forms which is a generalization of the ordinary Laplacian.

Definition 4.1. The Laplace–de Rham operator is

∆ := dδ + δd : Ωk(M) → Ωk(M).

A k-form ω is harmonic if ∆ω = 0. Denote Hk(M) = {ω ∈ Ωk(M) : ∆ω = 0}.

Lemma 4.1. ∆ is self adjoint with respect to the L2 inner product.

Proof. This follows from Lemma 3.1. □

Lemma 4.2. If ω ∈ Ωk(M) and ∆ω = 0, then dω = 0 and δω = 0.

Proof. Compute ⟨∆ω, ω⟩ = ⟨dδω, ω⟩+ ⟨δdω, ω⟩ = ⟨δω, δω⟩+ ⟨dω, dω⟩. If ∆ω = 0 the left-hand side vanishes,

hence both norms vanish, so dω = δω = 0. □

Say that we have a solution ω to the PDE ∆ω = α. Then ω determines the functional l : Ωk(M) → R
defined as

l(β) := ⟨ω, β⟩.

Due to the self adjointness we know that ω is a solution if l satisfies

l(∆φ) = ⟨α,φ⟩ for all φ ∈ Ωk(M).

We call such a functional a weak solution to the equation. In fact it is true that every weak solution l actually

determines an ordinary solution ω. This is a result called elliptic regularity, which we will assume as it’s a

long proof.

Theorem 4.2. Let α ∈ Ωk(M) and let l be a weak solution of ∆ω = α then there exists ω ∈ Ωk(M) such

that

l(β) = ⟨ω, β⟩

for every β ∈ Ωk.

We will also assume the following result.

Theorem 4.3. Let {an} be a sequence of smooth k-forms such that ∥an∥ ≤ c and ∥∆an∥ ≤ c for some

constant c > 0. Then a subsequence of {an} is Cauchy in Ωk(M).

Theorem 4.4 (Hodge Decomposition Theorem). We have the following orthogonal direct sum decomposition

of Ωk(M):

Ωk(M) = ∆(Ωk(M))⊕Hk

= dΩk−1 ⊕ δΩk+1 ⊕Hk

and ∆ω = α has a solution iff α is orthogonal to Hk.
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Proof. We have the space of harmonic forms Hk so we can orthogonally decompose Ωk as

Ωk = Hk ⊕ (Hk)⊥.

We will prove the theorem by showing that (Hk)⊥ = ∆(Ωk). We do that by showing both are subsets of

each other. One direction is fairly simple. Say that we have ω ∈ Ωk and α ∈ Hk. Then

⟨∆ω, α⟩ = ⟨ω,∆α⟩ = 0.

meaning ∆(Ωk) ⊂ (Hk)⊥. It remains to show the reverse inclusion

(Hk)⊥ ⊂ ∆(Ωk).

To solve ∆ω = α for a given α ∈ (Hk)⊥, we want to define a linear functional on ∆(Ωk) by

L(∆φ) := ⟨α, φ⟩.

For this to make sense we need L to be bounded and depend only on ∆φ. This will ensure that |L(∆φ)| ≤
C∥α∥·∥∆φ∥, which is exactly what allows us to extend L and represent it by an inner product with a smooth

form.

We claim that there exists c > 0 such that

∥β∥ ≤ c ∥∆β∥ for all β ∈ (Hk)⊥.

Suppose this is false. Then there is a sequence βj ∈ (Hk)⊥ with ∥βj∥ = 1 and ∥∆βj∥ → 0. By Theorem 4.3,

a subsequence is Cauchy in Ωk(M), so for every ψ ∈ Ωk(M) the limits

l(ψ) := lim
j→∞

⟨βj , ψ⟩

exist and define a bounded linear functional l on Ωk(M) with ∥l∥ ≤ 1. For any φ ∈ Ωk(M) we compute

l(∆φ) = lim
j→∞

⟨βj ,∆φ⟩ = lim
j→∞

⟨∆βj , φ⟩ = 0,

so l is a weak solution of ∆ω = 0. By Theorem 4.2, there is a smooth β ∈ Ωk(M) with ∆β = 0 such

that l(ψ) = ⟨β, ψ⟩ for all ψ. Since each βj ∈ (Hk)⊥, we have ⟨β, β⟩ = lim⟨βj , β⟩ = 0, so β = 0. But then

∥βj∥ → ∥β∥ = 0, contradicting ∥βj∥ = 1.

Now fix α ∈ (Hk)⊥ and define L : ∆(Ωk) → R by

L(∆φ) := ⟨α, φ⟩.

This is well defined: if ∆φ1 = ∆φ2, then φ1 − φ2 ∈ Hk so ⟨α, φ1 − φ2⟩ = 0. To see L is bounded, write

φ = φ⊥ +H(φ) with φ⊥ ∈ (Hk)⊥ and H(φ) ∈ Hk (H(φ) is the harmonic projection of φ). Then

L(∆φ) = ⟨α, φ⊥⟩, ∆φ = ∆φ⊥.

By Cauchy-Schwarz,

|L(∆φ)| ≤ ∥α∥ ∥φ⊥∥ ≤ c ∥α∥ ∥∆φ⊥∥ = c ∥α∥ ∥∆φ∥.
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Thus L is bounded on ∆(Ωk). By Hahn–Banach, L extends to a bounded linear functional L̃ on all of

Ωk(M). By Theorem 4.2, there exists ω ∈ Ωk(M) such that

L̃(ψ) = ⟨ω, ψ⟩ for all ψ ∈ Ωk(M).

In particular, for any φ ∈ Ωk(M) we have

⟨∆ω, φ⟩ = ⟨ω,∆φ⟩ = L̃(∆φ) = L(∆φ) = ⟨α,φ⟩.

Since this holds for all φ, we conclude ∆ω = α. Therefore (Hk)⊥ ⊂ ∆(Ωk).

Combining both inclusions gives the orthogonal decomposition

Ωk(M) = ∆(Ωk(M))⊕Hk.

It is now clear that ∆ω = α has a solution if and only if α is orthogonal toHk, i.e. the harmonic component

of α vanishes. This completes the proof. □

This actually says something about the de Rham cohomology of M .

Corollary 4.4.1. Each de Rham cohomology class has a unique harmonic representative. In particular,

Hk
dR(M) ∼= Hk(M).

Proof. Let α ∈ Ωk(M) be closed. By the Hodge decomposition theorem we may write

α = dβ + δγ + h

with h ∈ Hk(M). Applying d, we find

0 = dα = dδγ,

since dd = 0 and dh = 0. The operator dδ maps (k + 1)-forms to exact k-forms, so dδγ is exact. Hence δγ

itself represents the trivial class in cohomology, and we conclude that α and h differ by an exact form. Thus

every cohomology class has a harmonic representative.

Uniqueness follows from orthogonality: if h, h′ ∈ Hk(M) are cohomologous, then h− h′ = dβ for some β.

But h− h′ is harmonic, hence orthogonal to all exact forms, so

⟨h− h′, dβ⟩ = ∥h− h′∥2 = 0.

Therefore h = h′. This proves the isomorphism Hk
dR(M) ∼= Hk(M). □
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