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Abstract

In this paper, I will discuss differential forms as the language of the generalised Stokes’
theorem. Through this venture, we will generalise the procedure of integration and
differentiation to RN as well as to performing these procedures on smooth Manifolds.

1 Introduction

In a Multivariable Calculus class we learn way too many integral theorems. We start out
by defining gradient,divergence and curl as

gradV =
dV

dx
x̂+

dV

dy
ŷ +

dV

dz
ẑ

divV =
dV

dx
+

dV

dy
+

dV

dz

curl ⟨f, g, h⟩ =
(dh
dy

− dg

dz

)
x̂+

(df
dz

− dh

dx

)
ŷ +

(dg
dx

− df

d
y
)
ẑ.

Then we cumbersomely learn several integral theorems:

c∫
C
∇f · r′dt = f(b)− f(a) Fundamental theorem of Calculus

∫
S

(
dQ
dx

− dP
dy

)
dS =

∫
C
Pdx+Qdy Green’s theorem

∫
S
F · dS =

∫
V
∇ · FdV Divergence theorem∫

C
F · dr =

∫
S
∇× F · dS 3D Stokes’ theorem
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These integral theorems are not independent from one another. They are actually
special cases of a much more fundamental theorem: the generalised Stokes’ Theorem.
This is a beautiful result with huge relavance to the problem of integrating in higher
dimensions.

The Stokes’ theorem, in its most general form is∫
Ω

dω =

∫
∂Ω

ω

and it is written in the language of differential forms. These are mathematical objects
that provide us insight into our integration procedures because they can automatically
encode information such as orientation and the translation of functions. You may have
noticed in the definitions of Green’s, Divergence and the 3D Stokes’ theorem that gra-
dient divergence and curl are used constantly in the integral theorems. Keeping track
of when to do what type of “differentiation method” is annoying but differential forms
automatically track this for us. By this I mean that differetnial forms keep track of which
procedure to use (gradient, divergence or curl) based on which integral situation we are
in automatically. This allows the generalisation of integration theorems beautifully to
higher than 3 dimensions.

I will start this paper by defining Manifolds and the procedure of differentiation on
them. Then we will love on to defining a differential form and seeing how divergence and
curl show up from lower dimensional forms. Finally, we will state the Stokes’ theorem
and see how the other integral theorems are derived from it.

2 Manifolds

It is well known how to differentiate and integrate in R and it is fairly straight forward to
extend our familiar laws of calculus to R2, R3 and even Rn. But we need not stop here.
With some effort, it is possible to extend the bounds of Calculus and talk about integration
and differentiation on not just Euclidean space but any space that looks locally Euclidean.

A Manifold is any space where if you zoom far enough into any point, it looks like a
Euclidean space around your point. We grapple with this idea everyday. If you go to the
beach and look around, everything looks flat, almost like you are standing on top of a
plane in R2. So local points on our earth look like a 2 dimensional plane eventhough the
Earth itself is a space in R3. This planar behaviour does not hold up if you zoom out far
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enough to notice the Earth’s curvature, however. In other words, while a Manifold looks
Euclidean locally, this does not mean that it will look the same globally.

Furthermore, to be classed as a Manifold, every point in the space must look like
the same kind of Euclidean space. As an anti-example of a Manifold, consider the shape
made by the letter “Y”. If you focus on any one of the 3 lines making up the letter “Y”,
they just look like lines in R. But this is not a manifold because of the point where these
3 lines join. Such intersections are not something that can be seen in R and hence the
space around this intersection point does not locally look like R.

With this intuition for Manifolds, we can construct a definition for these spaces. Since
we want small regions on our Manifold to look like Euclidean space, we can set this on
firm mathematical foundations by considering mappings from that Euclidean space to our
Manifold. Consider a small open subset on our Manifold encompassing any point on it.
If this locale of the point really looks like a Euclidean space Rn, then we should be able
to find a clean mapping from an open set of Rn onto this subset of our manifold. We
would like this mapping to be one to one and onto. Additionally, since we soon plan to
talk about performing differentiation on our Manifolds, the map had better be smooth.
These ideas are summed up in definitions 1 and 2.

DEFINITION 1. A map between two subsets X, and Y of two Euclidian spaces f : X →
Y is diffeomorphic if it is one-to-one and onto and if both f : X → Y and its inverse
f−1 : Y → X are smooth.

DEFINITION 2. Suppose X is a subset of a larger Euclidean space Rn. X is said to
be a m-dimensional Manifold if it is locally diffeommorphic to Rm, meaning every point
x ∈ X possesses a neighbourhood U which is diffeomorphic to an open subset V ∈ Rm.

3 Differentiation on Manifolds

We can define the differentiation of a single-valued function f : R → R as

dxf = lim
h→0

f(x+ h)− f(x)

h
.

For a vector valued function f : Rn → Rm, the derivative can have different values
depending on the direction we move on along it. Hence, instead of using a scalar “h” in
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the definition, we can generalise by considering a vector h ∈ Rn in the direction we are
differentiating in to get

dfx(h) = lim
t→0

f(x+ th)− f(x)

t
. (1)

There are two important things to note here. Firstly, the derivative has a depen-
dence on the vector h, and secondly we know that derivatives are linear operations.
Hence differentiation of a function f can really be categorised as a linear transformation
dfx : h ∈ Rn → Rm.

Now, we get to the problem of defining a notion of differentiation on a Manifold. For
this, we imagine we have a parameterization ϕ : U → X where X is an m-dimensional
manifold in Rn and U is an open subset of Rm. We know that derivatives of a surface in 3
dimensions lie on the tangent plane: a plane defined by the linear combination of vectors
tangent to the plane at a point x0, but with the vectors displaced from the origin by f(x0).

A surface is really just a 2 dimensional Manifold embedded in 3 dimensions and this
idea of a tangent plane extends seamlessly to higher dimensions. From this we can
conclude that differentiation on a Manifold just corresponds to

dX(h) = d ϕ(h).

4 Basic Properties of Differential Forms

In elementary Calculus, we talk about objects like dx, dy, dz. These “differentials” are a
cornerstone of the notation of integral calculus. But what are these objects really and
what properties do they possess? To answer these questions we define differential forms.
These are objects that transform in such a way that they encode a remarkable amount of
information used in the integration process. Hence differential forms provide a pathway
to devising a unified general approach to integrating on manifolds.

To be more specific, differential forms can encode orientation and any change of co-
ordinates. Perhaps even more surprisingly, a general d operator may be defined on forms
which does the exact right thing in the right time. By this, I mean the result of applying
the d operator to a form can produce the operation of gradient, curl, divergence and
so on exactly when each operation is appropriate. Hence forms can be used to greatly
simplify and provide a general pathway to integration on Manifolds. Furthermore, differ-
ential forms are the language of the generalized Stokes theorem.
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For now, we define abstract symbols that are written as dxi. To be able to do
anything interesting with these symbols, we must define a product on them denoted by
the symbol ∧. This product will have the usual associativity and distributive properties

α ∧ (β ∧ γ) = (α ∧ β) ∧ γ

(α + β) ∧ γ = α ∧ γ + β ∧ γ

(cα) ∧ β = α ∧ (cβ).

However, it will also have the more unique property of anti-symmetry:

α ∧ β = −β ∧ α (2)

This property actually encodes information about the orientation we will follow during
integration. I will stall the explanation of orientation for when I define the different types
of forms. For now, we must note that this anti-symmetry will be our main guiding prin-
ciple in defining the actual operation of wedge products.

From antisymmetry we have that the wedge product of any form with itself must be
zero since

α ∧ α = −α ∧ α

which is a property satisfied only by 0.

5 Wedge Products

The wedge product is more generally a product between a certain group of tensors. Ten-
sors are real valued functions which take in vectors as outputs. Tensors are multilinear,
as explained in definition 3. Why are we suddenly shifting focus from the objects we
just labeled as differential forms to the whole new object of tensors? Well, we will soon
see that a differential form may be described as a type of tensor. This will involve some
geometric insight which we will discuss in the following section. Talking about tensors
first allows us to come up with a rigorous definition of the wedge product which will be
used constantly as we continue our discussion of forms.

DEFINITION 3. A p-tensor is a function T : v1, v2, . . . vp → R on a group of p vectors
v1, v2 . . . vp ∈ V where V is some vector space. Tensors are multilinear maps, meaning
that they are individually linear in each variable:

T (v1, v2 . . . vk + αv′k, . . . vp) = T (v1, v2 . . . vk, . . . vp) + αT (v1, v2 . . . v
′
k, . . . vp).
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If we are given two tensors, we can define a tensor product between them that cre-
ates a larger tensor. More specifically, given a p-tensor and a q-tensor, we can create a
(p+ q)-tensor by defining the tensor product ⊗ as in definition .

DEFINITION 4. Given a p-tensor Tp and a q-tensor Tq, we define their tensor product
applied on a set of p+ q vectors (v1, v2 . . . vp, vp+1, vp+2, . . . vp+q) as

Tp ⊗ Tq = Tp(v1, v2, . . . vp) · Tq(vp+1, vp+2, . . . vp+q).

This tensor product is then a tensor itself that maps V ×p+q to R. Anti-symmetry of a
tensor is reached when interchanging the positions of two of its parameters produces a
change of sign:

T (v1, v2, . . . vi, . . . vj, . . . vn) = −T (v1, v2, . . . vj, . . . vi, . . . vn).

Such a tensor is called an alternating tensor.

A key detail to notice is that if Tp and Tq are two tensors, then their tensor product
is normally not antisymmetric. This means that a general tensor cannot be a candidate
for an object to rigorously define forms, as the product of two forms should be a third
anti-symmetric form. However, there exists an operation that can take a non-alternating
tensor and convert it into an alternating one.

In order for a tensor to be antisymmetric, everytime we swap one of its variables, there
must be a flip of signs. Let’s consider the set of all permutations of these parameters
Sπ. Elements π ∈ Sπ are permutations of the parameters. Let us also define sgn(π) as
a function that returns 1 if going from the original permutation to π requires an even
number of swaps and −1 for an odd number of swaps.

Then, consider we have an alternating tensor T and a tensor T π which is the result
of swapping its variables until they are in the permutation π. We should see that

T π(vπ1 , vπ2 , . . . vπp) = (−1)sgn(π)T (v1, v2, . . . vp). (3)

Alternately, if T is a non-alternating tensor, then we can define an operation to
produce an alternating tensor from it:

Alt(T ) =
1

p!

∑
π∈Sπ

(−1)sgn(π)T π. (4)

6



This tensor is alternating because every element of the sum is alternating. The reason
to divide by p! is that, when T is already alternating, we want that Alt(T ) = T and not
Alt(T ) = p!T .

With all of this in mind, we can finally define a product that results in an alternating
tensor.

DEFINITION 5. The wedge product between two tensors T and T ′ is defined as

T ∧ T ′ = Alt(T ⊗ T ′). (5)

6 Differential Forms

With all this out of the way, we can finally develop the powerful and elegant mathematical
concept of forms.

A p-dimensional differential form, or just a “p-form”, is an alternating p-tensor defined
on the structure a manifold. More specifically, if p is a point on a manifold then a k-form
is any alternating tensor acting on vectors in the tangent space at p.

DEFINITION 6. Let Λk be the set of all alternating k-tensors. Let Rn
p be the tangent

space of a point p. Then a k-form is any tensor ω that follows ω ∈ Λk(Rn
p ).

With all this defined, we are ready to start going over the various types of forms and
see how the “d” operator on forms returns the right “derivative” at the right time. We
will start with the zero form.

6.1 0-Forms and Orientation

A 0-form is a simple 1-dimensional function (with the antisymmetric property described
before). If f is a 0-form, then at a point p on the manifold we may define∫

p

f = f(p). (6)

This notation is different from what we ordinarily see in Calculus where we may right∫ b

a

df = f(b)− f(a).
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This different in notation exists as it will better allow us to generalise to higher forms.

Rather than just evaluating the integral in equation (6) at a single point, we may
instead want to evaluate it between two boundary points that bound a curve in space.
Let’s denote a and b as the boundary points of a 1-dimensional manifold in Rn. We know
from experience with the fundamental theorem of calculus that∫ b

a

df = f(b)− f(a).

For our theory of differential forms to work, it must replicate this result. This can be
achieved by defining an orientation for forms. For 0 forms, this means that for a positively
oriented point P , we have

∫
P
f = f(P ), while for a negatively oriented point Q, we have∫

Q
f = −f(Q). The orientation really just describes what direction we are integrating

along. For a line integral on a curve from point a to point b on a 1-dimensional manifold,
integrating a function on this manifold from a to b should give the negative result of
integrating from b to a: ∫ b

a

df = −
∫ a

b

df.

To express this in the language of differential forms, we can say that the boundary of our
1-dimensional manifold M is ∂M = b − a where the minus sign next to a just denotes
that we will evaluate it with a negative orientation. Then we can define∫

∂M

f =

∫
b−a

f = f(b)− f(a).

The idea of orientation generalises to higher dimensions. For a 1-dimensional mani-
fold, the boundary was 0-dimensional, just two points in space. We could go from one
boundary point to the other or vice versa and the integrals of these two paths were the
negatives of eachother. Similarly, for a 2-dimensional manifold, the boundary is itself
a curve in space. We can either integrate on the boundary clockwise or anti-clockwise,
getting opposite results. Hence we may define integrating clockwise as the positive orient-
tation and anti-clockwise as the negative. On a 3-dimensional manifold, The orientation
is based on whether you define the normal vector as pointing “inwards” or “outwards”.
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6.2 1-Forms and the d Operator

So far for 0-forms, we have defined some notation that connects forms to our everyday
knowledge in integration. For 1-forms, we will define yet more notation, but then for
2-forms, we will see the notational machinery from 0 and 1 forms to come together to
give us a beautiful result.

Let us say that ω is some 1-form. We define 1-forms as expressions of the form

ω = f(x, y, z)dx+ g(x, y, z)dy + h(x, y, z)dz. (7)

We will also now define the differentiation operator d on forms. This operator takes a
0-form and transforms it intp a 1-form in the following way:

df =
∂f

∂x1

dx1 +
∂f

∂x2

dx2 + . . .
∂f

∂xn

dxn (8)

This is reminiscent of the chain rule. We will also define that

d(fdx) = df ∧ dx.

You should also much notice the similarity between equation (8) and the expression for
gradient

∂f

∂x1

x̂1 +
∂f

∂x2

x̂2 + . . .
∂f

∂xn

x̂n.

If we try to integrate on a 1-form, we are simply met with a familiar line integral:∫
ω =

∫
∂f

∂x1

dx1 +
∂f

∂x2

dx2 + . . .
∂f

∂xn

dxn.

6.3 2-Forms

For this subsection, I will restrict our analysis to a 2-dimensional manifold in R3. You
should soon see why I’m doing this in the following results. We define a 2-form in 3
dimensions as

ω = f dx ∧ dy + g dy ∧ dz + h dz ∧ dx.
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The same d operator defined earlier takes a 1-form and transforms it into a 2-form.

d(fdx+ gdy + hdz) =df ∧ dx+ dg ∧ dy + dh ∧ dz

=
(∂f
∂x

dx+
∂f

∂y
dy +

∂f

∂z
dz

)
∧ dx+

(∂g
∂x

dx+
∂g

∂y
dy +

∂g

∂z
dz

)
∧ dy

+
(∂h
∂x

dx+
∂h

∂y
dy +

∂h

∂z
dz

)
∧ dz

=
(dh
dy

− dg

dz

)
dy ∧ dz +

(df
dz

− dh

dx

)
dz ∧ dx+

(dg
dx

− df

d
y
)
dy ∧ dx

But this expression is just completely analogous to the curl of a vector field (f, g, h) with
the unit vectors replaced by the differential wedge products. Moreover, we can take the
wedge product of two 1-forms to get

(Adx+Bdy + Cdz) ∧ (Ddx+ Edy + Fdz) =(BF − CE)dy ∧ dz + (CD − AF )dz ∧ dx

+ (AE −BD)dx ∧ dy.

which is analogous to the cross product between two vectors in R3.

What is going on? Why are operations on forms producing the results of these familiar
operations? As promised in the introduction, forms keep track of which “differentiaion”
procedure to perform when. Finally defining Stokes’ Theorem and seeings its cases in
lower dimensions should show this.

7 Generalised Stokes’ Theorem

DEFINITION 7. let M be a Manifold with boundary ∂M and let ω be a k-dimensional
form. Then ∫

∂M

ω =

∫
M

dω. (9)

This is a beautiful theorem that applies to any finite dimensional space. As a end to
this paper, however, let’s restrict to 3 or fewer dimensions so that we can see how the
other integral theorems fall out of Stokes’ theorem as special cases.

We already showed how the fundamental theorem of Calculus follows from the defi-
nitions on forms.
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Green’s theorem can be derived by considering a 1-form ω = Pdx + Qdy on a 2
dimensional Manifold. Then

dω =
∂P

dy
dy ∧ dx+

∂Q

∂x
dx ∧ dy =

(∂Q
dx

− ∂P

dy

)
dx ∧ dy∫

C

Pdx+Qdy =

∫
S

(∂Q
dx

− ∂P

dy

)
dS.

The form transforms under d like the 2 dimensional curl as required.

The divergence theorem can be similarly proved by considering a 2-form ω = f dx ∧
dy + g dy ∧ dz + h dz ∧ dx so that

dω =
(∂f
dx

+
∂g

dy
+

∂h

dz

)
dx ∧ dy ∧ dz∫

S

⟨f, g, h⟩ · dS =

∫
V

∇ · ⟨f, g, h⟩ dV.

The form transforms under d like the divergence as required.
Finally, let us now assume ω = fdx+gdy+hdz is a 1-form to prove Stoke’s theorem

in 3 dimensions. Then as we saw, dω is analogous to ∇× ω.∫
S

dω =

∫ ∫
S

∇× ⟨f, g, h⟩ · dS∫
∂S

ω =

∫
∂S

⟨f, g, h⟩ · dr

∴
∫
C

F · dr =
∫
S

∇× F · dS

The form transforms under d like the curl as required.
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