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HYPERBOLIC GEOMETRY

SHIVEN UPPAL

Abstract. Hyperbolic geometry is a non-Euclidean geometry where geodesics play the
role of straight lines. It is characterized by a constant negative curvature. The idea was
conceived when mathematicians tried to understand the parallel postulate. Hyperbolic
geometry finds applications in mathematics, physics, and art, offering insights into the
structure of space, universe, and tessellations. This paper introduces the foundations of
hyperbolic geometry, geometric interpretation of curvature, the different foundational
hyperbolic models, mathematical theorems, and the application of hyperbolic geometry.

1. Introduction

Euclidean geometry dictated mathematical thinking for two millennia with its five pos-
tulates. For centuries, mathematicians tried to prove the parallel postulate using the first
four but failed. Gauss, Bolyai, and Lobachevsky negated the fifth postulate, and a new
geometry stemmed from the failure of Euclid’s fifth postulate known as Hyperbolic Ge-
ometry. Gauss made the remarkable discovery that denying fifth postulate could lead to
a new geometry called the Non-Euclidean Geometry. He assumed that the sum of angles
of a triangle is less than 180◦ denied the fifth postulate. Bolyai, and Lobachevsky inde-
pendently published papers on Non-Euclidean Geometry providing strong evidence for
its consistency, highlighting duality between non-Euclidean and spherical trigonometry
where the hyperbolic trigonometric functions used in non-Euclidean play the same role
that regular trigonometry does in non-Euclidean geometry.

2. Origin of Hyperbolic Geometry

2.1. Euclid’s Postulates: 1
(1) A straight line segment can be drawn by joining any two points.
(2) Any straight line segment can be extended indefinitely in a straight line.
(3) Given any straight-line segment, a circle can be drawn, with the segment as a

radius and one endpoint as the center.
(4) All right angles are congruent.

Figure 1. The fifth postulate: If α + β < 2R, (R = 90◦) then ℓ and ℓ′

intersect on the right side
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(5) If two lines are drawn which intersect a third in such a way that the sum of the
inner angles on one side is less than two right angles, then the two lines inevitably
must intersect each other on that side if extended far enough. This postulate is
equivalent to what is known as the parallel postulate.

For centuries, scientists tried to prove the fifth postulate or the parallel postulate
from the first four, but were forced to make additional assumptions to conclude it. Dur-
ing this period, Gauss, Lobachevsky, and Bolyai, independently developed a new type
of geometry, now known as the Hyperbolic Geometry, which directly contradicted the
parallel postulate of Euclidean geometry. Lobachevsky introduced the concept of the
angle of parallelism: for a line l and a point A, a perpendicular distance a from it, the
angle of parallelism α is the smallest angle such that the line l drawn from A, remains
parallel to l, that is, it does not intersect l.

Figure 2. Angle of Parallelism

2.2. Spherical-Hyperbolic Contrasts: Spherical and hyperbolic geometry are oppo-
site in many ways, starting from the way they handle the parallel postulate. In spherical
geometry, the opposite of a straight line is great circle.
In spherical geometry, the parallel postulate takes the form of
"Through a point not on a given line, there is no line parallel to the given line".
In hyperbolic geometry, the parallel postulate states that
"Through a point not on a given line, there are infinitely many lines parallel to the given line".
The duality between spherical and hyperbolic geometry can be further explained by high-
lighting the contrasting properties of a triangle in each space.

Figure 3. Euclidean Triangle, Spherical Triangle and Hyperbolic Triangle

• In Euclidean geometry, the angle sum is exactly α + β + γ = 180◦.
• In spherical geometry, the angle sum of a triangle satisfies α + β + γ > 180◦.
• In hyperbolic geometry, the angle sum obeys α + β + γ < 180◦.
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Table 1. Comparison of Spherical, Euclidean, and Hyperbolic Geometry

Property Spherical Geome-
try

Euclidean Geome-
try

Hyperbolic Geome-
try

Lines Great circles that
eventually converge

Infinite straight lines
that never meet

Curved lines that di-
verge from one another

Sum of angles in
a triangle

α + β + γ > 180◦ α + β + γ = 180◦ α + β + γ < 180◦

Number of par-
allels through a
point not on a
line

0 1 Infinite

Circumference of
a circle

2π sin r 2πr 2π sinh r

Area of a circle 2π(1 − cos r) πr2 2π(cosh r − 1)

Pythagorean for-
mula

cos c = cos a cos b
(for right triangle)

a2 + b2 = c2 cosh c = cosh a cosh b
(for right triangle)

Area of triangle k((α + β + γ) − π) Not proportional to
angles

k(π − (α + β + γ))

Parallel postu-
late

Does not hold (no
parallels)

Holds Does not hold (multiple
parallels)

Force analogy Squishing effect (like
on a sphere)

No distortion Tidal effect (stretching
in opposite directions)

Tiling of space Only certain poly-
gons tile the surface

Regular tilings like
squares, triangles,
hexagons

Many tilings possible,
even with heptagons,
octagons etc.

Geodesics Great circles Straight lines Arcs, semicircles, or
rays (depending on
model)

Model examples Surface of Earth, S2 R2, the flat plane Poincaré disk, half-
plane, hyperboloid
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3. Curvature

3.1. What is Curvature? The fundamental geometric property of a space that estab-
lishes the relationship between the angles of a triangle and its area is called curvature.
It also establishes the relationship between the circumference of a circle and its radius.
Curvature measures the extent to which the space is curved and in which direction it is
curved. Consider a smooth curve. The curvature at any point of the curve quantifies how
sharply it bends away from the tangent line. The radius of curvature at that point refers
to the radius of the best-fitting circle called the osculating circle that approximates the
circle locally. The curvature of the circle is the reciprocal of the radius and is given by:

κ = 1
r

For surfaces, curvature measures how much the surface deviates from the tangent plane
at a given point. In two dimensions, surfaces of constant curvature κ are categorized as
follows:

• Positive curvature (κ > 0): The surface lies entirely on one side of the tangent
plane at any point (e.g. sphere). If the surface is simply connected, it is a sphere
with curvature.

• Negative curvature (κ < 0): The surface is saddle-shaped and the tangent
plane intersects the surface on both sides (e.g. a hyperbolic paraboloid). A
simply connected surface with negative curvature is the hyperbolic plane (or 2-
dimensional hyperbolic space).

• Zero curvature (κ = 0): The surface is flat in at least one direction and the
straight line lies in the tangent plane at every point (e.g. a cylinder). A simply
connected surface with zero curvature is the Euclidean plane.

Figure 4. Interpreting the Gaussian curvature’s value

Theorem 3.1 (Poincaré-Koebe Uniformisation Theorem). Let S be a compact, orientable
surface with a constant curvature and no boundary. Then there exists a covering space
M , with an appropriate distance function and a discrete group of isometries γ acting on
M , such that the surface S is homeomorphic to the space γ. Depending on the curvature
of S, the model space M is:

• A sphere, if S has a positive curvature,
• The Euclidean plane R2, if S has zero curvature,
• The hyperbolic plane H, if S has a negative curvature.

3.2. Geometric Interpretation of Curvature: Take a unit speed curve γ(t) in R2.
When we move from t to t + ∆t, the curve deviates from its tangent line at γ(t). The
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perpendicular distance from a point on the curve o this tangent line is given by
(γ(t+ ∆t) − γ(t)) · n,

where n is a unit vector perpendicular to the tangent vector γ̇(t) at the point γ(t). By
Taylor expansion, we have:

γ(t+ ∆t) = γ(t) + γ̇(t)∆t+ 1
2 γ̈(t)(∆t)2 +O((∆t)3).

Since γ̇(t) · n = 0 ( as n s normal to the tangent), the first-order term vanishes when
projected onto n, and we obtain the following approximation for small ∆t:

(γ(t+ ∆t) − γ(t)) · n ≈ 1
2 γ̈(t) · n(∆t)2.

This shows that the component of the second derivative in the direction normal to the
curve gives a measure of how much the curve deviates from its tangent line.
Definition 3.1. Let γ(t) : I → R3 be a curve parametrized by arc length s ∈ I. The
number |γ̈(t)| = κ(s) is called the curvature of γ at s.
3.3. Key properties of surfaces with Negative Curvature:

• Local saddle-shape behavior: A surface with negative Gaussian curvature is
locally non-convex and lies on both sides of tangent plane, exhibiting saddle-like
geometry. In other words, a surface with negative Gaussian Curvature bends
in opposite directions at a point (like a saddle) making the surface non-convex
and lies partly above and below its tangent plane.

• Thin Triangles Geodesic triangles on negatively curved surfaces satisfy a dis-
tance comparison of the form

d(z,m)2 ≤ 1
2

[
d(z, x)2 + d(z, y)2

]
− 1

4d(x, y)2,

where m is the midpoint of the side xy, indicating geometry of a "thin" triangle.

4. Classical Models of Hyperbolic Geometry

4.1. Hyperboloid Model. The hyperbolic model, also called the Minkowski model, is
an n-dimensional model in which each point in the hyperbolic space is shown as a point
on the upper sheet of the curved surface called a two-sheeted hyperboloid.
Definition 4.1. Let

H =
{
(x, y, z) ∈ R3

∣∣∣ x2 + y2 − z2 = −1
}

=
{
p ∈ R2,1

∣∣∣ ⟨p, p⟩ = −1
}

⊂ R2,1

be the two-sheeted hyperboloid in Minkowski space R2,1. Then the upper sheet of the
hyperboloid is defined as

H+ = H ∩ {z > 0}.
Metric: The induced metric on H+ comes from restricting the Minkowski inner product
to the tangent plane TpH+ = {p}⊥, resulting in a metric (positive-definite) on H+. In
coordinates, this Lorentzian metric is given by:

ds2 = dx2 + dy2 − dz2.

Distance Function: The distance between two points p, q ∈ H+ is defined using the
Lorentzian inner product: d(p, q) = arcosh (−⟨p, q⟩)

This reflects the hyperbolic angle between the vectors
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Figure 5. (a)The hyperboloid H in Rn,1 (b) Tangent space to the
hyperboloid at a point.

Geodesics: Geodesics in the hyperboloid model are curves that locally minimize dis-
tance. They correspond to the intersection of the hyperboloid with planes through the
origin:

γ = H+ ∩ P,

where P is a 2-dimensional linear subspace of R2,1. Each geodesic can be parametrized
as follows:

γ(t) = cosh(∥v∥t)p + sinh(∥v∥t)v,
for some p ∈ H+ and v ∈ TpH

+, the tangent space at p.

Figure 6. Geodesics on the Hyperboloid Model

Isometries: The isometry group of the hyperboloid model is the subgroup of Lorentz
transformations that preserve the hyperboloid and its upper sheet:

O+(2, 1),
i.e., the group of linear transformations preserving the Minkowski inner product and the
condition z > 0. The orientation-preserving subgroup is:

SO+(2, 1) = O0(2, 1).
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4.2. The Cayley–Klein Model (Projective Model). The Cayley–Klein model, also
known as the Projective Model, gives a projective representation of hyperbolic space. It
defines the notion of distance as

H2 = (x, y) : x2 + y2 < 1
Metric. The metric on the Klein disk is:

ds2 = dx2 + dy2

1 − x2 − y2 + (x dx+ y dy)2

(1 − x2 − y2)2 .

Figure 7. Cayley–Klein Model

Geodesics. Geodesics are staright chords of unit disk that minimise the hyperbolic dis-
tance.

Distance Formula. The distance from A to B is

d(A,B) = 1
2 log

(
|AX|
|BX|

: |AY |
|BY |

)

Figure 8. Distance between A and B in Cayley-Klein Model

Isometries. Isometries in the Cayley-Klein Model are projective transformations that
preserve the unit disk and the metric. They are represented as Möbius transformations
acting on homegeneous coordinates. Key isometries include translations, rotations and
reflections.
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4.3. The Beltrami–Klein Model (Klein Disk). The Beltrami–Klein model repre-
sents hyperbolic space as a subset of the Euclidean plane.
Definition 4.2.

{x2 + y2 − z2 < 0} ∩ {z = 1} ⊂ R3 ≈ D = {x2 + y2 < 1} ⊂ R2,

i.e., the open unit disk in R2.

Figure 9. Beltrami-Klein Model

Metric. The metric on the Klein disk is:

ds2 = dx2 + dy2

1 − x2 − y2 + (x dx+ y dy)2

(1 − x2 − y2)2 .

Distance Formula. The hyperbolic distance between two points p, q ∈ D is given by:

d(p, q) = arcosh
 1 − ⟨p, q⟩√

(1 − ∥p∥2)(1 − ∥q∥2)

 ,
where:

• ⟨p, q⟩ is the standard Euclidean dot product,
• ∥p∥ is the Euclidean norm of p.

Geodesics. Geodesics in the Beltrami–Klein model are Euclidean straight-line chords
inside the unit disk D.

Figure 10. Beltrami-Klein Model Geodesics
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Isometries. The isometry group is:

• PO(2, 1), acting by projective (fractional linear) transformations on R2,
• Orientation-preserving subgroup:PSO(2, 1).

4.4. Poincaré Disk Model.

Definition 4.3. The Poincaré disk model or the conformal disk model represents the
hyperbolic plane using the interior of the Euclidean unit circle:

D = {(x, y) ∈ R2 |x2 + y2 < 1}
and equivalently, as a subset of the complex plane:

D = {z ∈ C | |z| < 1} ⊂ C

Metric: The metric on the disk is given by:

ds2 = 4(dx2 + dy2)
(1 − x2 − y2)2 = 4|dz|2

(1 − |z|2)2

A hyperbolic line in the Poincaré disk model is either a Euclidean diameter of a unit
circle or a circular arc that intersects the boundary circle at right angles. In the figure
shown below, we have a hyperbolic line l and a point P such that many parallel lines to
l pass through P .

Figure 11. Parallel lines to hyperbolic line l and passing through point
P

Lemma 4.1. Every hyperbolic line in the Poincaré disk model is represented by one of
the following:

• Euclidean diameter of the unit disk that passes through point (c, d) ̸= (0, 0),
satisfying the Euclidean equation: dx = cy

• An arc of a Euclidean circle lying entirely within the unit disk and orthogonal
to its boundary, given by the equation:

x2 + y2 − 2ax− 2by + 1 = 0 where a2 + b2 > 1
The circle has Center: C = (a, b) and Radius: r =

√
a2 + b2 − 1
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Figure 12. Hyperbolic line

Distance Formula: The hyperbolic distance between two points P and Q in the Poincaré
disk is defined as:

d(P,Q) := cosh−1
(

1 + 2|PQ|2

(1 − |P |2)(1 − |Q|2)

)
where |PQ| denotes the Euclidean distance between P and Q, and |P |, |Q| denote the
Euclidean distance of P and Q from the origin, respectively.

Figure 13. Hyperbolic distance

Two hyperbolic segments are said to be congruent if they have the same hyperbolic
length. The angle between two hyperbolic rays is defined as the Euclidean angle between
their tangent lines at the point of intersection. Angles are congruent if they have the same
measure.

Lemma 4.2. The Hyperbolic distance from a point P to the origin in Poincaré disk
model is given by:

d(O,P ) = cosh−1
(

1 + |P |2

1 − |P |2

)
= ln

(
1 + |P |
1 − |P |

)
where |P | denotes the Euclidean distance of the P from the origin.

Geodesics. The geodesics in the Poincaré disk are all the Euclidean circle arcs (includ-
ing diameters) that intersect the boundary circle ∂D = {z ∈ C | |z| = 1} orthogonally.
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Figure 14. Geodesics on the Poincaré Disk Model

Isometries. The group of orientation-preserving isometries of the Poincaré disk is:
PSU(1, 1) = PU(1, 1)

acting by Möbius (fractional linear) transformations:

z 7→ az + b

b̄z + ā
, with |a|2 − |b|2 = 1

Alternatively, an isometry can be written as:

z 7→ u · z − a

1 − āz
, with |u| = 1, |a| < 1

Orientation-reversing isometries replace z with z̄.

4.5. Poincaré Half-Plane Model. The Poincaré half-plane model is one of the most
commonly used models of hyperbolic geometry. There are infinitely many parallel lines
to a given line l through a point P not on l.

Figure 15. Upper Half-Plane Model

Definition 4.4. Poincaré’s upper half-plane denoted by H2 represents the upper half of
the complex plane. It is described as:

H2 = {(x, y) ∈ R2 | y > 0} = {z ∈ C | Im(z) > 0}
The topology of H2 is induced from R2 where R2 is endowed with usual topology. Thus,
H2 inherits the subspace topology from R2 or, it is a subspace in R2.
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Metric. To define, Poincaré metric, a metric on this upper half-plane, H2, the line
element, ds2 is denoted as:

ds2 = dx2 + dy2

y2 = |dz|2

(Im(z))2

It becomes singular as one approaches the real axis.
Suppose, we have a piecewise differentiable path α(t) in H2 expressed as

α(t) = (x(t), y(t))
where x(t) and y(t) are functions of t, and α(t) lies in H2 so

α(t) = (x(t), y(t)) ∈ H2 ⊂ R2

Since α is piecewise differentiable, both x(t) and y(t) are also piecewise differentiable.
So, length of α, L(α) is

L(α) =
∫ b

a

√(
dx
dt

)2
+
(

dy
dt

)2

y(t) dt

Since x(t)andy(t) are piecewise differentiable , dx
dt

and dy
dt

exist, making the integral de-
fined, and giving formal definition of the length of path α(t) in hyperbolic geometry.
Consider path α(t) = (0, t) where t ranges from a to b so dx

dt
= 0 and dy

dt
= 1.

L(α) =
∫ b

a

dt

t
= ln

(
b

a

)
Thus, for a particular length α from (0, a) to (0, b) is given by ln(b/a). This length is
referred to as the hyperbolic length of α. Complex notation:

H2 = {z ∈ C : Im(z) > 0}

ds2 = |dz|2

(Im(z))2

This is another way to express Poincaré metric. Here, dz represents the differential of
the complex variable z, and it can be written as dz = dx+ idy , where z = x+ iy.

Figure 16. Geodesics on the Poincaré Half-Plane Model

Distance Formula. The distance between two points in the model is given by:

d(z1, z2) = arcosh
(

1 + |z1 − z2|2

2y1y2

)
= ln[z1, z2, J, I]

This formula depends on the vertical positions y1 and y2 of the points.
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Geodesics. Geodesics (shortest paths) are: Circular arcs orthogonal to the real axis,
including vertical straight lines.

Isometries. The group of distance-preserving transformations is:

z 7→ az + b

cz + d
, with a, b, c, d ∈ R, ad− bc = 1

These are fractional linear transformations from PSL(2,R). Orientation-reversing maps
are obtained by conjugation.

4.6. Comparison of the 5 models. The following figure shows the relation between
models in a hyperbolic space and the Geodesics in Poincaré, Klein and Hemisphere mod-
els.

Figure 17. (a)Relation between models of hyperbolic space and (b)
Geodesics in Poincaré ball, Klein ball, and hemisphere models.

5. Isometries and Distances in the Hyperboloid Model

5.1. Hyperbolic Distance: Let z and w, be two points belonging to the upper half-
plane H2. The hyperbolic distance between these two points, denoted by dH2(z, w), is
defined as the infimum (the greatest lower bound) of the lengths of all piecewise differ-
entiable paths γ connecting z and w. This is expressed as:

dH2(z, w) = inf{L(γ) | γ is a piecewise differentiable path from z to w
To tailor the distance in metric spaces, dH2 to the hyperbolic context, we need to verify
the three defining properties of a metric:

(1) Non-negativity and identity of indiscernibles: The distance between two
points z and w in the upper half-plane is non-negative, and dH2(z, w) = 0 if and
only if z = w. This ensures that distinct points always have a positive distance
between them.
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(2) Symmetry: The distance function satisfies symmetry, meaning the distance from
z to w is the same as the distance from w to z, or formally:

d2
H(z, w) = dH2(w, z).

(3) Triangle inequality: The hyperbolic distance satisfies the triangle inequality,
meaning that for any three points z, w, u in H2, we have:

dH2(z, w) ≤ dH2(z, u) + dH2(u,w).
This ensures that the direct distance between two points is always less than or

equal to the sum of distances through any intermediate point. These properties
together, prove that dH2 is a valid metric, turning the upper half-plane H2 into a
metric space.

The hyperbolic geometry described here violates the fifth postulate of Euclidean geom-
etry. Consider the upper half-plane model of hyperbolic geometry. Assume two points, z
and w, that lie on a vertical line in this upper half-plane. Join z and w by a vertical line
segment and call this path α. Compare it to any other path γ, where γ is also assumed
to be piecewise differentiable, then the length of α is always less than or equal to the
length of γ. In other words, α, the vertical line segment, is the shortest path between z
and w. This makes α the geodesic between these two points.

Figure 18. Shortest paths in hyperbolic geometry: vertical lines or por-
tions of semicircles with center on Real axis

Next, consider the case where z and w do not lie on a vertical line. Join z and w by
a Euclidean line segment and then draw the perpendicular bisector of this line that will
meet the real axis (the x-axis) at some point, which we call p. The distances from p and
z and from p and w will be equal in terms of Euclidean length. Using p as the center, we
can now draw a semicircle that passes through both z and w, with a radius equal to the
Euclidean distance from p and z.
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Figure 19. Violation of Fifth Axiom of Euclidean Geometry
In hyperbolic geometry, the geodesics are either vertical lines or arcs of semicircles cen-

tered on the real axis. These geodesics are the paths of the shortest distance between two
points in the upper half-plane. Now, let us explore a fascinating property of hyperbolic
geometry: if we take any point z in the upper half-plane and consider any geodesic that
does not pass through z, it turns out there are infinitely many other geodesics that pass
through z but do not intersect the original geodesic.

Geodesics are the paths of shortest distance between two points in the upper half-plane.
They are either vertical lines or arcs of semicircles centered on the real axis. Take any
point z in the upper half-plane and consider any geodesic that does not pass through z
, it turns out there are infinitely many other geodesics that pass through z but do not
intersect the original geodesic, l. If l is a vertical line, infinitely many semicircles centered
on the real axis pass through z without intersecting l In hyperbolic geometry, however,
there are infinitely many such lines, or in this case, geodesics, that do not intersect the
given geodesic l.

5.2. Isometry:

Definition 5.1. Let T : H2 → H2 be a map expressed as T (x, y) = u(x, y), v(x, y). For
T to be an isometry, it must preserve hyperbolic metric and the following must hold:

dx2 + dy2

y2 = du2 + dv2

v2

Example 1. Consider the map T : H2 → H2 defined by
T (x, y) = (x+ a, y)

where a is a real number. In this case, the map shifts x-coordinate by a constant a, while
leaving y-coordinate unchanged. So, we have

u(x, y) = x+ a and v(x, y) = y

For this transformation, the differentials du = dx and dv = dy, so
du2 + dv2

v2 = dx2 + dy2

y2

Hence, this transformation T preserves the hyperbolic metric, and we conclude that T is
an isometry.

Example 2. Consider the transformation T (x, y) defined by
T (x, y) = (λx, λy)

where λ is a positive real number. Under this transformation, the component functions
become

u(x, y) = λx and v(x, y) = λy
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Differentiating, we get:
du = λdx and dv = λdy

Substituting into the hyperbolic metric expression, we get:
du2 + dv2

v2 = λ2(dx2 + dy2)
λ2y2 = dx2 + dy2

y2

Thus, T preserves the hyperbolic distance and the transformation T is an isometry of
the upper-half plane.

The map T (x, y) = (x + a, y) performs horizontal translation and shifts each point
along x-axis and the map T (x, y) = (λx, λy) scales both coordinates by a positive scalar
λ, radially away from or towards the origin. Both transformations leave the hyperbolic
line element unchanged and are thus examples of isometries in the upper half-plane
model.

Figure 20. Transformation

Action of SL(2,R) on H2 : Examine the action of SL(2,R) on the upper half-plane,
H2. The SL(2,R) consists of all 2 × 2 real matrices of the form(

a b
c d

)
with ad− bc = 1,

where a, b, c, d ∈ R.
SL(2,R) × H2 → H2((
a b
c d

)
, z

)
→ az + b

cz + d

If z ∈ H2, then T (z) = az+b
cz+d

∈ H2, where a, b, c, d ∈ R and ad− bc = 1. The imaginary
part of T (z) can be expressed as:

Im(T (z)) = Im(z)
|cz + d|2

> 0,

which confirms that T (z) ∈ H2. The group SL(2,R) acts on H2 through Möbius trans-
formations. So, T is a homeomorphism and establishes a continuous one-to-one mapping
from H2 to itself.

Action of PSL(2,R) on H2 :

Definition 5.2. Let H2 = {z ∈ C | Im(z) > 0} denote the upper half plane. The group
PSL(2,R) is defined as the quotient group:

PSL(2,R) := SL(2,R)/{±I}
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where SL(2,R) is the group of all 2 × 2 real matrices with determinant 1, and I is the
identity matrix. We define a map

φ : PSL(2,R) → Isom+(H2)
by letting φ act on z ∈ H2 as a Möbius transformation:

φ

((
a b
c d

))
(z) = az + b

cz + d
.

Theorem 5.1. The map φ defines an injective group homeomorphism from PSL(2,R)
into the group of orientation-preserving isometries of H2

Proof. Let z = x+ iy ∈ H2, with y > 0. Consider the Möbius transformation:

T (z) = az + b

cz + d

where a, b, c, d) ∈ R and ad− bc = 1.
We first verify that T (z) ∈ H2. The imaginary part of T (z):

Im
(
az + b

cz + d

)
= Im(z)

|cz + d|2
.

Since Im(z) > 0 and |cz + d|2 > 0, it follows that Im(T (z) > 0, so the image remains in
H2. Now, we show that T preserves the hyperbolic metric. let γ(t) = x(t) + iy(t) for
t ∈ [a, b] be a piecewise differentiable path in H2. The hyperbolic length of γ is:

L(γ) =
∫ b

a

√
x′(t)2 + y′(t)2

y(t) dt.

The complex derivative of T is:

T ′(z) = 1
(cz + d)2 .

The imaginary part transforms as:

Im(T (z)) = Im(z)
|cz + d|2

.

So,
|T ′(z)| = Im(T (z))

Im(z) .

Therefore, for z = γ(t), we find:

|T ′(γ(t))| · |γ′(t)| = Im(T (γ(t)))
Im(γ(t)) · |γ′(t)|.

Thus, the length of the image path is:

L(T ◦ γ) =
∫ b

a

|T ′(γ(t))| · |γ′(t)|
Im(T (γ(t))) dt =

∫ b

a

|γ′(t)|
Im(γ(t)) dt = L(γ).

Hence, T preserves hyperbolic length and is an isometry of H2.
Because Möbius transformations with real coefficients and determinant one are known

to be orientation-preserving homeomorphisms of H2, and since the kernel of the map
SL(2,R) → Isom+(H2) is {±I}, the map φ is injective. Finally, since matrix multiplica-
tion corresponds to function composition of Möbius maps, φ is a group homeomorphism.
Thus, PSL(2,R) embeds as a subgroup of Isom+(H2).

Let us take:
SL(2,R) → Isom+(H2)
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a b
c d

)
7→
(
z 7→ az + b

cz + d

)
This transformation is a group homeomorphism, and let’s denote this map as ψ.

ψ

(
a b
c d

)
= Id Id(z) = z

az + b

cz + d
= z

az + b = cz2 + dz

cz2 + (d− a)z − b = 0 ∀ z ∈ H2)
This implies that the coefficients must vanish. Thus, we obtain c = b = 0, d = a. Also,
ad− bc = 1 implies a = ±1 and d = ±1. So,(

a b
c d

)
=
(

1 0
0 1

)
or

(
−1 0
0 −1

)
Hence, ker ψ is the subgroup consisting of these two matrices, ±Id. □

Conclusion. We define the quotient map from PSL(2,R), as ψ, alongside another
map φ. Notably, these two maps commuteand on composing them, we find that q = ψ.

So, we can assert that φ is, in fact, a monomorphism—an injective homeomorphism.
This injectivity implies that PSL(2,R) is isomorphic to a subgroup of the isometry group
of the upper half-plane, Isom+(H2).

6. Exploring Mobius Transformations and the Geodesics of the Upper
Half-Plane

Definition 6.1. A Möbius transformation is a mapping, T : C → C of the form,

T (z) = az + b

cz + d

where a, b, c, d ∈ C, and ad − bc ̸= 0. The condition ad − bc ̸= 0 ensures that the
transformation is non-degenerate(i.e. invertible).

Proof. Let S(z) = dz − b

−cz + a
. S is a Möbius transformation since ad− bc ̸= 0 holds.

T ◦ S(z) = Id(z), Id(z) = z

and
S ◦ T = Id

Therefore, S is inverse of T . T is a bijection. If S, T are Möbius transformations then S◦T
is again a Möbius transformation. This proves that the set of all Möbius transformations
forms a group under the operation of composition.
This definition of Möbius transformations can be extended to C ∪ {∞}, where C ∪ ∞
represents the one-point compactification of the complex plane C.

C∞ = C ∪ {∞} one-point compactification of C
The open sets in this one-point compactification are the open sets of C, along with the
set V = (C \K) ∪ ∞, where K is a closed and compact subset of C. These are the open
sets in C∞ . We can extend the definition of a Möbius transformation to C∞, or C ∪ ∞.
For a Möbius transformation T , we have:

T (z) = az + b

cz + d
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For z ∈ C, where a, b, c, d are complex numbers, and ad − bc ̸= 0. Additionally, the
transformation is defined as:

T (∞) = a

c
T : C∞ 7→ C∞

T

(
−d
c

)
= ∞

□

Example 3. Translation:
T (z) = z + a

where a ∈ C

Example 4. Dilation:
Tλ(z) = λz

where λ ̸= 0

Example 5. Rotation:
Rθ(z) = eiθz

where θ is a real number, giving a rotation about the origin.

Example 6. Inversion:
I(z) = 1

z
which reflects the point across the unit circle.

Proposition 6.1. A Möbius transformation can be expressed as a composition of trans-
lations, dilations, and inversions.

Proof. Let S(z) = az+b
cz+d

, where ad− bc ̸= 0.
Case 1: Suppose c = 0
In this case, the transformation simplifies to:

S(z) = a

d
z + b

d
Define

S2(z) = a

d
z, S1(z) = z + b

d
S(z) = S2 ◦ S1(z)

Case 2: Case 2: Suppose c ̸= 0 In this case, we perform the following steps: First, we
apply the translation, then inversion, then dilation followed by another translation:

S1(z) = z + d

c
, S2 = 1

z

S3(z) = bc− ad

c2 z, S4(z) = z + a

c
Thus, the original transformation S(z) can be written as:

S(z) = S4 ◦ S3 ◦ S2 ◦ S1

□

7. Applications of Hyperbolic Geometry

Hyperbolic geometry has diverse applications in the field of mathematics, and mul-
tiple modern scientific domains. In Special Relativity, the spacetime geometry can be
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interpreted using hyperbolic models. Hyperbolic geometry has greatly influenced art
and architecture, through its distinct aesthetic properties and visually striking nature
of hyperbolic forms. The Poincaré Disk Model provides a framework for hyperbolic tes-
sellations, forming visually appealing and intricate patterns. Modern architects employ
hyperbolic geometry to create visually striking buildings such as The Gherkin in London,
and the Beijing National Aquatic Center highlighting that hyperbolic designs optimize
form and function in construction.
Hyperbolic geometry has become a powerful tool in computer science. It is used to analyze
and visualize complex networks and data structures. It has enhanced machine learning
tasks, thereby providing high-dimensional data while preserving proximity relationships
and is valuable in graph-based algorithms, clustering etc., where Euclid methods fail.
Hyperbolic geometry and number theory concepts together have led to an improvement in
cryptography and algorithmic designs. Mathematical properties of hyperbolic geometry
achieve secure encryption and decryption in elliptic curve cryptography (ECC) processes.
These connections demonstrate how abstract geometric ideas can drive practical advance-
ment in cybersecurity and computational number theory. In theoretical physics, it serves

Figure 21. Tessellations by M.C. Escher, (a) Circle Limit IV (Heaven
and Hell), 1960. (b) Circle Limit III, 1959.

as a foundational network for studying curvature, symmetry, and geometric transforma-
tions. Hyperbolic geometry is also used to investigate minimal surfaces, curvature flows,
and variational problems. It also excels in educational field making abstract mathemati-
cal concepts tangible through interactive tools. By integrating hyperbolic geometry into
curricula, educators foster deeper spatial reasoning, preparing students to tackle modern
challenges in data science, physics and beyond.

8. Conclusion

Hyperbolic geometry, a non-Euclidean Geometry arises by relaxing either the metric
requirements or replacing the parallel postulate with an alternative. Its dismissal of
the parallel postulate leads to a consistent geometric system in which infinite lines pass
through a point and never intersect a given line.

With the help of rigorous models such as the Poincaré disk, the hyperboloid model, the
Klein model and the Poincaré half plane model, we understood not only the behaviour of
the negatively curved surfaces but could also validate that Hyperbolic geometry exists.
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We could understand the metrics, geodesics, hyperbolic distance and isometry in each of
the models. Beyond these theoretical implications, hyperbolic geometry plays an integral
role in real-life applications in cosmology, physics, neural networks, and biology. It even
finds expression in the intricate art by M.C Escher where symmetry and tessellations
reflect hyperbolic space.

In conclusion, hyperbolic geometry extends the boundaries of spatial understanding.
It challenges the old assumptions space, angle and parallelism while offering tools for
innovation in science, technology, and arts.
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