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1. Introduction

In Lie Theory, we would like to prove things concerning groups using tools from analysis.
The exponential function, which is of great importance in analysis, can be generalized so as
to make sense for matrices and it provides the link between lie algebras and matrix groups
(every matrix group is a Lie group, and although the converse is false, many interesting
results can be arrived at just by considering matrix groups). Lie theory is a subject where
the study of examples is very important. Accordingly, we shall give examples when the
occasions to do so arise.
After putting metrics on our matrices in Section 2, we define matrix groups in Section 3. We
show in Section 4 how the exponential function is a locally invertible map that sends matrices
to invertible matrices, and in Section 5 we demonstrate how the exp function provides the link
between matrix groups and their Lie algebras. In Section 6, we explore smooth manifolds,
their tangent spaces, and derivatives of smooth maps between them. Finally, in Section 7
we define Lie groups and explore their connections to Lie algebras and matrix groups.

2. Preliminary Notions

Throughout the entire paper, K ∈ {R,C}. We will also freely use the term ‘small’ (re-
spectively ‘large’) to mean ‘sufficiently small’ (‘sufficiently large’) whenever needed. We will
denote the zero n×n matrix by O. Also, the entry of a matrix A situated at the intersection
of the i-th row and j-th column will be denoted by Aij.
Let Mn(K) denote the set of all n × n matrices over K. Then, matrix addition gives an
abelian group structure on Mn(K) and Mn(K) becomes an n2-dimensional vector space over
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K with scalar multiplication. Now a norm on a vector space naturally induces a metric
which, in turn, induces a topology. Turning our vector space into a topological space enables
us to do analysis on it. Therefore we are going to turn Mn(K) into a normed vector space.
Now it turns out that the metric topology we wish to induce on Mn(K), which is a vector
space over K ∈ {R,C} of finite dimension n2, does not depend on our choice of norm (i.e.
the topologies induced are the same, in the sense that the open subsets of Mn(K) are the
same in each instance), thanks to the following theorem:

Theorem 2.1. If we have two norms ∥ · ∥ and ∥ · ∥′ over a finite dimensional vector space
V over R or C, then they define equivalent topologies. In particular, there exist constants
A,B > 0 such that A∥v∥′ ≤ ∥v∥ ≤ B∥v∥′ for all v ∈ V .

For the proof the reader is referred to [Con25].

Remark 2.2. By the last theorem we do not need to specify the topology when speaking
about convergence of sequences in Mn(K).

To define a convenient norm on Mn(K), we first define the usual norm | · | on K as follows:

for x⃗ =

x1...
xn

 ∈ Kn, we define |x⃗| =
√

|x1|2 + · · ·+ |xn|2. We now use this norm on Kn to

define a norm ∥ · ∥ on Mn(K) as follows: given A ∈Mn(K), we define ∥A∥ = maxSA, called

the operator norm, where SA = { |Ax⃗|
|x⃗| : 0⃗ ̸= x⃗ ∈ Kn} = {|Ax⃗| : x⃗ ∈ Kn, |x⃗| = 1}. Of course, we

must now that that this is well-defined and that it is indeed a norm. Since {x⃗ ∈ Kn : |x⃗| = 1}
is a compact subset of Kn, therefore its image under the linear transformation A is also
compact, and therefore SA = {|Ax⃗| : |x⃗ ∈ Kn, |x⃗| = 1} is a compact and so it has a
maximum value, showing that ∥A∥ is indeed well-defined. Next we show that it is indeed a
norm.

Proposition 2.3. The operator norm is a norm.

Proof. Since ∥A∥ = max{|Ax⃗| : x⃗ ∈ Kn, |x⃗| = 1} is the maximum of a set of nonnegative
numbers, we have ∥A∥ ≥ 0. Secondly, the maximum is 0 if and only if |Ax⃗| = 0 for all |x⃗|
which occurs if and only if A = 0. Next let λ ∈ K. Then ∥λA∥ = max{|λAx⃗| : x⃗ ∈ Kn, |x⃗| =
1} = |λ|max{|Ax⃗| : x⃗ ∈ Kn, |x⃗| = 1} = |λ|∥A∥. Finally, ∥A + B∥ = max{|(A + B)x⃗| :
x⃗ ∈ Kn, |x⃗| = 1} ≤ max{|Ax⃗| + |Bx⃗| : x⃗ ∈ Kn, |x⃗| = 1} ≤ max{|Ax⃗| : |x⃗ ∈ Kn, |x⃗| =
1}+max{|Bx⃗| : |x⃗ ∈ Kn, |x⃗| = 1} = ∥A∥+ ∥B∥. ■

We prove one more property of the operator norm ∥ · ∥ before moving on.

Proposition 2.4. For A,B ∈Mn(K), we have ∥AB∥ ≤ ∥A∥∥B∥.

Proof. Since A = max{ |Ax⃗|
|x⃗| : 0⃗ ̸= x⃗ ∈ Kn}, we have that |Ax⃗| ≤ |x⃗|∥A∥ for all 0⃗ ̸= x⃗ ∈ Kn.

Therefore |ABx⃗| ≤ |Bx⃗|∥A∥. Also |Bx⃗| ≤ |x⃗|∥B∥. Therefore |ABx⃗| ≤ ∥A∥∥B∥|x⃗|, and in
particular ∥AB∥ ≤ ∥A∥∥B∥, as required. ■

Therefore, we have successfully turned Mn(K) into a normed vector space. Hence, it is
now a metric space under the naturally induced metric ρ :Mn(K)×Mn(K) → R≥0 defined by
ρ(A,B) = ∥A− B∥ for every A,B ∈Mn(K). This metric now naturally induces a topology
on Mn(K). We can therefore now speak of open and closed sets of Mn(K), convergence
of sequences in Mn(K), as well as continuous functions f : Y ⊆ Mn(K) → X, where X
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is a topological space and the subset Y ⊆ Mn(K) has the subspace topology, in the usual
manner. We will now give certain important examples of continuous functions.

Proposition 2.5. The coordinate function coordrs : Mn(K) → K defined by coordrs(A) =
Ars is a continuous function.

Proof. To simplify notation, we consider the case n = 2 only, as other cases are exactly
analogous, and we also consider only coord11. We must show that given any ϵ > 0, there
exists δ > 0 such that |A′

11 − A| < ϵ whenever ∥A′ − A∥ < δ. We claim that we can take

ϵ = δ. This is because |A11| ≤
√
|A11|2 + |A12|2 =

∣∣∣∣(A1

A2

)∣∣∣∣ = ∣∣∣∣A(10
)∣∣∣∣ ≤ ∥A∥, and so

|A′
11 − A11| ≤ ∥A′ − A∥. ■

As a first corollary of the fact that |Aij| ≤ ∥A∥, it follows that:

Corollary 2.6. If f : Kn2 → K is a continuous function, then the function F :Mn(K) → K
defined by F (A) = f((Aij)1≤i,j≤n) is continuous.

Next, since polynomials f : Cn → C over C are continuous functions, it follows that:

Corollary 2.7. The determinant det : Mn(K) → K and the trace Tr : Mn(K) → K are
continuous functions.

So far we have proved that |Aij| ≤ ∥A∥. But we can also give an upper bound on ∥A∥.
Proposition 2.8. For A ∈Mn(K), we have

∥A∥ ≤
n∑

i,j=1

|Aij|.

Proof. Again we let n = 2 for simplifying notation but the general case is exactly analogous.

Let x⃗ ∈ K2 be such that |x⃗| = 1 and let A =

(
A11 A12

A21 A22

)
. Then

Ax⃗ =

∣∣∣∣x1A(10
)
+ x2A

(
0
1

)∣∣∣∣ ≤ ∣∣∣∣x1A(10
)∣∣∣∣+ ∣∣∣∣x2A(01

)∣∣∣∣ ≤ ∣∣∣∣A(10
)∣∣∣∣+ ∣∣∣∣A(01

)∣∣∣∣
=

∣∣∣∣(A11

A21

)∣∣∣∣+ ∣∣∣∣(A12

A22

)∣∣∣∣ =√|A11|2 + |A12|2 +
√
|A21|2 + |A22|2

≤ |A11|+ |A12|+ |A21|+ |A22|
Since ∥A∥ = max{|Ax⃗| : x⃗ ∈ Kn, |x⃗| = 1}, it follows that ∥A∥ ≤ |A11| + |A12| + |A21| +
|A22|. ■

Next we prove that Mn(K) is a complete space with respect to the norm ∥ · ∥.
Theorem 2.9. Every Cauchy sequence {Ar}r≥0 in Mn(K) has a unique limit limr→∞Ar in
Mn(K). Furthermore, (limr→∞Ar)ij = limr→∞(Ar)ij.

Proof. In metric spaces, convergent sequences converge to unique limits. We have already
shown that |Aij| ≤ ∥A∥ and so it follows that {(Ar)ij}r≥0 is a Cauchy sequence of complex
numbers and so limr→∞(Ar)ij is well-defined. What we remain to show therefore is that
{Ar}r≥0 converges to the matrix A for which Aij = limr→∞(Ar)ij. For this, we consider the
sequence {Ar −A}r≥0. It follows from Proposition 2.8 that, as r → ∞, we have ∥Ar −A∥ ≤∑n

i,j=1 |(Ar)ij − Aij| → 0 and so Ar → A as required. ■
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We next define two important groups.

Definition 2.10. The general linear group GLn(K) ⊆ Mn(K) is defined as the set {A ∈
Mn(K) : detA ̸= 0}. The special linear group SLn(K) ⊆ GLn(K) is the set {A ∈ Mn(K) :
detA = 1}.

The reader will have no difficulty ascertaining that these are indeed groups with respect
to the usual matrix multiplication.

Proposition 2.11. GLn(K) ⊆ Mn(K) is an open subset and SLn(K) ⊆ Mn(K) is a closed
subset.

Proof. We have already seen in Corollary 2.7 that the determinant is a continuous function.
we have GLn(K) = Mn(K)\ det−1{0}. But {0} is a closed subset of K. Hence det−1{0} is
closed and therefore GLn(K) is open. Similarly SLn(K) = det−1{1} is closed inMn(K). Also
since the complement of SLn(K) in GLn(K) is given by (Mn(K)\ det−1{1}) ∩ GLn(K) and
Mn(K)\ det−1{1} is open in Mn(K), it follows that SLn(K) is closed in GLn(K). ■

We next define a new norm on Mn(K).

Definition 2.12 (Hilbert-Schmidt norm). For A ∈MK we define the norm

∥A∥HS =

√ ∑
i≤i,j≤n

|Aij|2.

Remark 2.13. ∥A∥HS is just the usual norm on Kn2
. It follows, in view of Theorem 2.1,

that continuity of a function f : Mm(K) → Mn(K) can be regarded as continuity in f :

Km2 → Kn2
. In particular, f is continuous if and only if each of its component functions is

continuous.

We next give some terminology that will be used to define topological groups shortly.

Definition 2.14. We defined the addition add : Mn(K) ×Mn(K) → Mn(K), multiplica-
tion mult : Mn(K) ×Mn(K) → Mn(K) and inversion inv : GLn(K) → GLn(K) maps as:
add(X, Y ) = X + Y,mult(X, Y ) = XY and inv(A) = A−1.

We can put the product topology as usual on Mn(K) × Mn(K) by defining the metric
d((X1, Y1), (X2, Y2)) = ∥X1 −X2∥+ ∥Y1 − Y2∥ on it. We can now prove the following:

Proposition 2.15. The maps add,mult and inv are continuous.

Proof. Continuity for add and mult follows because the entries of the output are polynomial
functions of the entries of the inputs. Similarly, the inverse map is continuous since each
entry of A−1 has the form (polynomial in the entries Aij)\ detA and since this is a continuous
function of the entries of A it is a continuous function of A. ■

We now define a topological group.

Definition 2.16 (Topological Group). Let G be a topological space and view G×G as the
product space. Suppose that G is also a group with multiplication map mult : G×G → G
and inverse map inv : G→ G. Then G is a topological group if mult and inv are continuous.

For example, it trivially follows that any group G equipped with the discrete topology is
a topological group. By what has been shown above, the following theorem automatically
follows:

Theorem 2.17. Each of the groups GLn(K) and SLn(K) is a topological group.
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3. Matrix Groups

We are now in a position to define matrix groups.

Definition 3.1 (Matrix Group). A subgroup G ⊆ GLn(K) which is also a closed subspace
is a matrix group over K or a K-matrix group. In order to emphasize the value of n , we will
sometimes say that G is a matrix subgroup of GLn(K).

We have the following proposition.

Proposition 3.2. Let G ⊆ GLn(K) be a matrix subgroup. Then a closed subgroup H ⊆ G
is a matrix subgroup H of GLn(K).

Proof. Since we have a metric topology on Mn(K), we only have to show that H is closed in
GLN(K). Every sequence {An}n≥0 in H with a limit in GLn(K) actually has its limit in G
since An ∈ H ⊆ G for every n and G is closed in GLn(K) by definition of a matrix group.
Since H is closed in G by hypothesis, this means that {An}n≥0 has a imit in H. So H is
closed in GLn(K), as desired. ■

We now give another definition.

Definition 3.3. A closed subgroup H ⊆ G of a matrix group G is called a matrix subgroup
of G.

Then a straightforward generalization of the last definition is:

Proposition 3.4. Let G be a matrix group and let K ⊆ G be a matrix subgroup of G. Then
if H ⊆ K is a matrix subgroup of K, H is also a matrix subgroup of G.

Example. SLn(K) is a matrix group. This is because we have already shown previously that
SLn(K) ⊆ GLn(K) is closed in GLn(K).

Example. The orthogonal group O(n) = {A ∈ GLn(K) : ATA = I} is a matrix subgroup of
GLn(K).

4. The Exponential Function

The exponential function is very important and will enable us to link a matrix group with
its Lie algebra (a term which will be defined later).

Definition 4.1. The exponential function on matrices are defined as follows:

exp(A) =
∑
n≥0

1

n!
An = I + A+

1

2!
A2 +

1

3!
A3 + · · · .

We will prove that the series for exp(A) converges for all A ∈ Mn(K). We note first that∑∞
n=1An converges if its partial sums converge (that is the definition of convergence we are

employing). We also say that it is absolutely convergent if
∑∞

n=1 ∥An∥ converges in the usual
way. Now we have the following proposition:

Proposition 4.2. Every absolutely convergent series in Mn(K) is convergent.
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Proof. Suppose that
∑∞

n=1 ∥An∥ is convergent. Then the sequence of partial sums is a Cauchy
sequence and so, given any ϵ > 0, we can find some N for which

∑∞
k=N+1 ∥Ak∥ < ϵ. Now let

Sm =
∑m

k=1Ak be the m-th partial sum. Then whenever m > n > N we have

∥Sm − Sn∥ =

∥∥∥∥∥
m∑
k=1

Am −
n∑

k=1

Ak

∥∥∥∥∥ =

∥∥∥∥∥
m∑

k=n+1

Ak

∥∥∥∥∥ ≤
m∑

n+1

∥Ak∥ ≤
∞∑

k=N+1

∥Ak∥ < ϵ.

The partial sums Sm therefore form a Cauchy sequence and therefore the series converges
by Theorem 2.9. ■

Now we prove that exp(A) converges for all A ∈Mn(K).

Proposition 4.3. The series for exp(A) converges for all A ∈ Mn(K) and furthermore
exp(A) is a continuous function.

Proof. From Proposition 2.4, it follows that ∥An∥ ≤ ∥A∥n for nonnegative integers n. Hence,

∞∑
n=0

∥∥∥∥An

n!

∥∥∥∥ ≤
∞∑
n=0

∥A∥n

n!
= exp(∥A∥),

which is absolutely convergent. Hence, by Proposition 4.2, the infinite series for exp(A) is
convergent. Continuity follows by uniform convergence on bounded sets of matrices and the
fact that the partial sums are continuous. ■

We have the following proposition:

Proposition 4.4. (1) If A,B ∈Mn(K) commute then exp(A+B) = exp(A) exp(B).
(2) exp(A) ∈ GLn(K) and exp(A)−1 = exp(−A).

Proof. (1) The absolute convergence of exp enables us to make use of the Cauchy product
formula. We have

exp(A) exp(B) =
∑
m≥0

1

m!
Am
∑
n≥0

1

n!
Bn

=
∑
m

∑
n

1

m!n!
AmBn

=
∑
k≥0

k∑
m=0

1

m!(k −m)!
AmBk−m

=
∑
k≥0

1

k!

k∑
m=0

k!

m!(k −m)!
AmBk−m

=
∑
k≥0

1

k!
(A+B)k

= exp(A+B),

where the use of the Binomial Theorem in the penultimate step has crucially relied
on the assumption that A and B commute.
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(2) Since A and −A commute, the previous part implies that

exp(A) exp(−A) = exp(A− A) = exp(O) = I +O +
1

2!
O + · · · = I.

■

Remark 4.5. In the previous proposition. it is crucially important that A commutes with
B, i.e. that AB − BA = 0, for the result to hold true. We would like to understand
what happens when A and B do not necessarily commute. This will lead us to the Baker-
Campbell-Hausdorff theorem and will provide one motivation for defining the Lie Bracket.
Before this we have to define the logarithm function.

We are going to show that the exponential function is locally invertible near the origin
and this will enable us to define the logarithm function. We first recall the Inverse Function
Theorem from Multivariable Calculus.

Theorem 4.6 (Inverse Function Theorem). Suppose F : RN → RN , given in terms of its
components as

F (x1, . . . , xN) = (F1(x1, . . . , xN), F2(x1, . . . , xn), . . . , FN(x1, . . . , xN)),

is a differentiable map such that its derivative D0F at the origin, given by the Jacobian
matrix as

D0F =


∂F
∂x1

(0) . . . ∂F1

∂xN
(0)

...
. . .

...
∂Fn

∂x1
(0) . . . ∂FN

∂xN
(0)

 ,

is invertible (i.e. has nonzero determinant). Then if y = F (0) there exists neighborhoods
0 ∈ U ⊆ Rn and y ∈ V ⊆ RN such that

F|V :U→V

is bijective and F−1 is differentiable. Furthermore,

Dy(F
−1) = (DOF )

−1.

(In other words, F is locally invertible near the origin.)

We can now prove the following theorem:

Theorem 4.7. There exist neighborhoods O ∈ U ⊆ Mn(K) and I ∈ V ⊆ GLn(K) such that
exp|U : U → V is bijective (in particular, it has an inverse. The inverse is called log).

Proof. We can think of the exponential map Mn(K) → GLn(K) as a function from Rn2 →
Rn2

. We let A ∈Mn(K) and denote

A =

A11 . . . A1n
...

. . .
...

An1 . . . Ann

 .

and then, viewing the exponential function as a function of the n2 independent variables
A11, . . . , Ann, we write

exp(A) =

(exp(A))11 . . . (exp(A))1n
...

. . .
...

(exp(A))n1 . . . (exp(A))nn

 .
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We then have the Jacobian matrix

DO(exp) =


∂(exp(A))11

∂A11
(0) . . . ∂(exp(A))11

∂Ann
(0)

...
. . .

...
∂(exp(A))nn

∂A11
(0) . . . ∂(exp(A))nn

∂Ann
(0)

 .

Now recall that we have(exp(A))11 . . . (exp(A))1n
...

. . .
...

(exp(A))n1 . . . (exp(A))nn

 =

1 . . . 0
...

. . .
...

0 . . . 1

+

A11 . . . A1n
...

. . .
...

An1 . . . Ann

+
1

2!

A11 . . . A1n
...

. . .
...

An1 . . . Ann

2

+. . . .

Since we are going to differentiate each entry and ultimately put A1 = · · · = Ann, we
therefore have

DO(exp) =


∂A11

∂A11
(0) . . . ∂A11

∂Ann
(0)

...
. . .

...
∂(Ann

∂A11
(0) . . . ∂(Ann

∂Ann
(0)

 =

1 . . . 0
...

. . .
...

0 . . . 1

 .

This is invertible. We are now able to use the inverse function theorem near the origin to
complete the proof. ■

We now show the following:

Proposition 4.8. For ∥A∥ < 1, we have

log (I + A) = A− 1

2
A2 +

1

3
A3 − 1

4
A4 + . . . .

Proof. That the infinite series converges when ∥A∥ < 1 (and is continuous then) is proved
in a similar way to how we proved the analogous results for exp above. By actual formal
manipulations, we can show that

exp

(
∞∑
n=1

(−1)n−1

n
(A− I)n

)
=

∞∑
m=0

1

m!

(
∞∑
n=1

(−1)n−1

n
(A− I)n

)m

= A

and similarly that
∞∑
n=1

(−1)n−1

n

(
∞∑

m=1

1

m!
Am

)
= A.

We now have the required result. ■

It turns out that exp and log are infinitely differentiable, but we will just assume this
result and omit the proof for brevity. We have the following result which is analogous to the
the case with complex numbers:

Proposition 4.9.

d

dt
(exp(tA)) = A exp(At).
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Proof.

d

dt
(exp(tA)) =

d

dt

∑
n≥0

1

n!
(tA)n

=
∑
n≥0

1

n!

d

dt
(tnAn)

=
∑
n≥0

1

n!
ntn−1An

= A

∞∑
n=1

tn−1

(n− 1)!
An−1

= A
∞∑
n=0

1

n!
(tA)n

= A exp(tA).

■

We recall that if A and B commute then exp(A) exp(B) = exp(A + B). What happens
when AB ̸= BA? We will use the logarithm to explain what happens. For small A and B
we have

log exp(A) exp(B) = log

((
∞∑
n=0

1

n!
An

)(
∞∑

m=0

1

m!
Bm

))

= log

(
1 + A+B + AB +

A2

2
+
B2

2
+
AB2

2
+
A2B

2
+ . . .

)
= X − X2

2
+
X3

2
− . . . (where X = A+B + AB +

1

2
A2 +

1

2
B2 + . . . )

= A+B + AB +
1

2
A2 +

1

2
B2 − 1

2
(A2 + AB +BA+B2 + . . . ) + . . .

= A+B +
1

2
(AB −BA) + . . .

The term AB − BA is denoted by [A,B] and is called the commutator bracket of A and
B. It measures the extent to which A and B fail to be commutative. The Baker-Campbell
Hausdorff formula, which we will not prove here, states that the third, fourth, . . . correction
terms in the expansion log((exp(A) exp(B))) = A + B + 1

2
[A,B] . . . can all be expressed in

terms of A,B and [A,B], and even gives an explicitly formula for these: (which admittedly
is not particularly illuminating)

Theorem 4.10 (Baker-Campbell-Hausdorff Formula). For small A and B we have

log((exp(A) exp(B))) =
∞∑
n=1

(−1)n−1

n

∑
r1+s1>0

...
rn+sn>0

[A(r1)B(s1)A(r2)B(s2) . . . A(rn)B(sn) . . . . . . ]∑n
j=1(rj + sj)

∏n
i=1 ri!si!

.

Here [M (k)A] = [M, [M (k−1)A]] with [M (1)A] = [M,A].
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For example, the cubic correction term is

1

12
[A, [A,B]]− 1

12
[B, [A,B]].

The main point of the Baker-Campbell-Hausdorff formula is that the group multiplication
between the invertible matrices expA and expB in GLn(K) is determined entirely by the
bracket operation on A and B as matrices in Mn(K).
We give now an illustrative example of the exponential function in action:

Example. Let A =

(
0 −θ
θ 0

)
. Then it is easy to verify that

An =



(
0 −θn

θn 0

)
n ≡ 1 mod 4(

−θn 0

0 −θn

)
n ≡ 2 mod 4(

0 θn

−θn 0

)
n ≡ 3 mod 4(

θn 0

0 θn

)
n ≡ 0 mod 4

so that

exp(A) =

(
cos θ − sin θ
sin θ cos θ

)
,

a 2D-rotation matrix by an angle of θ radians clockwise. Notice we started with an anti-
symmetric A and exponentiated it to obtain a rotation matrix. Later on we will see that
any antisymmetric matrix, when exponentiated gives a rotation matrix.

5. Lie Algebras

So far we have defined an exponential map exp : Mn(K) → GL(n,K)) such that exp is
locally invertible and such that expA expB can be determined entirely by A,B, and [, ]. Our
goal is to construct a replacement g forMn(K), as well as a replacement G for GL(n,K), and
an exponential map exp : g → G such that exp has similar properties of local invertibility
and such that multiplication of exponentials is determined entirely by a bracket operation on
elements of g. To achieve this, we must introduce an axiomatic definition of a Lie algebra:

Definition 5.1 (Lie Algebra). A K−Lie algebra g over K is a vector space over K equipped
with a bilinear map [, ] : g× g → g called the Lie bracket, such that for all x, y, z ∈ g,

[x, y] = −[y, x], (Skew symmetry)

[x, [y, z]] + [y, [x, y]] + [z, [x, y]] = 0. (Jacobi Identity)

Here K−bilinear means that for all x1, x2, x, y1, y2, y ∈ a and all r1, r2, r, s1, s2, s ∈ K,

[r1x1 + r2x2, y] = r1[x1, y] + r2[x2, y],

[x, s1y1 + s2y2] = s1[x, y1] + s2[x, y2].

Example. Taking K = R and g = R3, and taking the Lie bracket to be the cross product
[x, y] = x× y gives a Lie Algebra.
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Definition 5.2 (Commutator bracket). Given two matrices A,B ∈ Mn(K), we define the
commutator bracket as [A,B] = AB −BA.

Proposition 5.3. The commutator bracket is a Lie bracket.

Proof. We proceed to directly verify that the commutator bracket satisfies all the properties
of a Lie bracket. Let us denote arbitrary scalars by c1, c2 ∈ K and arbitrary matrices by
A,B,C ∈Mn(K). First we check K−bilinearity. We have

[c1A+ c2B,C] = (c1A+ c2B)C − C(c1A+ c2B)

= c1(AC − CA) + c2(BC − CB)

= c1[A,C] + c2[B,C].

Similarly we verify that [C, c1A+ c2B] = c1[C,A] + c2[C,B]. The skew symmetry is clear

[A,B] = AB −BA = −(BA− AB) = −[B,A].

Finally we verify the Jacobi identity. We have

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = [A,BC − CB] + [B,CA− AC] + [C,AB −BA]

= ABC − ACB −BCA+ CBA+BCA−BAC

− CAB + ACB + CAB − CBA− ABC +BAC

= 0

as desired. ■

Corollary 5.4. The K-vector space Mn(K) with the commutator bracket is a K-Lie algebra.

We will now define Lie subalgebras.

Definition 5.5 (Lie subalgebras). A Lie subalgebra is a vector subspace h ⊆ g such that for
all A,B ∈ h we have [A,B] ∈ h.

We now define paths, curves and tangent spaces.

Definition 5.6 (Path). Let X be a topological space, and x0, x1 ∈ X. Then a path from x0
to x1 is a continuous function γ : [0, 1] → X such that γ(0) : [0, 1] → X such that γ(0) = x0
and γ(1) = x1.

Definition 5.7 (Derivatives). α′(t) is defined as

α′(t) = lim
s→t

α(s)− α(t)

s− t
∈Mn(K),

provided this limit exists.

Definition 5.8 (Differentiable Curve). A differentiable curve in Mn(K) is a function

α : (a, b) →Mn(K)

for which the derivative α′(t) exists for all t ∈ (a, b).

Definition 5.9 (Tangent Spaces). The tangent space to G at U ∈ G is

TUG = {γ′(0) ∈Mn(k) : γ a differentiable curve in G with γ(0) = U}.

We are now going to prove the following important theorem:
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Theorem 5.10. Let G be a matrix subgroup of GLn(K). Define g := {A ∈ Mn(K) :
exp(tA) ∈ G,∀t ∈ R}. Then

(1) g is a vector subspace of Mn(K).
(2) If A,B ∈ g, then [A,B] ∈ g.
(3) g is the tangent space of G at I.
(4) exp : g → G is locally invertible.

In particular, g is a Lie algebra and is called the Lie algebra of G.

In order to prove the first two claims, we will first prove the third. Before we can do these
things we need to introduce an important lemma.

Lemma 5.11. If γ⃗(s) is a path in the matrix group G such that γ⃗(0) = I then ⃗̇γ(0) ∈ g
where g := {A ∈Mn(K) : exp(tA) ∈ G∀t ∈ R}.

Proof. We must prove that exp(t⃗̇γ(0)) ∈ G for all t. We claim that it suffices to show

that exp (⃗̇γ(0)) ∈ G; for supposing that exp (⃗̇γ(0)) ∈ G whenever γ satisfies the hypotheses
of the lemma, then when we put γ(st) = δ(s) for any t, δ(s) is a path in G such that
δ(0) = γ(0) = I. In other words, δ(s) is a path satisfying the conditions required in the

lemma. Therefore, by our assumption, exp (⃗̇δ(0)) = exp (t⃗̇γ(0)) ∈ G, and this is true for any

t. We therefore proceed to show that exp (⃗̇γ(0)) ∈ G. Let h(s) = log γ(s) for small s. Then

dh

ds
(0) = (DI(log))(⃗̇γ(0)) = (D0 exp)

−1(⃗̇γ(0))

= Id0(⃗̇γ(0)) = (⃗̇γ(0)).

It will therefore suffice to show that exp(dh
ds
(0)) ∈ G. Now

dh

ds
(0) = lim

ϵ→0

h(ϵ)− h(0)

ϵ
= lim

ϵ→0

h(ϵ)

ϵ
= lim

n→∞
nh(1/n).

But now γ(s) = exph(s) ∈ G for all small s. Therefore, as G is a group, γ(s)n = exp(n(h(s))
for all positive integers n. Let s = 1/n for sufficiently large n. Therefore exp(nh(1/n)) ∈ G
for all large n. We will now let n→ 0. By continuity of exp,

lim
n→∞

exp(nh(1/n)) = exp( lim
n→∞

(nh(1/n)) = exp(
dh

ds
(0)) ∈ G

by the closedness of G. ■

We make the following defintion:

Definition 5.12 (Tangent vector field). If γ(s) is a path in Kn, then ⃗̇γ is called the tangent
vector field along γ.

We are now in a position to prove Theorem 5.10.

Proof of Theorem 5.10. . Lemma 5.11 implies that g contains all the tangent vectors to G
at I. We have therefore shown that the tangent space to the group G at the identity is a
subset of g. We will now prove that g is the tangent space at the identity of G.

Lemma 5.13. If A ∈ g, then there is a path γ(s) ∈ G such that ⃗̇γ(0) = A and γ⃗(0) = I.

Proof. Simply let γ(s) = exp(sA). Then ⃗̇γ(s) = A exp(sA) so that ⃗̇γ(0) = A. Also γ⃗(0) =
I. ■
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This completes the third claim. We will now use the latter to prove the first two claims.
To prove the first claim, we first show that if A,B ∈ g, then A + B ∈ g. For this, define
γ⃗1(s) := exp(sA) exp(sB). Then γ1(s) ∈ G for all s. We have γ1(0) = I and γ⃗1(s) =

A exp(sA) exp(sB) + exp(sA)B exp(sB) so that ⃗̇γ1(0) = X + Y and therefore X + Y ∈ G
by the third claim which we have already proved. To complete the proof of the first claim,
we remain to show that λA ∈ g for all A ∈ g and all λ ∈ K. To achieve this, we let
γ⃗2(s) := exp(sλA) so that γ⃗2(0) = I and so ⃗̇γ2(0) = λx ∈ G. Moving on to the second claim,

let γ⃗3(s) = exp(As
1
2 ) exp(Bs

1
2 ) exp(−As 1

2 ) exp(−Bs 1
2 ). Then

γ⃗3(s) = exp(As
1
2 +Bs

1
2 +

1

2
s[A,B] +O(s

3
2 )) exp(−As

1
2 −Bs

1
2 +

1

2
s[A,B] +O(s

3
2 ))

= exp(s[A,B]− s[A+B,A+B] +O(s
3
2 ))

= exp(s[A,B] +O(s
3
2 ))

∴ ⃗̇γ3(0) =
(
[A+B] +O(s

1
2 ) exp(s[A,B] +O(s

3
2 ))
)∣∣∣

s=0
= [A,B] ∈ G

completing the proof of the second claim, and thereby establishing that g is indeed a Lie
subalgebra of Mn(K). We still have to prove the fourth claim but we omit this for brevity
and instead refer the reader to [Eva25]. ■

We will now give two very illustrative examples of matrix groups and their Lie algebras.

Example. We shall find the Lie algebra on(R) of the orthogonal group On(R), which is the
group of rotations and reflections in Rn. By Theorem 5.10, we have

on(R) = {A : exp(tA) ∈ O(n)∀t ∈ R}.

We therefore have

A ∈ O(n) ⇐⇒ (exp(tA))T exp(tA) = I ∀t ∈ R
⇐⇒ exp(tXT ) exp(tX) = I

Thus, if XT = −X, i.e. if X is an antisymmetric matrix, then the last condition is satisfied
and X ∈ on(R). But it is easy to prove that the condition is also necessary because by
differentiating both sides we find

XT exp(tXT ) exp(tX) + exp(tXT )X exp(tx) = O ∀t.

Putting t = 0 gives

XT = −X.

We have therefore shown that the Lie algebra of the group O(n) of orthogonal matrices is
the set of all n× n antisymmetric matrices.

Example. As the next very important example we shall find the Lie algebra sl2(R) of SL2(R).
We have, again from Theorem 5.10,

sl2(R) =

{(
a b
c d

)
: det exp

(
t

(
a b
c d

))
= 1 ∀t ∈ R

}
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But now

det exp

(
t

(
a b
c d

))
= det

[(
1 + ta tb
ta 1 + td

)
+O(t2)

]
= (1 + ta)(1 + td)− t2bc+O(t2

= 1 + t(a+ d) +O(d2)

We must therefore have, for all t ∈ R,

1 + t(a+ d) +O(d2) = 1.

By differentiating both sides and subsequently putting t = 0, we find that a sufficient con-

dition is that a + d. That is

(
a b
c d

)
=

(
a b
c −a

)
or, in other words, it suffices for the

matrix to be trace-free. We are now going to prove that this condition is also necessary.

Consider the set

{(
a b
c −a

)
: a, b, c ∈ K

}
of all trace-free matrices. It is easy to see that{(

a b
c −a

)
: a, b, c ∈ K

}
is a three-dimensional vector space under scalar multiplication

with elements of K. For basis, we can choose the three vectors P =

(
1 0
0 −1

)
, Q =

(
0 1
0 0

)
,

and R =

(
0 0
1 0

)
. Now we want to show that every member of this set of trace-free matrices

is an element of sl2(R). Every member of the last set can be written as aP+bQ+cR for some
a, b, c ∈ R. We want to check that for each trace-free matrix A, we have det exp(tA) = 1 for
all t ∈ R. It is not difficult to verify that [P,Q] = 2Q, [P,R] = 2R and [Q,R] = P . Since
{P,Q, } is a basis, it follows from the Baker-Campbell-Hausdorff theorem that we need only
check that det exp(tP ) = det exp(tQ) = det exp(tR) = 1 ∀t ∈ R. This is easily achieved
because one can easily verify that

exp(tP ) =

(
et 0
0 e−t

)
, exp(tQ) =

(
1 t
0 1

)
, exp(tR) =

(
1 0
1 1

)
.

We are finally able to conclude that sl2(R) =

{(
a b
c −a

)
: a, b, c ∈ R

}
, which is the set the

of real trace-free 2× 2 matrices.

6. Smooth Manifolds and Tangent Spaces

To introduce smooth manifolds we have to define what it means for a map to be smooth:

Definition 6.1. A continuous map g : V1 → V2 where each Vk ⊆ Rmk is open is smooth if it is
infinitely differentiable. A smooth bijection g is a diffeomorphism if its inverse g−1 : V2 → V1
is also smooth.

Additionally we need a topological notion:

Definition 6.2. A topological space X is separable if it has a countable basis , i.e. a basis
of the form {Uj}∞j=1 = {U1, U2, U3, . . . }.
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Now for the following definitions we will assume that the topological space M is both
separable and Hausdorff.

Definition 6.3. If U ⊆M and V ⊆ Rn are open subsets, a homeomorphism f : U −→ V is
called an n-chart for U .

If U = {Uα : α ∈ A} is an open covering of M and F = {fα : Uα −→ Vα} is a collection
of n-charts, then F is called an atlas for M if, whenever Uα ∩ Uβ ̸= ∅,

fβ ◦ f−1
α : fα(Uα ∩ Uβ) −→ fβ(Uα ∩ Uβ)

is a diffeomorphism.

We will sometimes denote the atlas as (M,U ,F) and refer to it as a smooth manifold
of dimension n or smooth n-manifold. We now naturally define what it means to be a
submanifold.

Definition 6.4. Let (M,U ,F) be a manifold of dimension n. A subset N ⊆ M is a
submanifold of dimension k if for every p ∈ N there is an open neighbourhood U ⊆ M of p
and an n-chart f : U −→ V such that

p ∈ f−1(V ∩ Rk) = N ∩ U.
For such an N we can form k-charts of the form

f0 : N ∩ U −→ V ∩ Rk; f0(x) = f(x).

We will denote this manifold by (N,UN ,FN).

In mathematics we not only want to talk about the objects themselves, but also maps
between them. Since we already have a notion of smooth maps from Km to Kn, it is natural
to want to extend this to manifolds.

Remark 6.5. From here on we will sometimes denote the function composition f ◦ g as fg.

Definition 6.6. Let (M,U ,F) and (M ′,U ′,F ′) be atlases on topological spaces M and M ′.
A smooth map h : (M,U ,F) → (M ′,U ′,F ′) is a continuous map h : M → M ′ such that for
each pair α, α′ with h(Uα) ∩ U ′

α′ ̸= ∅, the composite

f ′
α′ ◦ h ◦ f−1

α : fα(h
−1U ′

α′) → V ′
α′

is smooth.

In order to talk about Tangent Spaces we first need to talk about curves. Let (M,U ,F)
be a smooth n-manifold. Let γ : (a, b) →M be a continuous curve with a < 0 < b.

Definition 6.7. γ is differentiable at t ∈ (a, b) if for every chart f : U −→ V with γ(t) ∈ U ,
the curve f ◦ γ : (a, b) −→ V is differentiable at t ∈ (a, b), i.e., (f ◦ γ)′(t) exists. γ is smooth
at t ∈ (a, b) if all the derivatives of f ◦ γ exist at t.
The curve γ is differentiable if it is differentiable at all points in (a, b). Similarly, γ is

smooth if it is smooth at all points in (a, b).

This presents the issue of how we actually check whether or not a curve is differentiable on
a manifold. A curve being differentiable means that it has to be differentiable with respect to
every chart. However, we have a lemma that shows that differentiability (and smoothness)
of a curve is independent of chart selection.
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Lemma 6.8. Let f0 : U0 −→ V0 be a chart with γ(t) ∈ U0 and suppose that

f0 ◦ γ : (a, b) ∩ γ−1f−1
0 V0 −→ V0

is differentiable (respectively smooth) at t. Then for any chart f : U −→ V with γ(t) ∈ U ,

f ◦ γ : (a, b) ∩ γ−1f−1V −→ V

is differentiable (respectively smooth) at t.

Proof. Assume that γ(t) ∈ U0 and γ(t) is differentiable (respectively smooth) at t with
respect to the chart f0. Now suppose that γ(t) ∈ U0 ∩ U and that f is the chart associated
with U . Now we can note by Definition 6.3 that the map

ψ = f ◦ f−1
0 : f0(U0 ∩ U) → f(U0 → U)

is a diffeomorphism. Additionally near t we can say that

f ◦ γ = (f ◦ f−1
0 ) ◦ (f0 ◦ γ).

But this implies that
f ◦ γ = ψ ◦ (f0 ◦ γ).

Thus, f ◦ γ is a composition of differentiable (respectively smooth) maps and must therefore
be differentiable (respectively smooth) at t. ■

We are able to explicitly calculate the derivative (f ◦ γ)′(t) via the chain rule as follows:

(6.1) (f ◦ γ)′(t) = Jacff−1
0
(f0γ(t)) · (f0 ◦ γ)′(t).

Now we have the tools to be able to talk about tangent spaces. In multivariable calculus
we defined the tangent space at a point p as the set of all γ′(p) where γ is a curve that is
differentiable at p. Tangent spaces on manifolds are not all that different. However, we must
adjust our definition because a smooth manifold is defined using an atlas.

Let p ∈ M . Suppose the curve γ passes through p, γ(0) = p, and that γ is differentiable
at 0. Then for any chart f0 : U0 → V0 with γ(0) ∈ U0, there is a derivative vector v0 =
(fγ)′(0) ∈ Rn. In passing to another chart f : U → V with γ(0) ∈ U we can use Equation
6.1 to get

(f ◦ γ)′(0) = Jacff−1
0
(f0γ(0)) · (f0 ◦ γ)′(0).

When we define the tangent space TpM at a point p on a manifold M we are essentially
looking at all pairs of the form

((fγ)′(0)), f : U → V ).

where p ∈ U . Now suppose we have (f0γ)
′(0) = v0 and (f1γ)

′(0) = v1. It makes sense that
in TpM these vectors should be considered equivalent. This is because they are derivatives
of the same curve just under different charts. Thus we impose the equivalence relation ∼
under which

((f1γ)
′(0)), f : U1 → V1) ∼ ((f2γ)

′(0)), f : U2 → V2).

Since we have that
(f1γ)

′(0) = Jacf2f−1
1
(f1γ(0)) · (f1γ)′(0),

we can represent the relation as

(v, f1 : U1 → V1) ∼ (Jacf2f−1
1
(f1(p))v, f2 : U2 → V2)



LIE GROUPS 17

where there is a curve γ in M such that

γ(0) = p and (f1γ)
′(0) = v.

We denote the tangent space TpM as the set of these equivalence classes. Additionally we
sometimes denote the equivalence class (v, f : U → V ) as [v, f : U → V ].

Since we are given this abstract definition of a tangent space it is natural to want to
explore its structure. But given this general definition are we even able to say anything
concrete? We actually can!

Proposition 6.9. Suppose we are given a smooth n-manifold (M,U ,F). For p ∈ M , TpM
is an R-vector space of dimension n.

Proof. It is fairly easy to show that TpM is a vector space. So we will omit part and focus
on show that it is dimension n.

For any chart f : U → V with p ∈ U we can identify all elements of TpM with objects of
the form (v, f : U → V ). This means that TpM is isomorphic to some subset of Rn. If we
can show that all vectors in Rn arise in TpM we will be done. Take a vector v ∈ Rn. We can
define a curve γ : (−ε, ε) → V such that γ(0) = p and

γ(t) = f(p) + tv.

Clearly we have γ′(0) = v. Now we define an associated curve γ in M :

γ : (−ε, ε) :→M ; γ(t) = f−1γ(t).

The curve γ satisfies γ(0) = p and (fγ)′(0) = γ′(0) = v. Thus every v ∈ Rn can be identified
with the equivalence class

[v, f : U → V ] ∈ TpM.

In other words, TpM is isomorphic to Rn. ■

Now that we have defined tangent spaces we are able talk about the derivative. Let
h : (M,U ,F) → (M ′,U ′,F ′) be a smooth map between manifolds of dimension n, n′. For
p ∈M we take the pair of charts fα, f

′
α′ such that p ∈ Uα and h(p) ∈ U ′

α′ . By Definition 6.6
we have that hα′,α = f ′

α′ ◦h◦f−1
α is smooth. Since it is smooth, we know that the function can

be locally approximated by the R-linear transformation that is associated with the Jacobian
matrix Jachα′,α

(fα(p))x where x = (fαγ)
′(0). Thus we can define the derivative with respect

to charts fα, f
′
α′ as

(6.2) dhα′,α : Rn → Rn′
; dhα′,α(x) = Jachα′,α

(fα(p))x.

We can verify that this passes to equivalence classes and can thus give a chart independent
definition:

Definition 6.10. Let h : (M,U ,F) → (M ′,U ′,F ′) be a smooth map between manifolds.
For p ∈M the derivative dhp is defined as follows:

dhp : TpM → Th(p)M
′; dhp([γ

′]) = [(h ◦ γ)′]
Most of the time when working with derivatives we don’t need anything other than Def-

inition 6.10. A case in which we would need more is when computations are required. In
that situation we would apply Equation 6.2. Before moving on to Lie groups we will quickly
introduce a theorem which will be used for an example later:
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Theorem 6.11 (Implicit Function Theorem for manifolds). Let h : (M,U ,F) −→ (M ′,U ,F ′)
be a smooth map between manifolds of dimensions n, n′. Suppose that for some q ∈ M ′,
dhp : TpM −→ Th(p)M

′ is surjective for every p ∈ N = h−1q. Then N ⊆M is a submanifold
of dimension n− n′ and the tangent space at p ∈ N is given by TpN = ker dhp.

Proof. The proof follows from the Implicit Function Theorem of Calculus. ■

7. Lie Groups

Now we are finally able to define Lie Groups.

Definition 7.1. Let G be a smooth manifold which is also a topological group with mul-
tiplication map mult : G × G → G and inverse map inv : G → G and view G × G as the
product manifold. Then G is a Lie group if mult, inv are both smooth maps.

Naturally we also define what it means to be a Lie subgroup:

Definition 7.2. Let G be a Lie Group. A closed subgroup H ⊆ G that is also a submanifold
is called Lie subgroup of G. It is then automatic that the restriction toH of the multiplication
and inverse maps on G are smooth, hence H is also a Lie Group.

As it’s important to study Lie Groups through examples we will present one here:

Example. When K = R or C, GLn(K) is a Lie Group.

Proof. From Proposition 2.11 we have that GLn(K) is an open set. Since we know thatMn(K)
is a separable topological space (with the usual topology defined by the matrix norm), we
must have that GLn(K) is a separable space as well. To define a smooth manifold we also
need charts. For the charts we take an open set U ⊆ GLn(K) and the identity function

Id : U → UKn2 where UKn2 is U identified with Kn2
. Finally, the multiplication and inverse

maps are obviously smooth since they are defined by polynomial and rational functions. ■

We will now give an example of a Lie subgroup. However, we first need to introduce a
lemma which will be useful.

Lemma 7.3. Given a smooth curve with α : (−ε, ε) → GLn(K) and α(0) = I we must have
that

d(detα(t))

dt

∣∣∣∣
t=0

= trα′(0).

Proof. Recall that the trace of a matrix A ∈Mn(K) is

tr(A) =
n∑

i=1

Aii.

Now let ∂ = d
dt
|t=0. It is fairly easy to verify that ∂ has the following property:

∂(γ1γ2) = (∂γ1)γ2(0) + γ1(0)(∂γ2).

Now let aij = α(t)ij. Then we can notice that when t = 0 we have that aij = δij where δ is
the Kronecker Delta function. We now let Cij be the cofactor matrix obtained from α(t) by
deleting the ith row and jth column. Using a Laplace expansion we get

detα(t) =
n∑

j=1

(−1)n+janj detCnj.



LIE GROUPS 19

Then applying then taking the partial on both sides we get

∂ detα(t) =
n∑

j=1

(−1)i+j((∂anj) detCnj + anj(∂ detCnj))

=
n∑

j=1

(−1)i+j(∂anj) detCnj + ∂ detCnn.

For t = 0, we can notice that detCnj = δnj. This is clear since if you delete anything other
than the nth column you will end up with a column of zeros making the matrix non-invertible.
Combining this fact with α(0) = I we get

∂ det(α(t)) = ∂ann + ∂ detCnn.

We can simply repeat this calculation with the (n− 1)× (n− 1) matrix Cnn. This gives us
the following:

∂ det(α(t)) = ∂ann + ∂a(n−1)(n−1) + ∂ detC(n−1)(n−1)

...

= ∂ann + ∂a(n−1)(n−1) + · · ·+ ∂a11

= tr α′(0).

■

Using Lemma 7.3 in conjunction with Theorem 6.11 we are able to prove the following
statement:

Example. For K = R or C, SLn(K) ⊆ GLn(K) is a Lie subgroup.

Proof. We will take det : GLn(K) → K as our smooth function. We already know that
SLn(K) = det−1 1 ⊆ GLn(K). Thus to use Theorem 6.11 we only need to show that d detA :
Mn(K) → K is surjective for all A ∈ GLn(K) (hence making it surjective for all A ∈ SLn(K)).
To do this we will consider the smooth curve α : (−ε, ε) → GLn(K) with α(0) = A. The
derivative d detA applied to α′(0) can be found by

d detA(α
′(0)) =

d detα(t)

dt

∣∣∣∣
t=0

.

We can notice that α0(0) = I. Thus we can apply Lemma 7.3 to get

(7.1) d detI(α
′
0(0)) =

d detα0(t)

dt

∣∣∣∣
t=0

= tr α′
0(0).

We now take a modified curve α0 which is defined as follows:

α0 : (−ε, ε) → GLn(K); α0(t) = A−1α(t).

Therefore using Equation 7.1 and that α(t) = Aα0(t), we get

d detA(α
′(0)) =

d det(Aα0(t))

dt

∣∣∣∣
t=0

= detA
d det(α0(t))

dt

∣∣∣∣
t=0

= detA tr α′
0(0).

Thus d detA is really the K-linear transformation

d detA :Mn(K) → K; d detA(X) = (detA)tr(A−1X).
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Since the trace function is surjective we must have that d detA is surjective as well. Since this
is true for all A ∈ SLn(K) we can apply Theorem 6.11 to get that SLn(K) is a submanifold
of GLn(K), thus making SLn(K) a Lie subgroup. ■

In the above example we saw that the matrix subgroup SLn(K) ⊆ GLn(K) is also a Lie
subgroup of GLn(K). It is natural to ask whether this is true in general. Given a matrix
subgroup of GLn(K) is it true that it is also a Lie subgroup? Amazingly it is!

Theorem 7.4. Let G ⊆ GLn(K) be a matrix subgroup. Then G is a Lie subgroup of GLn(K).

For the sake of brevity we won’t prove this, but the proof can be found in Chapter 7
of [Bak02]. Since all Lie subgroups are Lie groups themselves, Theorem 7.4 implies that all
matrix groups are Lie groups!

Noting that matrix groups are Lie groups, we can notice a very elegant connection between
Lie groups and Lie algebras:

Theorem 7.5. Let M be a matrix subgroup of GLn(K). For all p ∈ M , the tangent space
TpM is isomorphic to the Lie algebra on TeM where e is the identity element of M .

Proof. Since we’ve already done most of the work for this proof it will be easy. We first note
that Theorem 5.10 states that the tangent space TeM is in fact a Lie algebra. From there we
use Proposition 6.9 to see that all the tangent spaces are of the same dimension and must
thus be isomorphic. ■

This theorem gives us a very interesting connection between Lie groups and Lie algebras.
However, one might question whether such a statement is true in general. In fact, the general
statement is also true!

Theorem 7.6. All tangent spaces of a Lie group M are isomorphic to the Lie algebra at the
identity.

Proof. The proof is essentially the same as the proof of Theorem 5.10 except we instead use
the general exponentiation function. ■

8. The Rogers-Ramanujan Identities

We would like to end this paper by briefly mentioning the Rogers-Ramanujan Identities in
order to illustrate the power of Lie theoretical methods. The Rogers-Ramanujan Identities
are one of the most amazing pairs of identities in the whole of mathematics. They are intrigu-
ing in the simplicity and sheer elegance of their statement, their connections to deep areas of
mathematics [Sil18] and surprisingly, their importance in statistical mechanics [Bax07] and
conformal field theory [BMS98].

Theorem 8.1 (Rogers-Ramanujan Identities).

1 +
∞∑
k=1

qk
2

(1− q) . . . (1− qk)
=

∞∏
n=1

(1− q5n+1)−1(1− q5n+4)−1

1 +
∞∑
k=1

qk(k+1)

(1− q) . . . (1− qk)
=

∞∏
n=1

(1− q5n+2)−1(1− q5n+3)−1

The infinite series are known as the Rogers-Ramanujan functions:
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Definition 8.2 (Rogers-Ramanujan functions).

G(q) := 1 +
∞∑
k=1

qk
2

(1− q) . . . (1− qk)

H(q) := 1 +
∞∑
k=1

qk(k+1)

(1− q) . . . (1− qk)

This pair of identities was found first by Leonard James Rogers and later independently
rediscovered by Srinivasa Ramanujan. A proof was published jointly by Rogers and Ra-
manujan in [RR19]. However, in order to understand the connection to conformal field
theory, one should likely consider the much more difficult Lie theoretical proof [LW82]. A
summary of the method of proof can be found at [LW81]. Andrews [And89] also explains
the main parts of the proof. Lepowsky and Wilson [LW82] build on work by Lepowsky (a
Lie theorist) and Milne (a combinatorialist) [LM78a, LM78b] in order to achieve the goal.
Lepowsky and Milne considered the infinite product parts of the Rogers-Ramanujan iden-
tities while Lepowsky and Milne considered the infinite series portions. The tools involved
include Euclidean Kac-Moody Lie algebras and vertex operators. In the end, the summands
in the Rogers-Ramanujan identities turn out “count” dimensions of certain spaces. One can
read more about the representation theory of affine Lie algebras in connection to the Rogers-
Ramanujan identities in [Isa25]. For an introduction to infinite dimensional Lie algebras, one
can read [Kac83]. It should be noted that the theory of vertex operator algebras developed
by Lepowsky and Wilson turned out to be highly influential, as it was used to construct a
natural representation of the Monster finite simple group in 1988 and was key in the work of
Borcherds on vertex algebras and his resolution of the Conway-Norton monstrous moonshine
conjecture in 1992.
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