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1. Introduction

Soap films spanning wire frames pull tight and settle into shapes that look as if they are
trying to use as little surface area as possible. Joseph Plateau studied this systematically
and distilled a simple guiding rule: at equilibrium the film minimizes area. In this paper we
take that rule and translate it to differential geometry to ask a simple existence question:
does there always exist a surface that spans a given loop and minimizes area?

In the 1930s, Jesse Douglas and Tibor Radó solved this classical problem by a variational
method. For his work, Douglas received the 1936 Fields Medal. Later developments in
geometric measure theory broadened the picture and gave more results, but here we follow
the original parametric disc approach and retrace the Douglas–Radó existence theory.

Given a rectifiable Jordan curve Γ ⊂ RN , we seek a disc-shaped surface that spans Γ
and has the least possible surface area among all such discs. Minimizing area directly often
misbehaves under limits, so we instead work with an energy that records how much a map
from the unit disc stretches. This energy is quadratic, behaves well under limits, and de-
creases under natural relaxation while the boundary stays fixed. Starting from any spanning
disc, we relax it without moving the boundary and obtain a sequence that settles to a limit
surface. The limit balances its local stretch in perpendicular directions; in that balanced
regime, area equals energy, so the limit is also area-minimizing and is smooth in the interior.
In this paper we will work in RN with N ≥ 3, focusing on surfaces which are homeomorphic
to the disc.

Exact formulas for minimal discs are rare, so after proving existence we show how to
approximate the surface by leveraging mean curvature flow. Mean curvature points the
way, and mean curvature flow is the descent that follows it. We will work with graphs over
the unit disc D with a prescribed boundary value φ to find algorithms which estimate the
minimal surface.

2. Setup

We fix a simple domain and parametrize the surface as a map. We take the unit disc

D = {(x, y) ∈ R2 : x2 + y2 < 1}, ∂D = S1,

and a map X : D → RN . The boundary ∂D, or equivalently the circle S1, will be sent
to the given curve Γ. We can think of X as a soap film stretched across Γ. Different
parametrizations can describe the same geometric surface, so the quantities we use should
depend only on the geometry induced by X. For our equations we write Xx = ∂X/∂x and
Xy = ∂X/∂y for short.

The quantity we ultimately care about is area.
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Definition 2.1 (Area Functional). The area of a map X : D → RN is

Area(X) =

∫
D

|JacX|
∫
D

√
|Xx|2|Xy|2 − (Xx ·Xy)2 dx dy.

In R3 this simplifies to Area(X) =
∫
D
|Xx ×Xy| dx dy.

However, trying to minimize area directly is hard because the functional is not stable
under limits. A more stable functional is the average squared stretch, which we call the
energy.

Definition 2.2 (Dirichlet energy). The Dirichlet energy of X is

E(X) =
1

2

∫
D

(
|Xx|2 + |Xy|2

)
dx dy.

You can think of E(X) as recording how much the map stretches on average. It is qua-
dratic, monotone under natural relaxations of the surface that keep the boundary fixed, and
it is stable under weak limits.

Throughout we work with maps X ∈ W 1,2(D,RN)∩C0(D), so the boundary X|∂D is well
defined. HereW 1,2(D,RN) means thatX and its first partial derivatives are square–integrable
on D, and C0(D) means X extends continuously to the closed disc. This ensures X|∂D is a
well-defined continuous boundary map. When we say the boundary map runs once around
Γ, we mean it parametrizes Γ weakly monotonically of degree one.

Definition 2.3 (Equicontinuity). A family {fα} on S1 is equicontinuous if for every ε > 0
there exists δ > 0 such that |fα(eiθ)− fα(e

iφ)| < ε whenever |θ − φ| < δ, for all indices α.

Equicontinuity essentially means a single small angular change on the circle controls all
maps in a family. It gives a common modulus of continuity and is exactly what is needed to
apply Arzelà–Ascoli on the boundary.

Definition 2.4 (Weakly monotone boundary map). A continuous map γ : S1 → Γ is weakly
monotone of degree one if it is a uniform limit of homeomorphisms of S1 onto Γ.

Weakly monotone of degree one means that we traverse Γ once without backtracking. The
parametrization may pause on short arcs, but it never reverses direction or skips around.
Both definitions protect compactness of the boundary in minimizing sequences and make
the “runs once around Γ” condition robust under uniform limits.

The way a parametrization can “waste” area is by stretching much more in one direction
than the other, or by letting the coordinate lines fail to meet at right angles. The balanced
case is when the two principal stretches match and the coordinate directions are orthogonal.

Definition 2.5 (Conformality). A map is conformal at a point if Xx ·Xy = 0 and |Xx| = |Xy|
there. It is almost conformal if these equalities hold almost everywhere.

Through this definition, we can make area and energy talk to each other. We first record
the basic inequality relating them.

Theorem 2.6 (Energy dominates area). For any map X : D → RN , we have Area(X) ≤
E(X), with equality if and only if X is conformal almost everywhere.

Proof. By Cauchy–Schwarz, |Xx ·Xy| ≤ |Xx| |Xy|, hence√
|Xx|2|Xy|2 − (Xx ·Xy)2 ≤ |Xx| |Xy|.
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By the AM-GM inequality,

|Xx| |Xy| ≤ 1
2

(
|Xx|2 + |Xy|2

)
.

Combining these gives the pointwise bound “area density ≤ energy density”, and then in-
tegrating over D yields Area(X) ≤ E(X). Equality holds exactly when Xx · Xy = 0 and
|Xx| = |Xy| almost everywhere, i.e., when X is conformal. ■

Area measures geometric size; energy measures squared stretch. Energy always dominates
area and becomes large mainly when stretch is uneven. By gently reparametrizing the disc
(keeping the rim fixed), we can even out that unevenness so a map’s energy nearly tracks its
true area. This is why we will minimize energy: once the minimizer is (almost) conformal,
Theorem 2.6 turns the inequality into equality and identifies an area minimizer.

To find the least stretching maps, which minimize energy, we will use harmonic maps.

Definition 2.7 (Harmonic map). A map X : D → RN is harmonic in D if each component
satisfies the Laplace equation ∆X = Xxx +Xyy = 0 in D.

Going back to the rubber sheet picture, harmonic means there is no net pull anywhere
in the interior. The tension is evenly distributed for the given boundary. Equivalently,
each component has the property that its value at a point equals the average over small
surrounding circles. This is the two–dimensional analogue of a stretched rubber sheet settling
into equilibrium. If energy is our target, the extremals are harmonic maps, so we aim to
understand them next.

Theorem 2.8 (Energy minimality of harmonic maps). Let H be harmonic in D with pre-
scribed boundary values H|∂D = g. If X has the same boundary values X|∂D = g, then

E(X) = E(H) +
1

2

∫
D

(
|(X −H)x|2 + |(X −H)y|2

)
dx dy ≥ E(H),

with equality if and only if X ≡ H.

Proof. Write Y = X −H, so Y |∂D = 0. Expanding the square gives

2E(X) =

∫
D

(
|Hx+Yx|2+ |Hy+Yy|2

)
= 2E(H)+2

∫
D

(
Hx ·Yx+Hy ·Yy

)
+

∫
D

(
|Yx|2+ |Yy|2

)
.

Since Y ∈ W 1,2
0 (D,RN), integration by parts is justified componentwise, and using Y |∂D = 0

yields ∫
D

(
Hx · Yx +Hy · Yy

)
= −

∫
D

(Hxx +Hyy) · Y = −
∫
D

(∆H) · Y = 0,

since H is harmonic. Therefore

E(X) = E(H) + 1
2

∫
D

(
|Yx|2 + |Yy|2

)
dx dy ≥ E(H),

with equality exactly when Y ≡ 0, i.e., X ≡ H. ■

We will also use that working with energy is equivalent to working with area at the level
of infima in our admissible class. Intuitively: with three pins on the rim, we can gently
“re-time” the domain to make any competitor’s energy as close to its geometric area as we
like. The next lemma makes this precise and closes the gap.
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Lemma 2.9 (Infimum of area equals infimum of energy). In the admissible class EΓ (with
boundary parametrization free up to the three pinned points),

inf
X∈EΓ

Area(X) = inf
X∈EΓ

E(X).

Proof. The inequality inf Area ≤ inf E follows from Theorem 2.6. For the reverse inequal-
ity, fix any competitor f and any ε > 0. For δ > 0 define the lifted map Fδ(x, y) =
(f(x, y), δx, δy) into RN+2. For every δ > 0 the differential DFδ has full rank (the δ-
directions prevent degeneracy), so the image surface Fδ(D) carries a continuous induced
metric and hence admits local isothermal coordinates. On the disk these globalize to a con-
formal diffeomorphism Gδ : D → Fδ(D). Let gδ be the projection of Gδ to RN , and let hδ be
the harmonic map with boundary values gδ|∂D. Then

E(hδ) ≤ E(gδ) = E(Gδ) = Area(Gδ) = Area(Fδ),

using harmonic minimality for fixed trace, conformal invariance of energy, and equality of
area and energy for conformal parametrizations. After projection gδ = π ◦Gδ, the boundary
trace still runs once around Γ (weakly monotone), and by precomposing with a disc auto-
morphism we can enforce the three-point pinning without changing the represented surface.
As δ → 0, the area integrand for Fδ is√

|fx|2|fy|2 − (fx ·fy)2 + δ2(|fx|2 + |fy|2) + δ4 →
√
|fx|2|fy|2 − (fx ·fy)2,

and it is dominated by 1
2
(|fx|2 + |fy|2) + 1 on D, so dominated convergence applies and

Area(Fδ) → Area(f). Hence for small δ we get E(hδ) ≤ Area(f) + ε. Taking the infimum
over f and letting ε ↓ 0 yields inf E ≤ inf Area. ■

3. Boundary data and competitors

To model a film spanning a fixed loop Γ ⊂ RN , we ask for disc maps whose boundary
trace runs once around Γ without backtracking.

Definition 3.1 (Weakly monotone boundary map). A continuous map γ : S1 → Γ is weakly
monotone of degree one if it is a uniform limit of homeomorphisms of S1 onto Γ (equivalently,
it may pause but not reverse direction on boundary arcs).

This lets the boundary slow down on short arcs without creating artificial backtracking;
the degree-one condition encodes that we go once around Γ in the right orientation.

Definition 3.2 (Admissible class). Let EΓ be the set of maps X ∈ W 1,2(D,RN) ∩ C0(D)
whose boundary trace X|∂D parametrizes Γ weakly monotonically.

This class is flexible enough to contain all natural competitors we build and rigid enough
to stay controlled. Traces exist for W 1,2 maps, and continuity up to D makes the spanning
condition literal.

Boundary reparametrizations create a symmetry we want to remove. If we leave it in, a
minimizing sequence can whirl around the boundary faster and faster while describing the
same surface, breaking equicontinuity and compactness. Pinning three boundary points kills
that symmetry without changing which surfaces are represented.

Definition 3.3 (Disc automorphisms). The conformal self–maps of D form a group under
composition where each extends continuously to ∂D and is a homeomorphism of the circle.
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The group acts triply transitively on ∂D (any ordered triple is sent to any other). Pre-
composition preserves W 1,2(D,RN), continuity up to D, and weakly monotone traces, so
normalization does not change EΓ.

Lemma 3.4 (Three-point normalization). Fix distinct ζ1, ζ2, ζ3 ∈ S1 and an ordered triple
on Γ. By precomposing any X ∈ EΓ with a disc automorphism, we may arrange X(ζi) equals
the prescribed boundary points. This quotients the boundary Möbius symmetry and stabilizes
the class.

Proof. Since X|∂D is weakly monotone of degree one onto Γ, each prescribed boundary point
of Γ has a nonempty set of preimages on S1, and the three preimages can be chosen in
the correct cyclic order. Automorphisms of D act triply transitively on S1 and extend to
homeomorphisms of D, so there is a unique automorphism sending those three preimages to
ζ1, ζ2, ζ3. Precomposition preserves W 1,2, continuity up to the boundary, and weak mono-
tonicity of the trace, so the class is unchanged while the pins are enforced. ■

4. Existence via energy minimization

We now put the ingredients together. For a fixed boundary trace, replacing a competitor
by its harmonic extension only lowers the energy. After the three-point pinning, harmonic
maps with uniformly bounded energy have equicontinuous boundary traces. Together with
weak lower semicontinuity of the Dirichlet energy, these facts let us pass to the limit in a
minimizing sequence and produce a minimizer. The boundary modulus of continuity makes
sure the boundary condition survives the limit via Arzelà–Ascoli.

We begin with a classical principle for fixed boundary data.

Theorem 4.1 (Dirichlet principle). If g is the boundary trace of some W 1,2 map, there
exists a unique harmonic Hg ∈ W 1,2(D,RN) ∩ C0(D) with Hg|∂D = g minimizing E among
all maps with trace g.

Proof. Solve the scalar Dirichlet problem for each component by the Poisson formula to
obtain the harmonic extension Hg ∈ C0(D) with ∆Hg = 0 and Hg|∂D = g. For any

competitor X with the same trace, write X = Hg + Y with Y ∈ W 1,2
0 (D,RN). As in

Theorem 2.8, the cross term vanishes, giving

E(X) = E(Hg) +
1
2

∫
D

(
|Yx|2 + |Yy|2

)
dx dy ≥ E(Hg).

Thus Hg minimizes E. If H1, H2 are two minimizers with the same trace, the same identity

with Y = H1 −H2 ∈ W 1,2
0 forces ∇Y ≡ 0, hence H1 ≡ H2. ■

This gives the harmonic replacement step.

Proposition 4.2 (Harmonic replacement). For X ∈ EΓ, let H be the harmonic map with
H|∂D = X|∂D. Then H ∈ EΓ and E(H) ≤ E(X).

Proof. The boundary trace and weak monotonicity are preserved by construction, so H ∈ EΓ.
The energy inequality is exactly Theorem 2.8 with g = X|∂D. By the Dirichlet principle
(Theorem 4.1), H is the unique minimizer of E among maps with the same trace, so replacing
X by H lowers energy without changing the boundary class. ■

Near the rim, bounded energy tames oscillation. The next lemma makes that control
precise.
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Lemma 4.3 (Courant–Lebesgue). For harmonic maps with uniformly bounded energy and
under the three-point normalization, boundary traces on S1 have a uniform modulus of con-
tinuity (hence form an equicontinuous family).

Proof. Write H(reiθ) in polar coordinates. The energy identity is

E(H) = 1
2

∫ 1

0

∫ 2π

0

(
|∂rH|2 + 1

r2
|∂θH|2

)
r dθ dr.

For a.e. r ∈ (0, 1) we have∫ 2π

0

|∂θH(reiθ)|2 dθ ≤ 2 r E(H) ≤ 2E(H).

Hence for θ, φ ∈ [0, 2π] and any such r,

|H(reiθ)−H(reiφ)| ≤
∫ θ

φ

|∂τH(reiτ )| dτ ≤ |θ−φ|1/2
(∫ 2π

0

|∂θH(reiθ)|2 dθ
)1/2

≤ (2E(H))1/2 |θ−φ|1/2.

Next, for each fixed θ and r < ρ < 1,

|H(eiθ)−H(reiθ)| ≤
∫ 1

r

|∂σH(σeiθ)| dσ ≤
(∫ 1

r

σ dσ
)1/2(∫ 1

r

1
σ
|∂σH(σeiθ)|2 dσ

)1/2

.

Integrating in θ and using the energy identity yields

sup
θ
|H(eiθ)−H(reiθ)| ≤ (1− r)1/2 (2E(H))1/2.

Combining the two displays gives, for δ ∈ (0, π], the compact form

|H(eiθ)−H(eiφ)| ≤ C E(H)1/2
(
|θ − φ|1/2 + (1− r)1/2

)
whenever |θ − φ| ≤ δ. Choosing r = 1− |θ − φ| gives a uniform Hölder-1/2 modulus on ∂D
depending only on E(H). The three-point normalization prevents collapse of large arcs and
yields uniform control along the whole boundary. By Arzelà–Ascoli, the boundary traces
form a compact family in C0(S1). This is the boundary equicontinuity estimate we need
at ∂D. The three pins prevent long arcs on S1 from collapsing to tiny arcs on Γ, so weak
monotonicity is preserved in the boundary limit. ■

All the pieces are now in place to pass to the limit and get a minimizer.
Putting these ingredients together produces a genuine minimizer in our class.

Theorem 4.4 (Existence of an energy minimizer). With three-point normalization, there
exists X∞ ∈ EΓ that minimizes E over the three-point normalized subclass of EΓ.

Proof. Pick a minimizing sequence (Xk) ⊂ EΓ. By Proposition 4.2, replace it with the
harmonic sequence (Hk) with the same traces, so E(Hk) ≤ E(Xk) and Hk ∈ EΓ. The
energies are bounded, so Lemma 4.3 and the three pins give equicontinuity on ∂D, hence
Hk|∂D → g∞ uniformly. A uniform W 1,2 bound implies (after a subsequence) Hk ⇀ X∞
weakly inW 1,2(D,RN); standard interior estimates for harmonic maps give a uniform interior
Hölder bound, hence local uniform convergence in D. Lower semicontinuity of E under weak
W 1,2 convergence gives E(X∞) ≤ lim infk E(Hk). The boundary limit is weakly monotone
and respects the pins, so X∞ ∈ EΓ and is a minimizer. ■
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5. Conformality and minimal surface

Finally, we link energy minimality to area minimality.
An energy minimizer could still waste area by skewing one coordinate direction against

the other. The only freedom left is to reparametrize the disk. Asking that energy not drop
under those reparametrizations forces balance.

Proposition 5.1 (Domain reparametrizations forces conformality). Let X∞ be an energy
minimizer in the normalized class. Considering variations by precomposition with disc au-
tomorphisms that fix the three pinned boundary points, the first variation of E forces X∞ to
be almost conformal a.e.

Proof. First, X∞ is harmonic in D: interior variations with compact support do not change
the boundary class, so by Theorem 2.8 the Euler–Lagrange equation is ∆X∞ = 0.
For harmonic maps, the Hopf differential

Φ = (∂zX∞) · (∂zX∞) dz2 (∂z =
1
2
(∂x − i ∂y))

is holomorphic. Consider any C1 one-parameter family of disc automorphisms {ϕt} with
ϕ0 = id and whose boundary values fix the three pinned points; its generating vector field
ξ = ∂tϕt|t=0 is holomorphic in D and tangent to ∂D, vanishing at the pins. Minimality of E
over the three-point–normalized subclass of EΓ gives

d

dt

∣∣∣
t=0

E(X∞ ◦ ϕt) = 0.

The first-variation formula for domain variations (applied componentwise) yields

0 = −4ℜ
∫
D

Φ ∂z̄ξ dx dy +

∫
∂D

B(X∞, ξ),

where B is a boundary term depending on ξ and the tangential/normal derivatives of X∞.
Because ξ is tangent to ∂D and vanishes at the three pinned points, the boundary term is
zero. Since ξ is holomorphic, ∂z̄ξ ≡ 0, so the identity reduces to

ℜ
∫
D

Φh dx dy = 0 for all holomorphic h vanishing at the pins.

Since the integral vanishes for every holomorphic h and Φ is holomorphic, we must have
Φ ≡ 0. Therefore ∂zX∞ · ∂zX∞ ≡ 0, which is equivalent to ⟨Xx, Xy⟩ = 0 and |Xx| = |Xy|
a.e., i.e., conformality. ■

We now conclude the argument.

Lemma 5.2 (Area equals energy at the minimizer). For X∞ as above, Area(X∞) = E(X∞).

Proof. By Theorem 2.6, Area ≤ E with equality exactly for conformal maps. Proposition 5.1
yields (almost) conformality of X∞, hence Area(X∞) = E(X∞). ■

Harmonicity (from the replacement step) together with conformality implies that X∞
solves the minimal surface equation and is smooth in the interior; any branch points are
isolated. Thus X∞ is a disc-type minimal surface spanning Γ.

In an ambient dimension of N = 3 it is shown that interior branch points do not occur.
However, in higher dimensions branch points may occur, but they are still isolated. When Γ
has additional regularity (e.g. Ck,α), standard elliptic theory improves boundary regularity
of the spanning surface accordingly.
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6. Approximating minimal surfaces

Now that we know a minimizer exists, the natural next question is how to actually find
it. Exact formulas are rare, so we move the surface in the direction that lowers area. Mean
curvature tells us which way to go; mean curvature flow is the gradient descent for area. To
keep things simple and consistent with our setup, we work with graphs over D and fix the
boundary value φ.

Take a function f : D → R with f |∂D = φ and write its graph Σf = {(x, y, f(x, y)) :
(x, y) ∈ D}. Its area is

A(f) =

∫
D

√
1 + |∇f |2 dxdy.

Vary f by ft = f + tη with η compactly supported in D (so the boundary stays put). A
quick computation and an integration by parts (the boundary term vanishes by the support
of η) give

d

dt

∣∣∣
t=0

A(ft) =

∫
D

∇f√
1 + |∇f |2

· ∇η dxdy = −
∫
D

div
( ∇f√

1 + |∇f |2
)
η dxdy.

Stationary graphs satisfy the minimal surface equation

div
( ∇f√

1 + |∇f |2
)
= 0,

and with the upward unit normal the scalar mean curvature is the left-hand side,

H(f) = div
( ∇f√

1 + |∇f |2
)
.

If we now let the surface relax by prescribing

∂tf =
√

1 + |∇f |2 div
( ∇f√

1 + |∇f |2
)

in D, f |∂D = φ,

then any minimal graph is stationary and along smooth solutions the area decreases according
to

d

dt
A(ft) = −

∫
D

H(ft)
2
√
1 + |∇ft|2 dxdy ≤ 0,

In practice we use a simple relaxation step that turns each update into a linear boundary
value problem. Given fk, set

wk(x) =
1√

1 + |∇fk(x)|2
,

and if |∇fk| ≤M a.e., then (1 +M2)−1/2 ≤ wk ≤ 1, so ∇·(wk∇·) is uniformly elliptic. Find
fk+1 with the same boundary trace by solving

∇·
(
wk∇fk+1

)
= 0 in D, fk+1|∂D = φ.

This keeps the nonlinear weight from the previous iterate, makes the next step linear, and
pushes us toward H = 0. When |∇fk| is bounded, the coefficient wk is bounded above and
below, so the Dirichlet problem has a unique solution. Equivalently, fk+1 uniquely minimizes

Jk(u) =

∫
D

wk |∇u|2 dxdy among u with u|∂D = φ,
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so Jk(fk+1) ≤ Jk(fk). Euler–Lagrange of Jk with fixed trace is ∇·(wk∇u) = 0, and strict
convexity holds since wk ≥ (1 +M2)−1/2 > 0. If fk+1 = fk, then

∇ ·
( ∇f∗√

1 + |∇f∗|2
)
= 0,

so the scheme naturally seeks a minimal graph. You can view this as a backward Euler time
step for the flow with the nonlinearity lagged:

fk+1 − fk
τ

=
√

1 + |∇fk|2 div
( ∇fk+1√

1 + |∇fk|2
)
,

and as τ → ∞ this reduces to ∇·(wk∇fk+1) = 0. A true backward Euler step (finite τ)
yields a discrete area decrease; the τ →∞ relaxation guarantees decrease of Jk.
If ∥∇fk∥L∞ ≤ M for all k with M small enough, the update map T : f 7→ fk+1 is a

contraction on H1
0 (D), so fk → f∞ solving the minimal surface equation. On a mesh it is

just a weighted Poisson solve each step; keep φ on the boundary and stop when successive
iterates change little or when the residual of the minimal surface equation is small. Optional
damping

fk+1 ← θfk+1 + (1− θ)fk (0 < θ ≤ 1)

can help when slopes are larger. This gives a simple way to move from any spanning graph
toward a minimal one while keeping the boundary fixed throughout.

7. Conclusion

We bridged area to a more workable functional (energy), pinned the rim to stop reparametriza-
tion drift, relaxed the interior by harmonic replacement to get an energy minimizer, and then
used domain reparametrization to force even stretch (conformality), so area equals energy
at the minimizer.

For computation, minimal graphs are steady states of mean curvature flow. Moving by
mean curvature (∂tX = −H ν, boundary fixed) decreases area. Applications such as geome-
try processing leverage mean-curvature-type flows to fair and smooth surfaces while keeping
salient features. In imaging and vision, curvature regularization underlies denoising. In
interfacial flows, capillarity drives motion by curvature with prescribed contact angles at
solids, modeling droplet and film dynamics in microfluidics such as a soap bubble.
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