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1. Introduction

Hyperbolic geometry was one of the most important discoveries of the nineteenth cen-
tury. Pioneers such as Nikolai Lobachevsky and János Bolyai developed hyperbolic geome-
try axiomatically, without providing concrete models. Later, mathematicians like Eugenio
Beltrami and Felix Klein constructed explicit models of the hyperbolic plane, and Henri
Poincaré introduced the upper half-plane model. The aim of this paper is to study the
relationship between the isometries of the upper half-plane and Möbius transformations.

2. The upper half-plane model

We will introduce the upper half-plane

H = {v + wi ∈ C : w > 0}
as a convenient model for studying hyperbolic geometry. The key point is that the pseudo-
sphere, which initially serves as an example of a surface with constant negative curvature,
has the first fundamental form

dv2 + dw2

w2
.

If we extend this expression to the entire domain w > 0, we obtain a well-defined metric on
the whole upper half-plane. In this way, the fundamental metric properties can be analyzed
in H in the same way as on the pseudosphere.
In particular, the geodesics on the pseudosphere correspond to vertical lines and semicircles

orthogonal to the axis w = 0 in the upper half-plane. Thus, H preserves the same geometric
behavior as the pseudosphere, but in a simpler setting for study. We will refer to geodesics
in H as hyperbolic lines.
Hyperbolic geometry is a type of non-Euclidean geometry in which Euclid’s fifth postulate

does not hold. We shall present an important property of hyperbolic geometry.

Proposition 2.1.

• Let p and q be points in H. Then there is a unique hyperbolic line joining p and q.
• Let l be a hyperbolic line in H and p is a point not on l, there are infinitely many
hyperbolic lines passing through p that do not intersect l.

Proof. For (i), we need to consider two cases.

• If Re(p) = Re(q) = r. In this case, the Euclidean l line given by l = {z ∈ C | Re(z) =
r} passes through p and q and is perpendicular to the real axis. So the line lh = l ∩ H
is a hyperbolic line passing through p and q.
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• If Re(p) ̸= Re(q) then the perpendicular bisector of the line segment joining p and
q must intersect the real axis at a unique point r. So, the euclidean circle C with
centre r and radius |p− r| = |q− r| passes through p and q. The intersection C ∩ H
is a hyperbolic line passing through p and q.

In each case the euclidean circles and lines that we used to construct this hyperbolic line are
unique. So the hyperbolic line passing through p and q must be unique.
For (ii), we need to consider two cases.

• If l is a vertical line passing through r ∈ R then, Re(p) ̸= r. So there is a vertical
line l′ passing through p and r′ ∈ R. Then the Euclidean circle passing through p
and q is parallel to l for any q between r and r′.

• If l is contained in a Euclidean semicircle C, let C ′ be the Euclidean semicircle that is
concentric to C and passes through p. Let q be a real number lying between C and
C ′. Then the semicircle D with center on R passing through p and q is disjoint from
C and different from C ′, for every real q lying between C and C ′.

■

3. Isometries of H

Isometries are fundamental transformations in hyperbolic geometry because they preserve
the first fundamental form and all metric properties. Studying these transformations al-
lows us to understand the geometry of H. In this section, we present some basic examples
of isometries. Readers who wish to see a more geometric approach to isometries of the
hyperbolic plane are referred to [Sti92].

Definition 3.1. A map F : H → H is called an isometry for this first fundamental form if,
given

F (v, w) = (ṽ(v, w), w̃(v, w)),

the first fundamental form is preserved

dṽ2 + dw̃2

w̃2
=

dv2 + dw2

w2

at every point of H.

Some basic examples of isometries in H are the following.

Translation: Tb(z) = z + b, b ∈ R,

Positive dilation: Dλ(z) = λz, λ > 0,

Inversion in the unit circle centered at the origin: I(z) = −1

z
.

Proposition 3.2. Each of Tb, Dλ, and I is an isometry of H.

Proof.
We will use the following fact.

Proposition 3.3. Let σ(u, v) be a surface patch and let σ̃(ũ, ṽ) be a reparametrization of
σ(u, v) and let
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E du2+2F du dv+Gdv2, Ẽ dũ2+2F̃ dũ dṽ+ G̃ dṽ2 be their first fundamental forms. Then
the differentials satisfy

du =
∂u

∂ũ
dũ+

∂u

∂ṽ
dṽ, dv =

∂v

∂ũ
dũ+

∂v

∂ṽ
dṽ.

1. Translation Tb(z) = z + b.
If z = v + iw then Tb(z) = ṽ + iw̃ with ṽ = v + b, w̃ = w. Hence

dṽ = dv, dw̃ = dw,

and therefore
dṽ2 + dw̃2

w̃2
=

dv2 + dw2

w2
.

2. Dilation Dλ(z) = λz.
Write z = v + iw. Then Dλ(z) = ṽ + iw̃ with ṽ = λv, w̃ = λw, so

dṽ = λ dv, dw̃ = λ dw.

Hence
dṽ2 + dw̃2

w̃2
=

λ2(dv2 + dw2)

(λw)2
=

dv2 + dw2

w2
.

3. Inversion in the unit circle I(z) = −1/z.
Write z = v + iw. Then

I(z) = −1

z
= − v − iw

v2 + w2
= ṽ + iw̃,

so

ṽ = − v

v2 + w2
, w̃ =

w

v2 + w2
.

By computing the partial derivatives:

∂ṽ

∂v
=

−(v2 + w2) + 2v2

(v2 + w2)2
=

w2 − v2

(v2 + w2)2
,

∂ṽ

∂w
=

2vw

(v2 + w2)2
,

∂w̃

∂v
=

−2vw

(v2 + w2)2
,

∂w̃

∂w
=

v2 − w2

(v2 + w2)2
.

Thus

dṽ =
w2 − v2

(v2 + w2)2
dv +

2vw

(v2 + w2)2
dw,

dw̃ =
−2vw

(v2 + w2)2
dv +

v2 − w2

(v2 + w2)2
dw.



4 ROY YARANGA-ALMEIDA

And computing the numerator of the transformed form:

dṽ2 + dw̃2 =
(w2 − v2)2 + 4v2w2

(v2 + w2)4
(dv2 + dw2)

=
(v2 + w2)2

(v2 + w2)4
(dv2 + dw2) =

1

(v2 + w2)2
(dv2 + dw2).

Since w̃ =
w

v2 + w2
we have w̃2 =

w2

(v2 + w2)2
, hence

dṽ2 + dw̃2

w̃2
=

1

(v2 + w2)2
(dv2 + dw2)

w2

(v2 + w2)2

=
dv2 + dw2

w2
.

This completes the proof. ■

3.1. Möbius transformations.

Möbius transformations are closely related to the isometries of H. In this section, we study
them and present the main result that every real Möbius transformation preserving H is an
isometry. For a detailed treatment of Möbius transformations in the upper half-plane, the
reader may consult [And05].

Definition 3.4. A real Möobius transformation is a map

M(z) =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc ̸= 0.

Proposition 3.5. Let

M(z) =
az + b

cz + d
,

be a real Möbius transformation. Then for z = v + iw we have

ImM(z) =
(ad− bc)w

|cz + d|2
.

In particular, if M preserves H (maps H to itself), then ad− bc > 0.

Proof. Compute

M(z) =
(av + b) + i aw

(cv + d) + i cw
=

(
(av + b) + i aw

)(
(cv + d)− i cw

)
|cz + d|2

=
(av + b)(cv + d) + aw · cw + i

(
aw(cv + d)− (av + b)cw

)
|cz + d|2

.

Hence

ImM(z) =
aw(cv + d)− cw(av + b)

|cz + d|2
=

(ad− bc)w

|cz + d|2
.

For w > 0 the sign of ImM(z) equals the sign of (ad−bc); ifM preserves H then ImM(z) > 0
for all w > 0, so ad− bc > 0. ■
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Theorem 3.6. Every real Möbius transformation

M(z) =
az + b

cz + d
, a, b, c, d ∈ R,

that preserves H is an isometry of H.

Proof. Since M preserves H, ad − bc > 0. If c = 0 then M(z) =
a

d
z +

b

d
. Thus, M(z) =

Tb/d ◦Da/d(z) (note a/d > 0 since ad− bc = ad > 0).
If c ̸= 0 a rearrangement gives

M(z) =
az + b

cz + d
=

a

c
− ad− bc

c2
· 1

z +
d

c

= Ta/c ◦D(ad−bc)/c2 ◦ I ◦ Td/c(z),

where Tt(z) = z+ t, Dλ(z) = λz, and I(z) = −1/z. Since ad− bc > 0, the factor (ad− bc)/c2

is positive and each factor map is an isometry, and since any composition of isometries is an
isometry, M is an isometry. ■
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