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1. INTRODUCTION

Hyperbolic geometry was one of the most important discoveries of the nineteenth cen-
tury. Pioneers such as Nikolai Lobachevsky and Janos Bolyai developed hyperbolic geome-
try axiomatically, without providing concrete models. Later, mathematicians like Eugenio
Beltrami and Felix Klein constructed explicit models of the hyperbolic plane, and Henri
Poincaré introduced the upper half-plane model. The aim of this paper is to study the
relationship between the isometries of the upper half-plane and M6bius transformations.

2. THE UPPER HALF-PLANE MODEL
We will introduce the upper half-plane
H={v+wieC:w>0}

as a convenient model for studying hyperbolic geometry. The key point is that the pseudo-
sphere, which initially serves as an example of a surface with constant negative curvature,
has the first fundamental form

dv? + dw?

w?

If we extend this expression to the entire domain w > 0, we obtain a well-defined metric on
the whole upper half-plane. In this way, the fundamental metric properties can be analyzed
in H in the same way as on the pseudosphere.

In particular, the geodesics on the pseudosphere correspond to vertical lines and semicircles
orthogonal to the axis w = 0 in the upper half-plane. Thus, H preserves the same geometric
behavior as the pseudosphere, but in a simpler setting for study. We will refer to geodesics
in H as hyperbolic lines.

Hyperbolic geometry is a type of non-Euclidean geometry in which Fuclid’s fifth postulate
does not hold. We shall present an important property of hyperbolic geometry.

Proposition 2.1.

e Let p and g be points in H. Then there is a unique hyperbolic line joining p and gq.
e Let [ be a hyperbolic line in H and p is a point not on [, there are infinitely many
hyperbolic lines passing through p that do not intersect (.

Proof. For (i), we need to consider two cases.

e If Re(p) = Re(q) = r. In this case, the Euclidean [ line given by | = {z € C | Re(z) =
r} passes through p and ¢ and is perpendicular to the real axis. So the line [, =1 N H
is a hyperbolic line passing through p and q.
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e If Re(p) # Re(q) then the perpendicular bisector of the line segment joining p and
g must intersect the real axis at a unique point r. So, the euclidean circle C with
centre r and radius |[p — r| = |¢ — r| passes through p and ¢. The intersection C N H
is a hyperbolic line passing through p and q.

In each case the euclidean circles and lines that we used to construct this hyperbolic line are
unique. So the hyperbolic line passing through p and ¢ must be unique.
For (7i), we need to consider two cases.

e If [ is a vertical line passing through r € R then, Re(p) # r. So there is a vertical
line I’ passing through p and " € R. Then the Euclidean circle passing through p
and ¢ is parallel to [ for any ¢ between r and r'.

e If [ is contained in a Euclidean semicircle C, let C' be the Euclidean semicircle that is
concentric to C and passes through p. Let ¢ be a real number lying between C' and
C’. Then the semicircle D with center on R passing through p and ¢ is disjoint from
C' and different from C’, for every real ¢ lying between C' and C".

3. ISOMETRIES OF H

[sometries are fundamental transformations in hyperbolic geometry because they preserve
the first fundamental form and all metric properties. Studying these transformations al-
lows us to understand the geometry of H. In this section, we present some basic examples
of isometries. Readers who wish to see a more geometric approach to isometries of the
hyperbolic plane are referred to [Sti92].

Definition 3.1. A map F': H — H is called an isometry for this first fundamental form if,
given

F(v,w) = (8(v,w), ©(v, w)),
the first fundamental form is preserved

dv® + dw?  dv® + dw®
w? B w?

at every point of H.

Some basic examples of isometries in H are the following.
Translation: Ty(z) = z + b, beR,
Positive dilation: D, (z) = Az, A >0,

Inversion in the unit circle centered at the origin: I(z) = ——.
z

Proposition 3.2. Each of Ty, D), and [ is an isometry of H.

Proof.
We will use the following fact.

Proposition 3.3. Let o(u,v) be a surface patch and let o(u,?) be a reparametrization of
o(u,v) and let
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E du®+2F dudv+ G dv?, E di? +2F di do+ G di® be their first fundamental forms. Then
the differentials satisfy
ou du ov v
du = —du + — dv dv = — du + — do.
“CHTHnY YTa%tHm®
1. Translation 7,(z) = z+0.
If 2 =v+ 4w then T)(2) = ¥ + 4w with o = v + b, W = w. Hence
dv = dv, dw = dw,

and therefore

dv® + dw®  dv? 4 dw?
@ w?

2. Dilation D,(z) = Az.
Write z = v 4 tw. Then D)(z) = 0 + iw with 0 = Av, W = \w, so

di = \dv,  div = \dw.

Hence
dvo? +dw*  N(dv® +dw?®)  dv* + dw?
w32 B (Aw)? o w?
3. Inversion in the unit circle I(z) = —1/z.
Write z = v + 4w. Then
1 v —w O
I(Z) = —; = —m = v+,
S0
- v - w
V=—-——— W=—-:.
02+ w?’ v? + w?

By computing the partial derivatives:

20— +w)+20* w0
ov (v2 4+ w?)? (v2 + w?)?’
@ o 2ow

ow (v +w?)?’

ow —2vw

v (V2 + w?)?’

ow v —w?

ow (V2 + w?)?’

Thus
w? —v? 20w
dv = d d
v (v2 4+ w?)? vt (v2 4+ w?)? b
-9 2 .2
div=—"Y g+ LY g

(V2 + w?)? (V2 + w?)?
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And computing the numerator of the transformed form:

(w? — v%)? + dv*w?

dv* + dw? = 2 ) (dv® + dw?)
v? + w?)?
= % (d’U2 + dwz) = T3, o2 (dU2 + dwz)
(v2 +w?) (v2 4+ w?)
2
. N w Y w
Since w = R we have w* = m, hence
1 2 2
gt +dit e W TN g gy
g - w? T W
(v2 + w?)?
This completes the proof. [ |

3.1. Mobius transformations.

Mobius transformations are closely related to the isometries of H. In this section, we study
them and present the main result that every real Mébius transformation preserving H is an
isometry. For a detailed treatment of Mobius transformations in the upper half-plane, the
reader may consult [And05].

Definition 3.4. A real Mdéobius transformation is a map

az+b

M(z):m, a,b,c,d € R, ad—bec+#0.
Proposition 3.5. Let
az+b
M —
(2) cz+d’
be a real Mobius transformation. Then for z = v + ‘w we have
(ad — bc) w
ImM((z) = —+—.
m M(z) |cz + d|?

In particular, if M preserves H (maps H to itself), then ad — bc > 0.
Proof. Compute

_(av+0b) +iaw ((av+b) +iaw)((cv+d) —icw)
M(z) = (cv+d)+icw lcz + d|?

(av + b)(cv + d) + aw - cw + i(aw(cv + d) — (av + b)ew)
lcz + d|? '

Hence
aw(cv +d) — cw(av+b)  (ad — be) w
m M(z) ez + dJ? ez + dJ?
For w > 0 the sign of Im M(z) equals the sign of (ad—bc); if M preserves H then Im M (2) > 0
for all w > 0, so ad — bc > 0. [ |
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Theorem 3.6. Every real Mobius transformation

M(z):%, a,b,c,d € R,
cz

that preserves H is an isometry of H.

b
Proof. Since M preserves H, ad — bc > 0. If ¢ = 0 then M(z) = %z + 7 Thus, M(z) =

Thya © Dqja(2) (note a/d > 0 since ad — be = ad > 0).
If ¢ # 0 a rearrangement gives

M(z):az—I—b_g_ad—bc‘ 1

— - y
cz+d ¢ c 1+
c

= 1qg/c© D(ad—bc)/c2 olo Td/c(z)a

where T}(z) = 2 +t, Dy(2) = Az, and I(z) = —1/z. Since ad —bc > 0, the factor (ad —bc)/c?
is positive and each factor map is an isometry, and since any composition of isometries is an
isometry, M is an isometry. [ |
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