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1. Introduction

Calculus on manifolds is the extension of familiar calculus concepts (derivatives, integrals,
etc.) to more general spaces called manifolds. A manifold is essentially a space that looks
locally like flat Euclidean space, allowing us to do calculus on “curved” spaces much as we
do in Rn. By developing calculus in this generalized setting, one can unify various results
from multivariable calculus under a common framework. In particular, the celebrated gener-
alized Stokes’ Theorem encapsulates classical theorems such as the fundamental theorem of
calculus, Green’s theorem, Stokes’ (surface) theorem, and the divergence theorem as special
cases. In this exposition, we aim to give an intuitive overview of calculus on manifolds with
minimal formalism, emphasizing geometric intuition and clear examples.

We will proceed as follows. First, we clarify what manifolds are and give some simple
examples. Next, we discuss differentiation on manifolds, introducing the concept of tangent
vectors and the derivative as a linear map. We then introduce differential forms as a natural
language for integration on manifolds, leading to a statement of the generalized Stokes’
Theorem. Throughout, we use the circle and sphere as running examples to illustrate the
concepts. The discussion is intended for readers with only a basic background in multivariable
calculus, and references for further accessible reading are provided at the end.

2. What is a Manifold?

Intuitively, a manifold is a space that, if you zoom in close enough, looks like flat Euclidean
space. More formally, an n-dimensional manifold is a topological space in which every point
has a neighborhood that can be continuously deformed (flattened out) into an open subset
of Rn . This means that although the space may be curved or complicated globally, locally it
has coordinates and geometry like the familiar Rn. For example, the surface of the Earth (a
sphere) is a 2-dimensional manifold: each small patch of Earth’s surface is nearly flat, and
one can draw a local map (coordinate chart) that looks like a piece of the plane. Similarly, a
curve like a circle is a 1-dimensional manifold (locally a line), and a torus (doughnut shape)
is a 2-dimensional manifold that locally resembles a plane. [1]

Every manifold has an associated dimension n, which indicates how many coordinates are
needed to parametrize a local neighborhood. To work with manifolds, mathematicians use
collections of coordinate charts (an atlas) that cover the manifold. On overlapping regions
of charts, coordinates transition by smooth transformations, ensuring the manifold has a
well-defined smooth structure. In this paper we will restrict attention to smooth manifolds,
where all the transition maps are differentiable, so that calculus makes sense. Intuitively,
“smooth” means the manifold has no sharp corners or edges (contrast the smooth circle
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y2+x2 = 1 with a non-smooth corner at y = |x|) . With the basic idea of manifolds in place,
we can now discuss how to differentiate and integrate on them. [2]

3. Differentiation and Tangent Vectors

Even on a curved manifold, we can talk about a function changing or a curve having a
velocity. The key idea is the tangent vector at a point on the manifold. Geometrically, a
tangent vector is like a direction in which one can move on the manifold starting from that
point. If you imagine standing on the surface of a sphere, the directions you can walk form
a plane tangent to the sphere at your feet. Formally, a tangent vector v at a point p can be
defined as the velocity vector of some smooth curve γ(t) on the manifold passing through p
at t = 0. This tangent vector lives in a linear space (the tangent space at p), which in an
n-dimensional manifold is isomorphic to Rn (though it “sits” tangent to the manifold at p).

Now, given a smooth function f on a manifold M , how do we differentiate f at a point p?
In multivariable calculus, one learns that the derivative (or differential) df at p is a linear
map that takes a direction (vector) and returns the directional rate of change of f in that
direction. The same idea holds on manifolds: df(p) is a linear map on the tangent space at p.
If v is a tangent vector at p, then df(p)[v] (often denoted v(f)) gives the directional derivative
of f along v. In local coordinates (x1, . . . , xn) around p, one can write v in components as
v = v1 ∂

∂x1

∣∣
p
+ · · ·+ vn ∂

∂xn

∣∣
p
. Correspondingly, df(p) in coordinates is given by the gradient:

df(p)[v] = v1 ∂f
∂x1 (p) + · · · + vn ∂f

∂xn (p). This generalizes the notion that in Rn, the gradient
∇f dot a direction vector v gives the directional derivative. Viewing the derivative as a
linear map on tangent vectors is a more fundamental perspective than thinking of it just as
a gradient vector .

As a simple example, consider the unit circle S1 (which is a 1-dimensional manifold) with
a coordinate angle θ. A smooth function f : S1 → R can be thought of as f(θ) in that
coordinate. The tangent space at any point on S1 is a line (tangent to the circle). A tangent
vector can be identified with an angular direction d/dθ. The derivative df at a point (with
angle θ) applied to this tangent vector just yields df(d/dθ) = f ′(θ), the ordinary derivative
with respect to the angle. This matches our intuition that the rate of change of f as we go
around the circle is given by the derivative in the angle coordinate.

4. Differential Forms and Integration

In order to integrate on manifolds, we need a tool that generalizes the “integration element”
(like dx, dx, dy, etc.) from calculus. The language of differential forms provides this in an
elegant, coordinate-independent way. A differential form is an object that can be integrated
over a manifold, and it inherently accounts for changes of coordinates (so that no Jacobian
determinant needs to be manually inserted when changing variables).

Differential forms come in varying degrees. A 0-form is simply a function on the manifold
(something that can be integrated in the 0-dimensional sense, i.e. evaluated at a point). A
1-form is an object that eats one tangent vector (at each point) and produces a number. For
instance, in the plane R2, an example of a 1-form is ω = P (x, y), dx+Q(x, y), dy, which when
given a tangent direction (vx, vy) yields P (x, y)vx + Q(x, y)vy. A 2-form eats two tangent
vectors and returns a number, and so on. These forms can be added, scaled, and “wedged”
together (using the wedge product ∧) to produce higher-degree forms. The wedge ∧ is an
antisymmetric product, meaning for example dx ∧ dy = −, dy ∧ dx, which is important for
keeping track of orientation in integration.
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Crucially, differential forms provide a systematic way to integrate on manifolds. A 1-form
can be integrated along a curve (yielding a line integral), a 2-form can be integrated over
a surface, etc. In fact, one can say that differential forms exist to be integrated : given a
small k-dimensional piece of a manifold (spanned by k tangent vectors), a k-form will assign
a number to that piece (like an oriented volume or area element), and integrating the form
means summing up all those contributions over the manifold. Because forms transform under
coordinate changes in a way that exactly cancels out the Jacobian factor, integrals of forms
are independent of the choice of coordinates. This generalizes the change-of-variable formula
from basic calculus.

For example, on the 2-dimensional sphere S2, there is a natural 2-form Ω that represents
area (in local latitude–longitude coordinates, Ω might be written as R2 sinϕ, dϕ ∧ dθ for a
sphere of radius R). Integrating this 2-form Ω over the entire sphere

∫
S2 Ω will yield the

surface area 4πR2. As another example, on a curve (1-dimensional manifold), the ordinary
line element ds is a 1-form; integrating ds along the curve gives its length. These examples
show how differential forms generalize familiar integration concepts (length, area, volume)
to arbitrary manifolds.

An important operation on differential forms is the exterior derivative, denoted d. The
exterior derivative takes a k-form and produces a (k + 1)-form, generalizing the notions of
gradient, curl, and divergence from vector calculus. For instance, if f is a 0-form (function),
then df is the 1-form representing its differential (whose action on a tangent vector gives the
directional derivative of f). If ω = P, dx+Q, dy is a 1-form in the plane, then dω is a 2-form

given (in Cartesian coordinates) by dω =
(

∂Q
∂x

− ∂P
∂y

)
dx ∧ dy. This dω corresponds to the

curl of the vector field (P,Q) in the plane. In general, d(dα) = 0 for any form α (analogous
to the fact that the curl of a gradient and the divergence of a curl are zero). With these tools
in hand, we can now state the powerful general Stokes’ theorem that ties differentiation and
integration together.

5. The Generalized Stokes’ Theorem

Stokes’ theorem is the capstone that generalizes the fundamental theorem of calculus and
all the major theorems of vector calculus to manifolds en.wikipedia.org . In its general form,
it is a remarkably compact statement: if M is an oriented n-dimensional manifold with
boundary ∂M , and ω is an (n− 1)-form on M , then∫

M

dω =

∫
∂M

ω,

assuming the proper orientation on ∂M . In words, “the integral of the exterior derivative
of ω over a manifold equals the integral of ω over the boundary of the manifold.” This is
often called the Stokes–Cartan theorem. It contains as special cases many familiar results
en.wikipedia.org . For example:

• In one dimension, if M = [a, b] is a line segment (a 1-manifold with boundary a, b)
and ω = F (x) is a 0-form (function), then dω = F ′(x), dx and the formula reads∫ b

a
F ′(x), dx = F (b)− F (a). This is the Fundamental Theorem of Calculus.

• In two dimensions, if M is a region in the plane with boundary curve ∂M , and
ω = P, dx +Q, dy is a 1-form on M , then dω = (∂Q/∂x− ∂P/∂y), dx ∧ dy. Stokes’
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theorem in this case gives

∫∫
M

(∂Q
∂x

− ∂P

∂y

)
, dx, dy =

∮
∂M

P, dx + Q, dy, which is

precisely Green’s Theorem in the plane.
• In three dimensions, if M is a volume in R3 with closed surface boundary ∂M ,
and ω is a 2-form corresponding to a vector field F (through ω = Fx, dy ∧ dz +
Fy, dz ∧ dx + Fz, dx ∧ dy), then dω is a 3-form corresponding to (∇ · F), dx ∧ dy ∧

dz. Stokes’ theorem becomes

∫∫∫
M

(∇ · F), dx, dy, dz =

∫∫
∂M

F · dS, which is the

Divergence Theorem (Gauss’s law). Similarly, the classical Kelvin–Stokes theorem
(relating surface integrals of curl to line integrals around the boundary) is another
instance.

Thus, the single formula
∫
M
dω =

∫
∂M

ω simultaneously generalizes all these results. It
underscores that differentiation and integration are two sides of the same coin: the integration
of a “derivative” over a region is determined by the values on the boundary. This unifying
perspective is one of the biggest payoffs of calculus on manifolds. [3]

6. Simple Examples: Circle and Sphere

We now revisit our two basic examples, the circle and the sphere, to see calculus on
manifolds in action.

The Circle S1. The unit circle S1 can be viewed as a 1-dimensional manifold (without
boundary). It can be covered by two coordinate charts (e.g. an angle coordinate θ on
[0, 2π) with a cut, or two overlapping parametrizations from 0 to 2π). On S1, consider a
smooth function f(θ) (as earlier). The derivative df is a 1-form on the circle; in fact, in the
θ coordinate it is f ′(θ), dθ. If we integrate the derivative around the entire circle, we get∫
S1 f

′(θ), dθ. By the 1-dimensional Stokes’ theorem (essentially the fundamental theorem of

calculus on a closed loop), this should equal f(θ)
∣∣θ = 2π − f(θ)

∣∣θ = 0. But since θ = 0 and
θ = 2π correspond to the same point on the circle, the result is zero. This illustrates that∮
S1 df = 0 for any exact 1-form df , consistent with the general fact that a closed manifold
(one without boundary, like S1) has ∂M = ∅, so

∫
M
dω =

∫
∅ ω = 0.

As a more concrete example, consider the 1-form ω = dθ on the circle (which is the
derivative of the identity angle function). Integrating this around S1 gives

∫
S1 dθ = 2π. In

this case ω is not globally the derivative of a single-valued function on S1 (since θ is multi-
valued or discontinuous), so Stokes’ theorem does not directly apply to ω globally. However,
we can cover the circle with two charts and observe that the discrepancy (the jump in θ) at
the cut yields the 2π. This ties into more advanced topological ideas (the form dθ represents
a nontrivial cohomology class on the circle), but the main takeaway for our purposes is
understanding how integration on a simple closed manifold works.

The Sphere S2. The 2-dimensional sphere S2 (unit sphere in R3) is a 2-manifold without
boundary. We already mentioned that one can integrate a suitable 2-form on S2 to get the
surface area. For instance, in spherical coordinates, an area 2-form is Ω = sinϕ, dϕ ∧ dθ

on S2 of radius 1. Integrating,

∫∫
S2

sinϕ, dϕ, dθ = 4π, the well-known surface area. Now,

since S2 has no boundary, Stokes’ theorem tells us that for any 1-form ω defined on all
of S2,

∫∫
S2 dω =

∫
∂S2 ω =

∫
∅ ω = 0. For example, take a vector field on the sphere and

the associated flux 2-form ω (as in the divergence theorem analogy). The total “outflow”
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through the closed surface S2 must be zero if the field has no sources inside. This is consistent
with the fact that, say, the divergence of a curl is zero (any field that is globally the curl of
another has zero net flux). In a more geometric vein, consider a 1-form α on S2 that is like
a “potential” for some 2-form ω = dα (not every 2-form on S2 has a global potential 1-form,
but if it does, we call ω an exact form). Stokes’ theorem then guarantees the integral of ω
over S2 is zero.

These simple examples illustrate the general principles on familiar objects. The circle and
sphere also hint at deeper topological phenomena (like the inability to define a global angle
coordinate on S1 without a cut, or the existence of divergence-free vector fields on S2 that are
not curls globally). However, for our purposes, they serve to build intuition: manifolds allow
calculus to be done in situ on curved spaces, and Stokes’ theorem will faithfully reproduce
and generalize the results we expect.

7. Concluding Thoughts

We have given a whirlwind tour of calculus on manifolds, focusing on the big picture and
geometric intuition. The concept of a manifold allows us to extend calculus beyond flat
space, and differential forms provide a powerful and elegant language for integration that
makes formulas coordinate-free. The generalized Stokes’ theorem stands out as a unifying
theorem that includes as special cases nearly every major theorem of calculus, illustrating
the unity underlying differentiation and integration in all dimensions.

There is much more to explore beyond this brief introduction. For instance, the ideas here
lead into de Rham cohomology, which connects differential forms to the topological features
of manifolds (as briefly hinted by the examples on S1 and S2). But even within classical
calculus on manifolds, mastering these concepts can greatly deepen one’s understanding of
multivariable calculus and differential geometry. We hope this exposition has provided an
accessible starting point. For further reading, the following resources are recommended.
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