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1 Introduction

De Rham cohomology connects differential forms on smooth manifolds to topological invariants.
The basic idea is that when you differentiate a differential form twice, you always get zero. This
property d2 = 0 lets us build cohomology groups that detect holes and other topological features
of a manifold.

Here’s a simple example. On the circle S1, the 1-form dθ (where θ is the angular coordinate)
is closed since d(dθ) = 0. But there’s no function f on S1 with df = dθ. Why? Because θ isn’t
well-defined as a function on the whole circle. It jumps by 2π when you go around. This failure of
dθ to be exact reflects the fact that S1 has a hole in it.

The de Rham cohomology groups organize these observations. They measure which closed forms
fail to be exact, and this failure corresponds to topological properties of the manifold. The de Rham
theorem makes this precise: these cohomology groups are isomorphic to the singular cohomology
groups with real coefficients.

2 Differential Forms and Pullbacks

Let M be a smooth n-dimensional manifold. A differential k-form assigns to each point p ∈ M an
alternating k-linear map on the tangent space TpM , and this assignment varies smoothly with p.

Definition 1. The space of smooth k-forms on M is denoted Ωk(M). For k = 0, we have Ω0(M) =
C∞(M), the smooth functions on M .

In local coordinates (x1, . . . , xn), any k-form can be written as

ω =
∑

i1<···<ik

ωi1···ik dx
i1 ∧ · · · ∧ dxik ,

where the coefficients ωi1···ik are smooth functions.
The wedge product combines a k-form and an ℓ-form to give a (k + ℓ)-form. It satisfies

α ∧ β = (−1)kℓβ ∧ α

for α ∈ Ωk(M) and β ∈ Ωℓ(M).

Definition 2 (Exterior derivative). The exterior derivative d : Ωk(M) → Ωk+1(M) is the unique
linear operator satisfying:

1. On functions f ∈ Ω0(M), we have df =
∑n

i=1
∂f
∂xidx

i in local coordinates.
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2. d(dω) = 0 for any form ω.

3. d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ for α ∈ Ωk(M).

To compute d in coordinates, if ω =
∑

I ωI dx
I using multi-index notation, then

dω =
∑
I

n∑
j=1

∂ωI

∂xj
dxj ∧ dxI .

The key property is d2 = 0. You can check this directly using the equality of mixed partials
and the antisymmetry of the wedge product.

Definition 3 (Pullback). If f : M → N is smooth and ω ∈ Ωk(N), the pullback f∗ω ∈ Ωk(M) is
defined by

(f∗ω)p(v1, . . . , vk) = ωf(p)(dfp(v1), . . . , dfp(vk)).

This operation is linear, commutes with wedge products and with d, and is fundamental to the
functoriality of de Rham cohomology.

3 De Rham Cohomology

The exterior derivative gives us a sequence

0 → Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ · · · d−→ Ωn(M)

d−→ 0.

Since d2 = 0, the image of each d is contained in the kernel of the next one.

Definition 4. A k-form ω is called:

• closed if dω = 0

• exact if ω = dη for some (k − 1)-form η

Every exact form is closed, but not every closed form is exact. The obstruction to a closed form
being exact is what cohomology measures.

Definition 5. The k-th de Rham cohomology group is

Hk
dR(M) =

ker(d : Ωk → Ωk+1)

im(d : Ωk−1 → Ωk)
.

4 Integration of Forms

To use integration in cohomology, we need orientation.

Definition 6 (Orientation). A smooth n-manifold M is orientable if it admits a nowhere-vanishing
top-degree form. Choosing such a form fixes an orientation.

Definition 7 (Integration of top forms). If M is an oriented n-manifold and ω ∈ Ωn
c (M) has

compact support, then ∫
M

ω

is defined by patching local integrals through partitions of unity. For embedded oriented submani-
folds σ : ∆k → M , one defines ∫

σ
ω =

∫
∆k

σ∗ω.
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Theorem 1 (Stokes). If M is oriented with boundary and ω ∈ Ωn−1
c (M), then∫

M
dω =

∫
∂M

ω.

This theorem underlies the cochain map construction in the de Rham theorem.

5 Basic Examples

Example 1 (Euclidean space). For M = Rn, we have

Hk
dR(Rn) =

{
R if k = 0

0 if k ≥ 1.

Theorem 2 (Poincaré Lemma). If U ⊆ Rn is star-shaped, every closed k-form on U with k ≥ 1 is
exact.

Example 2 (The circle). For S1,

Hk
dR(S

1) =

{
R k = 0, 1

0 k ≥ 2.

Example 3 (The n-sphere). For Sn with n ≥ 1,

Hk
dR(S

n) =

{
R k = 0, n

0 otherwise.

6 The Poincaré Lemma in Detail

Let’s prove the Poincaré lemma for a star-shaped domain U ⊆ Rn with center at the origin. The
idea is to construct a homotopy operator K : Ωk(U) → Ωk−1(U) such that

dK +Kd = id− π∗

where π : U → {0} is the constant map. Since π∗ is zero on forms of positive degree, this gives
dKω = ω for any closed k-form ω with k ≥ 1.

For a k-form ω =
∑

I ωI(x) dx
I , define

(Kω)(x) =
∑
|I|=k

∫ 1

0
tk−1

n∑
j=1

xjωjI(tx) dt

 dxI

where ωjI means the coefficient of dxj ∧ dxI in ω.
We can verify by direct calculation that dK+Kd gives the identity on forms of positive degree.

The key is that the star-shaped property ensures the integral is well-defined.

7 Mayer–Vietoris Sequence

The Mayer–Vietoris exact sequence is central for computing de Rham cohomology. If M = U ∪ V
with U, V open, then there is a long exact sequence

· · · → Hk−1
dR (U ∩ V )

δ−→ Hk
dR(M) → Hk

dR(U)⊕Hk
dR(V ) → Hk

dR(U ∩ V )
δ−→ · · ·

This allows computation of cohomology by covering M with simple pieces.
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8 The de Rham Theorem

Let Ck(M) denote the group of singular k-chains and ∂ the boundary operator. If ω ∈ Ωk(M) and
σ : ∆k → M is a singular k-simplex, define

I(ω)(σ)

∫
σ
ω =

∫
∆k

σ∗ω.

This gives a cochain I(ω) ∈ Ck(M ;R) = Hom(Ck(M),R).

Proposition 1 (Stokes implies cochain map). For all ω ∈ Ωk−1(M),

δ(I(ω)) = I(dω),

where δ is the singular coboundary. Equivalently, I : Ω•(M) → C•(M ;R) is a cochain map.

Proof sketch. By Stokes’ theorem,
∫
∂σ ω =

∫
σ dω for each singular simplex σ. Unwinding definitions

gives δ(I(ω)) = I(dω).

Therefore I descends to cohomology:

I : Hk
dR(M) −→ Hk(M ;R).

Theorem 3 (de Rham). For any smooth manifold M , the map I is an isomorphism for all k. It
is natural with respect to smooth maps and is an isomorphism of graded commutative R-algebras:

I([α] ∧ [β]) = I([α]) ⌣ I([β]).

Idea of proof. Choose a good cover of M by contractible opens. On each open set, Poincaré lemma
identifies de Rham and singular cohomology (both vanish in positive degrees). Using Mayer–
Vietoris/Čech cohomology and partitions of unity, one promotes these local identifications to a
global one. Alternatively, Whitney forms give an explicit inverse to I.

Remark 1 (Naturality). If f : M → N is smooth, then for all [ω] ∈ H•
dR(N),

I
(
f∗[ω]

)
= f∗(I([ω])) ∈ H•(M ;R).

9 Applications

9.1 Cohomology ring of the torus

Let Tn = (S1)n with angular coordinates (θ1, . . . , θn). The 1-forms dθi are closed and not exact;
their classes xi = [dθi] ∈ H1

dR(T
n) are linearly independent. Wedge products give

xi1 ∧ · · · ∧ xik = [ dθi1 ∧ · · · ∧ dθik ],

and these span Hk
dR(T

n). Hence
H∗

dR(T
n) ∼= Λ∗(Rn

)
,

the exterior algebra on n degree-1 generators. Under Theorem 3, this matches the singular coho-
mology ring with cup product.
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9.2 Degree of a map

If M,N are closed, connected, oriented n-manifolds and f : M → N is smooth, the degree deg(f) ∈
Z is characterized by ∫

M
fω=deg(f)

∫
N ω for every top-degree form ω on N .

Equivalently, f :Hn
dR(N)→Hn

dR(M) is multiplication by deg(f) on the orientation classes. For f : S1 →
S1, f(eiθ) = eikθ has deg(f) = k since∫

S1

f(
dθ
2π )=

1
2π

∫ 2π
0 k dθ=k.

9.3 Path-independence and exactness

Let ω be a closed 1-form on a connected manifold M .

• If
∫
γ ω = 0 for every loop γ in M , then [ω] = 0 in H1

dR(M) and ω = df for some f (global

potential). Thus line integrals of ω are path-independent.

• In particular, if M is simply connected, then H1
dR(M) = 0 and every closed 1-form is exact.

9.4 Orientability and top cohomology

If M is a closed n-manifold, then

Hn
dR(M) ∼=

{
R if M is oriented and connected,

0 if M is nonorientable.

When M is oriented, any volume form represents the orientation class. Integration defines a
nondegenerate pairing

Hk
dR(M)×Hn−k

dR (M) −→ R, ([α], [β]) 7→
∫
M

α ∧ β,

which is the de Rham incarnation of Poincaré duality.

Example 4 (Recovering known computations). For T 2, H0 = R, H1 = R⟨[dθ1], [dθ2]⟩, H2 =
R⟨[dθ1 ∧ dθ2]⟩, and wedge corresponds to cup under Theorem 3. For Sn, the top class is the
(normalized) volume form.

Remark 2 (Mayer–Vietoris in practice). Combined with the Poincaré lemma, the Mayer–Vietoris
sequence lets you compute H•

dR by cutting M into contractible pieces and tracking overlaps. The
result automatically agrees with singular cohomology by Theorem 3.

10 Conclusion

De Rham cohomology provides a bridge between the analytic world of differential forms and the
topological world of invariants. Starting from d2 = 0, we built cohomology groups that record when
closed forms fail to be exact. Through spheres, circles, and tori, we saw how these groups detect
the presence of holes and higher-dimensional features.
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The de Rham theorem makes this precise: differential forms capture the same information as
singular cohomology with real coefficients. Applications such as computing the cohomology ring of
the torus, defining the degree of a map, and understanding orientability illustrate how geometry,
topology, and analysis connect in this theory.

It also links to Hodge theory, characteristic classes, and modern approaches in algebraic topology
and algebraic geometry.
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