ON SYMPLECTIC GEOMETRY

OM LALA

ABSTRACT. In Differential Geometry, we are often working with notions of length. In
Symplectic Geometry, those very notions are replaced with that of area. This paper aims to
give a self contained exposition to key ideas in introductory Symplectic Geometry, including
but not limited to Symplectic Forms, Manifolds, and the celebrated Darboux Theorem.

1. BACKGROUND
Definition 1.1 (Differential Forms). Let M be a smooth manifold. A differential k-form
on M is a smooth section of the bundle

A¥(T*M) — M,
that is, a smooth assignment p — w, € A* (T M). The space of smooth k-forms is denoted

QF(M). In particular, O-forms are smooth functions and 1-forms are smooth sections of the
cotangent bundle T*M.

Definition 1.2 (One Forms). In Differential Geometry, we can define a One Form to be a
differential form of degree one on a differentiable manifold. It is the mapping of the total
space onto a tangent bundle.

This can be thought of as measuring an oriented length.

Definition 1.3 (Two Forms). In Differential Geometry, we can define a Two Form to be
a differential form of degree two on a differentiable manifold. It is the mapping of the two
dimensional elements onto a tangent space.

This can once more be thought of as measuring an oriented area. We can extend this
notion to differntial k-forms, but we will negate that for the purpose of this paper

Definition 1.4 (Exterior Product). If w € QF(M) and n € Q(M) are differential forms,
their exterior product is the (k + ¢)-form

1
(wWAN)(v1,. .. Vgs) = P Z Sgn(U)W(UU(l), e an(k))U(’Ua(kH), e ,%(me)),

UESk+g

for v; € T,M. The exterior product is bilinear, associative, and graded-anticommutative:
wAn=(=1)"nAw.
In the most natural way, we can combine lower degree forms into higher degree forms

Definition 1.5 (Exterior Derivatives). For w € QF(M) written in local coordinates as

w:Zfldx“/\---/\da:ik,
I
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the exterior derivative is the (k + 1)-form

dw:deI/\dm“/\---/\d:Ei’“7
I

where df; = 3. 901 (a7,

7 OxI
This simply allows us to take the derivative of forms, telling us how it changes across the
manifold

2. SYMPLECTIC MANIFOLDS

Having introduced differential forms and their basic operations, we now turn to the special
case of 2-forms that are closed and nondegenerate. These give rise to the fundamental objects
of our paper, symplectic manifolds.

2.1. Symplectic Forms.
2.1.1. Bilinear Maps.

Definition 2.1 (Skew-Symmetric Bilinear Maps). Let V' be an m-dimensional real vector
space, and let
Q:VxV-—7R

be a bilinear map. € is skew-symmetric if, for all u,v € V,
Qu,v) = = Qv,u).
Theorem 2.2 (Standard Form). Let Q be a skew-symmetric bilinear form on V. Then there
exists a basis
Ury ..., Uk, €1,...,En, fl,...,fn
of V' such that:
Qu;,v) =0, foralli and allv €V,
Q(eiaej) :OZQ(f’L7f]>7 fOT CL” i?j7
Q(Gi, fJ) = 5@‘, fOT' all Z,j
Note that for the purposes of this paper, we will forgo the proof of this theorem. An
insightful proof and relevant remarks can be found on [dSO1]

2.1.2. Symplectic Vector Spaces and Manifolds.

Definition 2.3 (Linear Maps). The map Q:V — V* is the linear map defined by
Qv)(u) = Q(v, u).

The kernel of €2 is the subspace U introduced above.

Definition 2.4 (Symplectic Maps). A skew-symmetric bilinear form € is called symplectic
(or nondegenerate if ) is bijective, i.e.,

U = {0}.

Remark 2.5. Nondegeneracy is the essential requirement for a bilinear form to be symplectic.
It ensures that the form never ”"collapses” in any direction. This property is what allows
us to identify tangent vectors with covectors, and it lies at the heart of why symplectic
structures are so rigid.
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Definition 2.6 (Linear Symplectic Structures and Symplectic Vector Spaces). In the prior
definition,  is referred to as a linear symplectic structure on V| and the pair (V, Q) is called
a symplectic vector space.

Definition 2.7 (Symplectomorphism). A symplectomorphism ¢ between symplectic vector
spaces (V) and (V’, ) is a linear isomorphism

p:V =V
such that
0" QY =Q.
If such a symplectomorphism exists, (V) and (V', Q') are said to be symplectomorphic.

Remark 2.8. Symplectomorphisms play the role of “isometries” in symplectic geometry, ex-
cept they preserve area (given by the symplectic form) instead of lengths.

2.2. Tautalogical Forms.
Definition 2.9 (Cotangent Coordinates).

Let (U, x,...,x,) be a coordinate chart for X, with corresponding cotangent coordinates

(T*U7xl> <oy T, 517 s 7571)
Let us define a 2-form w on T*U by

=1

To verify that this definition does not depend on the choice of coordinates, consider the
1-form on T*U given by
i=1

One can clearly see that
w = —da.

Theorem 2.10. The 1-form « is intrinsically defined.

Proof. Let (U, x1,...,2,,&1,...,&) and (U, 2}, ... 2 &, ..., &) be two cotangent coordi-
nate charts. On U NU’, the coordinate systems are related by

/ az
fj :Zgza_z;

Since

oz’
r_ j
dxj = Z oz, dx;,

oz:z&dxizzg-dx; =d.
i J

it follows that
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2.2.1. Tautalogical Forms. For the purpose of defining Tautalogical Forms and Canonical
Symplectic Forms, we will continue with our prior theorem.

Definition 2.11 (Tautalogical Form). We can simply define our Tautalogical Form as the
1-form «

Remark 2.12. The tautological form « is sometimes called the Liouville 1-form. It plays the
role of a "universal potential” on the cotangent bundle: its exterior derivative —da produces
the canonical symplectic structure. This construction shows that every cotangent bundle
comes with a natural symplectic geometry built in.

Definition 2.13 (Canonical Symplectic Form). Similarly, we can simply define our Canon-
ical Symplectic Form as the two form w

Our Tautalogical and Symplectic Forms may not necessarily mean anything to the reader
yet, but they provide valuable definitions.
Let

M=TX "X
be the natural projection. A point p € M can be written as p = (x,§), where £ € T¥X.
Definition 2.14 (Tautalogical 1-Form). The tautological 1-form « is defined pointwise by
a, = (dm,)*¢ € M,
where (dm,)* denotes the transpose (pullback) of dm,. In other words,
(dmp)* € = € o dmy.

Definition 2.15 (Canonical Symplectic 2-Form). The canonical symplectic 2-form w on
T*X is defined by

w = —do.

In local coordinates (1, ..., %, &1, .., &), this takes the form
w=Y_dr; Adg.
i=1

3. SYMPLECTOMORPHISMS
3.1. Submanifolds.

Definition 3.1 (Immersion). Let M and X be smooth manifolds with dim X < dim M.
A smooth map 7 : X — M is called an immersion if, for every point p € X, the differential

dip : TpX — Ti(p)M
is injective.
An embedding is an immersion that is also a homeomorphism onto its image. A closed
embedding is a proper, injective immersion.

Definition 3.2 (Submanifold). A submanifold of M is a manifold X together with a closed
embedding

1: X — M.
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Definition 3.3 (Conormal Spaces). Let S be a k-dimensional submanifold of an n-dimensional
manifold X.

The conormal space at z € S is
NS={eT;X | £w)=0forall veT,S}.
Definition 3.4 (Conormal Bundles). The conormal bundle of S is
N*S={(z,§) eT"X | x €5, €€ N;S}.

Theorem 3.5. Let i : N*S — T*X denote the inclusion map, and let v be the tautological
1-form on T*X. Then

o= 0.
Proof. Choose local coordinates (U, z1, ..., x,) on X centered at a point x € S and adapted
to .S so that
UﬂS:{ZEk+1:'~~:J}n:0}.
Let (T*U,xy,...,2n,&1,-..,&,) be the corresponding cotangent coordinates. In these coor-
dinates, the submanifold N*S NT*U is given by
Tp= =2, =0, G=-=&=0.

Since v = Y"1 | & dx; on T*U, for p € N*S we have

(i*a)p = Oép}Tp(N*S) = Zgl dl’z

>k

=0.

span{aig%7 i<k}

Definition 3.6 (Twisted Product Form). For manifolds M, N with projections ms, 7wy,
forms w € QP(M), n € QI(N), and f € C*°(M x N), the twisted product form is

wXpn = (f Thw) AT,

Remark 3.7. The twisted product construction is a way to combine symplectic forms from
two manifolds into a single structure on the product. It foreshadows the importance of
product symplectic manifolds in Floer theory and mirror symmetry.

4. LocAL FORMS

Definition 4.1. e They are symplectomorphic if there exists a diffeomorphism ¢ :
M — M such that ¢p*w; = wp.
e They are strongly isotopic if there exists an isotopy p; : M — M with pjw; = wp.
e They are deformation-equivalent if there exists a smooth family of symplectic
forms {ws }1eo,1) interpolating between wy and w.
e They are simply called isotopic if they are deformation-equivalent and the cohomol-
ogy class [wy] is independent of ¢.

Remark 4.2. At this stage, we shift from algebraic constructions to more flexible geomet-
ric equivalences between symplectic forms. These notions (symplectomorphic, isotopic,
deformation-equivalent) provide the language for comparing symplectic structures, just as
diffeomorphisms and isotopies do in topology.
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Definition 4.3 (Moser Trick). Let {w;}cjo,1) be a smooth family of symplectic forms on a
manifold M such that [w;] is constant in de Rham cohomology. Then there exists an isotopy
vt M — M with ¢fw; = wp.

Note that this is an important theorem with an interesting proof. We defer this to [dS01].

Remark 4.4. The Moser trick is a powerful deformation argument. Its key insight is that
instead of working directly with symplectic forms, one studies the vector fields that transport
them, thereby constructing isotopies.

Theorem 4.5 (Moser Theorem). Let M be a compact manifold with symplectic forms wq
and wy. Suppose that {w;}o<i<1 is a smooth family of closed 2-forms interpolating between
wo and wy, satisfying:

(1) Cohomology condition: |w,| is independent of t, i.e.

d d

E[wt] = [Ewt} =0,
(2) Nondegeneracy condition: w; is nondegenerate for all t € [0, 1].
Then there exists an isotopy py : M — M such that

piwr =wp, 0<t< 1

Proof. From the theorem we see:
(1) Since [wy] is constant in cohomology, there exists a family of 1-forms p; such that

d

—wy = diy, 0<t< 1.

a Ht SUs

A smooth family u; can indeed be chosen, for example using the Poincaré lemma for
compactly-supported forms together with the Mayer—Vietoris sequence.

(2) By nondegeneracy of wy, there exists a unique vector field v, satisfying the Moser

equation:
Ly, Wy + iy = 0.
Let p; be the isotopy generated by v;. Then
d * * d *
%(tht) =P (‘C’Utwt + %Wt) = p; (d(tp,wr) + dpy) = 0.
Hence pjw; = wy for all ¢. [
Definition 4.6 (Moser Equation).
by, Wy + 1 =0

Theorem 4.7 (Moser-Relative Theorem). Let M be a manifold, X a compact submanifold
of M, and i : X — M the inclusion map. Suppose wy and wy are symplectic forms on M.
Hypothesis: For every p € X, we have
wolp = wilp.
Conclusion: There exist neighborhoods Uy, Uy of X in M, and a diffeomorphism @ : Uy — Uy such
that
<p*w1 = Wy-

Proof. The proof of this theorem is very interesting, but not necessary to the understanding
of Darboux Theorem. Thus we defer the reader to [dSO1] |
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4.1. Darboux Theorem.

Theorem 4.8 (Darboux Theorem). Let (M,w) be a symplectic manifold and let p € M.
Then there exists a coordinate chart (U, xq,...,Tn,y1,...,Yn) centered at p such that, on U,

w = idmi A dy;.

i=1

Proof. We apply the Moser relative theorem (Theorem 7.4) to the case X = {p}. Choose a
symplectic basis of T, M to construct local coordinates (x4, ..., z},v1,...,Yy,) near p, so that

w, =Y dxi Ady
P Z Y )
On a neighborhood U’, we consider two symplectic forms:

Wy = w, w1 :de;/\dyg.
By Moser’s theorem, there exist neighborhoods Uy, U, of p and a diffeomorphism ¢ : Uy — U,

with
e(p) = p, @*( > dai A dyé) =w.

Hence, setting z; = @} o , y; = 4} o , we obtain the desired coordinates. [

If in the Relative Moser Theorem we instead assume that X is an n-dimensional submanifold
with

i*wo = i*wl = O,
for the inclusion ¢ : X < M, then X is a Lagrangian submanifold for both wy and w;. In
this case, Weinstein’s theorem guarantees that the same conclusion holds, though additional
algebraic work is required.

Remark 4.9. This result explains why symplectic geometry has no local curvature invariants,
in stark contrast to Riemannian geometry. The richness of symplectic topology is entirely
global.
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