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Abstract. We discuss the definitions of Lie groups and Lie algebras and their relationship.

1. Overview

This paper assumes some familiarity with group theory, linear algebra, and differential geometry.
Lie groups have two main characteristics: they are groups and they are smooth in some way. For
example, the group Z3 of group of integers modulo 3 under addition has a finite number of elements
and as a result the operations do not seem smooth. Although Z+ (the group of integers under
addition) is a group with an infinite number of elements, somehow the group operation seems
discrete as there is no action in between adding 0 and adding 1. On the other hand, the group R+

of reals under addition seems smooth.
Smoothness allows us to connect Lie groups to vector spaces called Lie algebras through the

exponential map. Because algebras are easier objects to understand, we can understand many
properties of the Lie group more easily through the Lie algebra. This relationship, in a few of its
aspects, will be the culmination of this paper. For more information on linear Lie groups and Lie
algebras, see [2], and for a more gentle introduction and more detail on more general lie groups,
see [1].

2. Lie Groups

We must first properly define what we mean by smooth. Consider a sphere. A sphere is smooth
because there are no cusps or pointy bumps. In other words, if we zoom in on any point of the
sphere, it locally looks like a plane. We can formalize this notion of a section A of the sphere
looking like a plane through a diffeomorphism from the plane to A.

Definition 2.1. Let X ∈ Rm and Y ∈ Rn. A diffeomorphism f : X → Y is a smooth (infinitely
differentiable) bijection with smooth inverse.

Every small section on the sphere must locally look like a plane, so for every point p, there must
be a subset of the sphere V containing p such that there is a diffeomorphism from a subset of the
plane U to V. More generally, we a have a manifold.

Definition 2.2. A m-dimensional manifold M is a subset of Rn such that for every point p ∈ M
there is a subset V ⊆ M and a subset U ⊆ Rm such that there is a diffeomorphism from U to V.
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Example 2.3. For a unit sphere, we can use the spherical parametrization

σ1(u, v) = (cosu sin v, sinu sin v, cos v),

which maps from (0, 2π)× (0, π) to the entire sphere except the great arc from (0, 0, 1) to (0, 0,−1)
intersecting (1, 0, 0). For points on this arc, we must find another parametrization. Consider

σ2(u, v) = (− cosu sin v, cos v, sinu sin v),

which maps from (0, 2π) × (0, π) to the entire sphere except the arc from (0, 1, 0) to (0,−1, 0)
intersection (−1, 0, 0). This is just a rotation of our previous parametrization, but it covers the arc
from (0, 0, 1) to (0, 0,−1).

Both σ1 and σ2 are diffeomorphisms, so the sphere is a 2-dimensional manifold.

We can now define Lie groups.

Definition 2.4. A Lie group is a manifold M combined with a smooth operation · : M ×M → M
and smooth inverse −1 : M → M such that the set of points in M along with the operation and
inverse forms a group.

Let GL(n;R) or the general linear group be the group of real invertible n × n matrices. The
main class of Lie groups we will talk about are linear Lie groups which are Lie groups that are
subgroups of GL(n;R). We can determine whether a subgroup of GL(n;R) is a Lie group very
easily as a result of the following theorem.

Theorem 2.5 (Von Neumann and Cartan 1927). Let G be a closed subgroup of GL(n;R), i.e., for
every convergent sequence of elements of G, the resulting limiting matrix is either in G or not in
GL(n;R). Then, G is a linear Lie group.

Example 2.6. The following sets are linear Lie groups.

(1) GL(n;R) is a subgroup of GL(n;R). Furthermore, it is closed as all matrices are either
invertible or not invertible. Thus the limit of a sequence of matrices is either in GL(n;R)
or not in GL(n;R).

(2) SL(n;R) or the special linear group is the group of real n × n matrices of determinant
1. Because det(AB) = det(A) det(B) for all matrices, we have SL(n;R) is a subgroup of
GL(n;R) and it is closed as the determinant is a smooth function, so the limit of matrices
with determinant 1 must also have determinant 1 and be in SL(n;R).

(3) O(n;R) or the orthogonal group is the group of orthogonal matrices, i.e., matrices A such
that ATA = I. This is indeed a subgroup as if A and B are orthogonal matrices, then
(AB)T (AB) = BTATAB = I. Note that matrix multiplication and transposes are smooth
functions, so the relation ATA = I is preserved under limits.

(4) SO(n) or the special orthogonal group is a group of orthogonal matrices with determinant
1 (orthogonal matrices can have determinant 1 or −1). This is a closed subgroup as it is
the intersection of two closed subgroups, SL(n;R) and O(n).

Remark 2.7. Consider the subgroupH ofGL(1;R) of just the integer powers of 2. This is a subgroup
and it is closed (the limit of 1, 1/2, 1/4, . . . is 0 which is not in GL(1;R)). Yet H seems discrete. In
actuality, H is a union of disconnected 0-dimensional manifolds. This is similar to how O(n) has
two connected components: one where matrices have determinant 1 and another where matrices
have determinant −1.
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3. Exponential Map

We restrict ourselves to linear Lie groups unless otherwise specified. To make this section more
rigorous, we define the norm of a matrix.

Definition 3.1. The norm of an n× n matrix A is

∥A∥= max
x∈Rn

∥Ax∥
∥x∥

.

This definition of the norm satisfies several properties. For example, we have the triangle in-
equality as

∥A+B∥= max
x∈Rn

∥(A+B)x∥
∥x∥

≤ max
x∈Rn

∥Ax∥+∥Bx∥
∥x∥

≤ max
x∈Rn

∥Ax∥
∥x∥

+ max
y∈Rn

∥By∥
∥y∥

= ∥A∥+∥B∥.

In addition

∥AB∥= max
x∈Rn

∥ABx∥
∥x∥

= max
x∈Rn

∥ABx∥
∥Bx∥

· ∥Bx∥
∥x∥

≤
(
max
x∈Rn

∥Ax∥
∥x∥

)(
max
y∈Rn

∥By∥
∥y∥

)
= ∥A∥∥B∥.

This norm allows us to define limits and convergence of sequences in the usual way.

Definition 3.2. The exponential map is a function from matrices to matrices given by

eA = I +A+
A2

2!
+

A3

3!
+ · · · ,

for a matrix A.

Notice that this sum must converge for all A as

∥eA∥≤ ∥I∥+∥A∥+
∥∥∥∥A2

2!

∥∥∥∥+ · · · ≤ ∥I∥+∥A∥+∥A∥2

2!
+ · · · ≤ e∥A∥.

Example 3.3. Let

A =

(
0 −θ
θ 0

)
.

Let

I0 =

(
1 0
0 1

)
I1 =

(
0 −1
1 0

)
I2 =

(
−1 0
0 −1

)
= −I0 I3 =

(
0 1
−1 0

)
= −I1,

and define Ik for k ≥ 4 to be Iℓ where k ≡ ℓ mod 4 and 0 ≤ ℓ ≤ 3. Through matrix multiplication,
we can see that Ak = θkIk, so

eA =
∞∑
k=0

θkIk
k!

=

(
I0 +

θ2I2
2!

+ · · ·
)
+

(
θI1 +

θ3I3
3!

+ · · ·
)

= I0 cos θ − I1 sin θ =

(
cos θ − sin θ
sin θ cos θ

)
.

As a result, the exponential map takes 2×2 skew-symmetric matrices to matrices in SO(2). This
map is actually surjective as all matrices in SO(2) are rotation matrices.

The exponential map also has the following properties which are simple to prove.

Proposition 3.4. For matrices X and Y we have

• e0 = I
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• (eX)T = eX
T
.

• (eX)−1 = e−X .

• eC
−1XC = C−1eXC.

• If X and Y commute, then eX+Y = eXeY .

As a side note on calculating the exponential map, notice that we can easily find the exponential
map in two cases. If a matrix A is diagonalizable, it can be expressed as S−1ΛS where Λ is diagonal,
so by Proposition 3.4, we have

eA = S−1eΛS = S−1 exp

λ1 · · · 0
...

. . .
...

0 · · · λn

S = S−1

eλ1 · · · 0
...

. . .
...

0 · · · eλn

S.

If N is nilpotent, or in other words there is some m such that Am = 0, then there are only a finite
number of terms in eA, so it can be easily calculated.

Because of the Jordan normal form, every matrix can be written as

S−1BS = S−1

D1 · · · 0
...

. . .
...

0 · · · Dk

S,

where the Di are upper triangular blocks where every element on the diagonal is the same and
every element on the superdiagonal (smaller diagonal above main diagonal) is 0 or 1. Therefore
splitting B into a diagonal and superdiagonal portions, we see that A is the sum of a diagonalizable
matrix D and a nilpotent matrix N . It can be shown that D and N commute, so eA = eDeN . Thus
we can find eA more easily by multiplying eD and eN .

Recall that the determinant of a matrix is the product of the eigenvalues and the trace is the
sum of the eigenvalues. Furthermore, the determinant of eN where N is nilpotent is one as eN is
the sum of upper triangular matrices and only the first term of I contributes to the terms on the
diagonal. From the previous discussion, we then have

det(eA) = det(eD) det(eN ) = det(S−1eΛS) · 1 = etr(Λ) = etr(D) = etr(D)+tr(N) = etr(A).

Note that the fifth property of Proposition 3.4 is not true for noncommutative matrices X and
Y . For example, in the case of(
cos θ − sin θ
sin θ cos θ

)
= exp

((
0 0
θ 0

)
+

(
0 −θ
0 0

))
̸= exp

(
0 θ
0 0

)
exp

(
0 −θ
0 0

)
=

(
1 0
θ 1

)(
1 −θ
0 1

)
.

Still there is a relationship between eX+Y , eX , and eY as stated in the following theorem.

Theorem 3.5. For matrices X and Y , we have

eX+Y = lim
m→∞

(
eX/meY/m

)m
.

The proof of this theorem is omitted, but it boils down to using Taylor approximations and the
fact that as m → ∞, higher order terms tend to 0 faster to simplify the right hand side into the
left hand side.
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Consider etX where t ∈ R and X ∈ GL(n;R). This corresponds to some curve in Rn2
, so we can

consider the derivative of this curve. We have

d

dt
etX =

d

dt

(
I +

∞∑
k=1

tk
Xk

k!

)
= 0 +

∞∑
k=1

tk−1 Xk

(k − 1)!
= XetX .

4. Lie Algebras

To make Lie algebras more concrete, let us first examine the Lie algebra of a Lie group.

Definition 4.1. The Lie algebra of a linear Lie group G of n×nmatrices is the subset g ⊆ GL(n;R)
of all A ∈ g where etA ∈ G for all t ∈ R.

Example 4.2. The following are the corresponding Lie algebras for the examples of Lie groups in
Example 2.6.

(1) The Lie algebra gl(n;R) of GL(n;R) is the set of all n× n matrices as for every matrix A,
etA has inverse e−tA, so etA is always invertible.

(2) The Lie algebra sl(n;R) of SL(n;R) is the set of all matrices with null trace as for any

matrix A with tr(A) = 0, we have det(etA) = etr(tA) = 1.
(3) The Lie algebra o(n) of O(n) is the set of all skew-symmetric matrices, i.e., matrices A with

AT = −A. For an example, see Example 3.3. If etA is orthogonal, then (etA)T (etA) = I,

so etA
T
etA = I which implies etA

T
= e−tA. Taking the derivative with respect to t and

evaluating at t = 0, we then have AT = −A.
(4) The Lie algebra so(n) of SO(n) is also the set of all skew-symmetric matrices as only skew-

symmetric matrices A satisfy eA is orthogonal, and for such A, we see det(eA) = etr(A) = 1.

More generally, Lie algebras g satisfy a few properties. First, if X ∈ g then sX ∈ g as etsX =
e(ts)X ∈ g.We also know that ifX,Y ∈ g, thenX+Y ∈ g asX/m and Y/m are in g so

(
eX/meY/m

)m
is in G. Because G is closed, the limit as m → ∞ of these elements is in G, so X+Y ∈ g. Thus, Lie
algebras are actually vector spaces with scalar multiplication by reals and vector addition through
matrix addition. In fact, Lie algebras are the tangent spaces of their Lie groups G at the identity
element. Recall that the tangent space of a manifold M at a point p is

TpM = {γ̇(0) : γ is a smooth curves on M with γ(0) = p}.

Theorem 4.3 (Von Neumann and Cartan 1927). Let g be the Lie algebra of a linear Lie group G.
Then X ∈ g if and only if X ∈ TIG.

Proof. The forward direction is immediate. If X ∈ g, then etX ∈ G for all t and etX is a curve on
G intersecting the identity and the derivative of this curve at 0 is X.

For the reverse direction, consider a curve γ on G with γ(0) = I. Let X = γ̇(0). Then

γ(t) = I + tX + higher order terms.

Consider γ(t/k) for a positive integer k. As k → ∞, we see that the higher order terms decay on
the order of k−2 while the main terms decay only at the rate of k−1. Thus

lim
k→∞

γ

(
t

k

)k

= lim
k→∞

(
I +

tX

k

)k

= etX .
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Because γ(t/k)k is in G for all k, we must have that etX is in G as well. ■

So far we have been discussing the Lie algebra, but we have only discussed addition. Multipli-
cation comes in the form of the Lie bracket.

Definition 4.4. For matrices X,Y ∈ g the Lie bracket is [X,Y ] = XY − Y X.

Proposition 4.5. For all X,Y ∈ g, we have [X,Y ] ∈ g.

Proof. Consider etXY e−tX ∈ g. Notice that this is in g as

exp(tetXY e−tX) = etXetY e−tX ∈ G.

Because this curve is contained in g, its derivative at t = 0 must also be contained in g. Therefore,
using the product rule,

d

dt
etXY e−tX |t=0= XetXY e−tX |t=0+etXY (−X)e−tX |t=0= XY − Y X = [X,Y ].

■

The Lie bracket has a nice interpretation in terms of G as the tangent space as well through the
Baker-Campbell-Hausdorff formula. Let X,Y ∈ g. Then X and Y are the derivatives of etX and
esY evaluated at t = 0 and s = 0, respectively. Now consider etXesY for fixed t and s which lies
along a different curve from the identity element I. If X and Y commuted, then etX+sY = etXesY

which implies that etXesY lies on a curve of the form etA with derivative a multiple of tX + sY.
Thus, we get a sort of linearity between multiplication in the group and addition in the algebra. If
X and Y do not commute, we can use the following theorem.

Theorem 4.6 (Baker-Campbell-Hausdorff). For X and Y in g and t, s ∈ R we have

etXesY = exp

(
tX + sY +

1

2
ts[X,Y ] + · · ·

)
,

where the dots are higher order terms.

Therefore [X,Y ] gives information about the relationship between addition in the Lie algebra
and multiplication in the Lie group.
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