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Abstract

Among all frictionless curves in a vertical plane joining a higher point A to a lower point
B, the brachistochrone is the one that minimizes the descent time under uniform gravity. This
paper derives the Euler-Lagrange equation from first principles, formulates the brachistochrone
as a least-time variational problem, and solves it via the Beltrami first integral to obtain the
cycloid in closed parametric form. Finally, we relate the brachistochrone’s first integral to the
continuous form of Snell’s law for a stratified optical medium, clarifying the equivalence with
Fermat’s principle of least time.

1 Introduction

The brachistochrone problem, posed by Johann Bernoulli in 1696, asks for the curve of fastest descent
from A to B in a uniform gravitational field. The celebrated solution is a cycloid, a result that
helped crystallize the calculus of variations. Our aim is expository: we (i) derive the Euler-Lagrange
equation for a one-dimensional functional; (ii) apply it to the brachistochrone and solve by the
Beltrami identity; and (iii) connect the resulting first integral to Snell’s law in a vertically stratified
medium. We deliberately omit auxiliary topics (e.g., Legendre or Weierstrass checks) to focus on
these core elements.

Historically, Bernoulli emphasized the optics analogy: a particle descending under gravity behaves
like a light ray in a medium whose refractive index varies with depth, so the least-time curve obeys
a refraction law. This observation foreshadows our conclusion that the brachistochrone’s conserved
quantity is the continuous Snell law for a gradient index.

2 Euler-Lagrange for least time

Let

with fixed endpoints y(xo) = yo, y(z1) = y1. Consider the variation y. = y + en where n(xg) =
n(z1) = 0 and 7 is smooth. Differentiating at ¢ = 0 and integrating by parts yields

0J = /;1 (Ly - %Ly/) n(z) dz,

0
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Figure 1: Problem geometry and trial paths.

so stationarity for all n implies the Fuler—Lagrange equation

d
Ly~ Ly = 0. (1)

When L is independent of z, the Beltrami identity (a first integral) follows:

L—y'L, = constant. (2)

For the brachistochrone, we place A = (0,0) and measure y downward. Energy conservation gives
the speed v(y) = /2gy (start from rest at A). With ds = /1 + y’2 dx, the travel time is
B ds
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The constant prefactor does not affect extremals. Note the vertical tangent at the start is admissible:
the integrable singularity y~/2 keeps T'[y] finite near y = 0.

b
T = \/12—9/0 L(y,y)dz,  L(y,y) = (3)

Beltrami identity: derivation and meaning. Because L has no explicit z-dependence, differ-
entiate H := L —y'L,s along any extremal:

dH . / 1" 1" ! d . d —
=Ly + Ly —y'Ly —y Ly =y <Ly - %Ly,> — 0,
using . Hence H is constant, giving
1
W:C>O <~ y(1+y/2):k, k:C_Q. (4)

Writing ¢ for the angle with the horizontal, cos ¢ = 1/1/1 + y’? converts (4] to

cos ¢
VY

= constant, (5)

a form we will recognize as a continuous Snell law in Section [4]
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Figure 2: The cycloid solution. A labeled plot helps fix the geometry and the role of 6p.

Near-cusp integrability at the start. From , v =+ (k—vy)/y~+k/yasy — 0". Thus
dx = dy/y ~ \/y/kdy, and the time element satisfies

V29y V29 vy Vk V29 VY
which is integrable at y = 0. The vertical tangent is therefore admissible and the total travel time
remains finite.

dt =

A direct application of is possible, but is especially efficient here because L has no explicit
z-dependence; it leads immediately to , a first integral solvable by quadrature.

3 Solving the brachistochrone: the cycloid

d k—
oo Y 0<y<k = do = L —dy
dx Y k—y

Use the standard substitution y = r(1—cos ) with r = &. Then dy = rsin 6 df and k—y = r(1+cos ),
giving

From ,

dx =r(1 —cosf)db.
Integrating from the cusp (6 = 0) gives the parametric cycloid:
x(0) = r(0 — sinb), y(0) =r(1 — cosh), 6 € [0,0p]. (6)

The endpoint conditions 2(0p) = b and y(6p) = [ pick out the unique pair (r,fp) consistent with
the prescribed A — B geometry (for 0 < fp < 7 one lands with a horizontal tangent).

A short check confirms that the cycloid indeed satisfies :
oy 20 20
y(0)(1+y'(0)°) = r(1 —cosh)( 1+ cot 3) = r(l—cos&)csc§ = 2r = k.

Thus @ is the unique extremal compatible with the endpoints, and it minimizes the travel time
among nearby curves.

Endpoint fit and uniqueness of (r,0p). Set F(0) =6 —sinf and G(0) = 1—cos @ for § € (0, 2m).
Then F'(0) =1 —cosf > 0 and G'(0) = sinf > 0 (strictly on (0,7)), so F is strictly increasing on
(0,27) and G is strictly increasing on (0, 7). From (6)),

b
- = F(0p), g = G(0p).

r
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Given (b, 8) with 8 > 0, solve b/ = F(0p)/G(0p): the ratio is strictly increasing on (0,7), so
0p is unique in (0, 7]; then r = /G(0p) is uniquely determined. This explains precisely how the
endpoint data fix the cycloid parameters.

4 Snell’s law and the optical analogy

Fermat’s principle states that light rays follow paths that extremize optical travel time. For a
vertically stratified medium with refractive index n = n(y), the travel-time functional for a graph

y(x) reads
T|y] < /n(y(m)) 1+ y2de.

Because the integrand is xz-independent, the Beltrami identity yields the conserved quantity

n(y)

Vito?

If « is the angle the tangent makes with the horizontal, then cosa = 1//1 + 2, so is

= constant. (7)

n(y) cosa = constant, (8)

the continuous (differential) form of Snell’s law for a unidirectionally varying index. This is the
continuum analogue of nj sin #; = n9 sin f, for discrete layers.

From discrete refraction to the continuous law. Consider a stack of thin horizontal layers
with indices ng, n1,...,nn, and let 6; be the angle from the normal (vertical) in layer j. Stationarity
at each interface gives

n;jsinf; =n;1sinf;; for all j.

Hence nj sin 6; is constant across the stack. Writing a; = 5 — 6; for the angle from the horizontal,
this is n; cos a; = const. Let the layer thickness Ay — 0 with n; — n(y) smoothly; then n(y) cos c
is constant along the ray, which is exactly . Thus the differential Snell law is the limit of many
small refractions.

For the brachistochrone, v(y) = /2gy so an effective optical index n(y) o< 1/v(y) o y~/? makes
the light-ray problem identical to the bead’s least-time problem. Then becomes

Cos &
Y

= constant,

which is exactly the first integral (4). Thus the cycloid appears simultaneously as the descent curve
and as the refracted ray in a medium with n(y) oc y=1/2.

Concluding remark. The Euler-Lagrange framework, the Beltrami identity, and Fermat’s principle
fit together seamlessly: a single conserved quantity both integrates the brachistochrone and encodes
the continuous Snell law for a stratified medium.
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5 Applications and Modern Relevance

The brachistochrone is a classic problem, but the ideas used to solve it are still essential in modern
science and engineering. The core concepts show up in surprising places, from mapping our planet
to designing robots.

Geophysics and Optics. The link between the brachistochrone and the path of light is key to
understanding our own planet. When an earthquake happens, seismic waves travel through the
Earth’s layers, which have different densities. This causes the waves to curve and follow the fastest
possible path, just like the bead on the wire. By tracking the exact time these waves arrive at
stations around the world, scientists can work backward to map the inside of the Earth. This same
principle is used in gradient-index (GRIN) optics, a technology that builds tiny, flat lenses (used
in medical scopes, for example) by precisely changing the properties of the material to bend light
along an optimal path.

Optimal Control. More broadly, the method used to solve the brachistochrone, the calculus
of variations, is the foundation for a whole field called optimal control theory. This field is all
about finding the best possible way to do something to minimize a cost, like time or fuel. The
brachistochrone is the original blueprint for these kinds of problems. Today, engineers use the same
fundamental approach to calculate the most fuel-efficient route for a spaceship, program a robot
arm to move as quickly as possible, or even model financial strategies.
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