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1 Introduction

De Rham cohomology is an essential tool at the intersection of differential geometry and topology. It allows us

to investigate the global properties of smooth manifolds by looking at differential forms and their derivatives.

While differential forms come from calculus on manifolds, de Rham cohomology allows us to find valuable

topological information, such as how many different types of “holes“ are present in a space, without the need

for complex algebraic topology methods.

2 Differential Forms and the Exterior Derivative

To define the de Rham cohomology, we begin with differential forms. Let M be a smooth manifold of dimension

n.

At each point p ∈ M , we consider the tangent space TpM , which is the collection of tangent vectors at p. The

dual space T ∗
pM consists of linear functionals on TpM (linear maps from L : TpM → R). A differential 1-form

assigns to each point p an element of T ∗
pM in a smooth manner (since T ∗M , the disjoint union of all tangent

dual spaces is a smooth manifold the map ω : M → T ∗M,p → v∗ ∈ Tp ∗M can be checked for smoothness in

the usual sense of differentiability of maps between smooth manifolds).

2.1 Multilinearity and Alternating k-maps

A multilinear map is a function T : V1 × · · · × Vk → R that is linear in each argument separately. This means

that if all but one input is fixed, then varying the remaining input preserves additivity and scalar multiplication.

For example, the dot product is bilinear (linear in each of two arguments), and determinants are multilinear in

their column vectors.

An alternating map is a multilinear map T : V k → R with the property that swapping two arguments changes

the sign: T (. . . , vi, . . . , vj , . . . ) = −T (. . . , vj , . . . , vi, . . . ). As a result, T vanishes whenever two arguments are

equal, which means it only depends on linearly independent inputs. The determinant and differential forms are

standard examples.

2.2 Differential forms

Higher-degree forms build on this idea: a differential k-form at p is an alternating multilinear map that takes

k tangent vectors,

ωp : TpM × · · · × TpM︸ ︷︷ ︸
k times

→ R,

which switches sign when any two arguments are swapped.
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When we gather these definitions, a differential k-form ω on M represents a smooth assignment p 7→ ωp,

where ωp ∈ Λk(T ∗
pM) is the k-th exterior power of the cotangent space. The collection of all smooth differential

k-forms on M is represented as Ωk(M).

2.3 The Wedge Product ∧

The symbol ∧ represents the wedge product. This operation combines a k-form ω ∈ Ωk(M) and an ℓ-form

η ∈ Ωℓ(M) into a (k + ℓ)-form ω ∧ η ∈ Ωk+ℓ(M). The wedge product has the following three key properties:

• Bilinearity: The wedge product is linear in each argument, η ∧ (ω+ θ) = η ∧ω+ η ∧ θ and (η+ω)∧ θ =

η ∧ θ + ω ∧ θ.

• Antisymmetry: Swapping two forms changes the sign according to η ∧ ω = (−1)kℓ ω ∧ η. Specifically,

for 1-forms α and β, α ∧ β = −β ∧ α, and α ∧ α = 0.

• Associativity:

(ω ∧ η) ∧ θ = ω ∧ (η ∧ θ).

Example: On R3 with coordinates (x, y, z),

dx ∧ dy = −dy ∧ dx, dx ∧ dx = 0,

and dx ∧ dy ∧ dz is a 3-form that represents an oriented volume element.

2.4 k-th exterior power of M

The notation ∧kTpM denotes the k-th exterior power of the tangent space TpM at a point p ∈ M . It is the

vector space of all antisymmetric k-linear combinations of tangent vectors at p. A typical element is of the form

v1 ∧ v2 ∧ · · · ∧ vk, vi ∈ TpM,

where the wedge product ∧ is antisymmetric: swapping two vectors changes the sign. This space has dimension(
dimM

k

)
, and a natural basis is given by ei1 ∧ · · · ∧ eik , where {e1, . . . , edimM} is a basis of TpM and 1 ≤ i1 <

· · · < ik ≤ dimM .

The k-th exterior power of the cotangent bundle, ∧kT ∗M , collects these spaces over all points p ∈ M , and

its smooth sections are precisely the differential k-forms Ωk(M).

2.5 The Exterior Derivative

The main operation on differential forms is the exterior derivative, a linear map

dk : Ωk(M) → Ωk+1(M),

which extends the classical differential of functions. It meets three important properties:

• Nilpotency: Applying d twice results in zero, i.e dn ◦ dn+1 = 0. This means that for any n-form ω, we

have dn+1(dn(ω)) = 0.

• Compatibility with functions: For a smooth function f ∈ Ω0(M) = C∞(M), df matches the standard

differential of f .

• Leibniz rule: For ω ∈ Ωk(M) and η ∈ Ωℓ(M),

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.
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For any k-form ω and any differential form η. In local coordinates (x1, . . . , xn), if

ω =
∑
I

fI dx
i1 ∧ · · · ∧ dxik ,

then

dω =
∑
I

dfI ∧ dxi1 ∧ · · · ∧ dxik ,

where dfI =
∑

j
∂fI
∂xj dx

j is the usual differential of the coefficient function.

One-forms: For a 1-form on R2, ω = P (x, y) dx+Q(x, y) dy, the exterior derivative can be written explicitly

as

dω =

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.

3 De Rham Cohomology

3.1 Exact and closed forms

An exact n-form is an n-form that lies in the image of dn. A closed n-form is an n-form that lies in the kernel

of dn+1, i.e the zero set of dn+1 Since dn+1 ◦ dn = 0, every exact form is also closed.

3.2 What Does This Mean?

Intuitively, closed forms are those that locally resemble derivatives of other forms. Exact forms are those that

globally act as derivatives of other forms. The distinction between these two concepts captures global topological

information.

3.3 De Rham Cohomology Groups

The de Rham cohomology indicates how every closed form fails to be exact. For each degree k, we define the

nth de Rham Cohomology group of M to be the quotient group

Hn
dR(M) :=

{closed k-forms}
{exact k-forms}

=
ker(dn+1)

Im(dn)
.

(Since the exterior derivative is a linear map, the kernel of dn+1 is a linear subspace of Ωn(M) and thus a group

under the standard operation of addition. Similar argument applies to the image of dn)

3.4 Intuition - Holes

Intuitively, de Rham cohomology measures the “holes” in a manifold by distinguishing between closed forms

that are exact and those that are not. A closed form that is not exact signals the presence of a hole: there is

a global obstruction preventing it from being written as the derivative of another form. For example, a closed

1-form that is not exact on a circle corresponds to the fact that the circle has a loop; similarly, a non-exact

2-form on a 2-sphere detects a two-dimensional “void.” In this way, the dimensions of de Rham cohomology

groups—the Betti numbers—count independent holes of different dimensions in the manifold.

3.5 Partitions of Unity

Before we can dive into the concrete examples for de Rham cohomology groups on standard manifolds, we need

to introduce the concept of a partition of unity. A partition of unity on a smooth manifold M is a collection of
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smooth functions {φi}i∈I satisfying the following properties:

• Each function φi : M → [0, 1] is smooth.

• The collection is locally finite, meaning that for every point p ∈ M , there exists a neighborhood U of p

such that all but finitely many φi vanish on U .

• The functions sum to one at every point: For every p ∈ M∑
i∈I

φi(p) = 1

• Each φi has support contained in a specified open set Ui of an open cover {Ui}i∈I of M .

Here, the support of a function φi, denoted supp(φi), is the closure of the set {p ∈ M : φi(p) ̸= 0}. In other

words, outside the support, the function φi is identically zero.

A partition of unity smoothly breaks a manifold into overlapping pieces with weights that add up to one

everywhere, letting us combine local information into a global object.

4 Fundamental Theorems and Proof Ideas

In this section, we focus on the theorems that are most relevant for understanding and working with de Rham

cohomology. We skip results that are important in geometry and topology, such as Gauss-Bonnet-Chern, Chern-

Weil, and full Hodge theory, because they involve more complex machinery than what our knowledge in topology

allows us.

Poincaré Lemma

Statement: On any contractible open subset of Rn, every closed k-form with k ≥ 1 is exact:

If dω = 0 then ω = dη for some η ∈ Ωk−1.

Proof idea: The key idea is that contractibility ensures there are no “holes” to obstruct exactness. To make

this explicit, one defines a homotopy operator K on a star-shaped neighborhood with respect to a fixed base

point x0. For a k-form ω, Kω is obtained by integrating ω along straight lines from x0 to each point x, effectively

averaging ω along these paths. This operator satisfies the homotopy formula

d(K(ω)) +Kd(ω) = id,

so that for any closed form ω (dω = 0) we have

ω = d(Kω),

showing that ω is locally exact. Intuitively, K constructs a local primitive by “retracting” the form along

straight lines toward the base point, providing an explicit inverse to d in positive degrees.

Stokes’ Theorem

Statement: Let M be an oriented smooth manifold of dimension n with a smooth boundary ∂M . If ω ∈
Ωn−1(M), then ∫

M

dω =

∫
∂M

ω.
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Stokes’ theorem generalizes several classical results:

• The Fundamental Theorem of Calculus (n = 1).

• Green’s Theorem and Kelvin-Stokes Theorem (n = 2).

• The Divergence Theorem (n = 3).

It connects local information (dω) to global behavior (integrals over boundaries).

Proof idea (elaborated):

1. Cover the manifold M with coordinate charts (U, ϕ) such that U ⊂ M is diffeomorphic to an open

subset of Rn. In these coordinates, differential forms can be expressed using the standard Euclidean basis

dx1, . . . , dxn, and Stokes’ theorem reduces to the classical divergence theorem. This establishes the result

locally.

2. Use a smooth partition of unity {φi} subordinate to the cover. Each φiω has support in a single chart,

so Stokes’ theorem applies to each piece individually.

3. The manifold M is oriented and the charts are oriented compatibly. This ensures that the contributions

from overlapping charts combine correctly, so the local results sum to give a global statement over M .

4. Both the exterior derivative d and integration are linear. For ω = ω1 + ω2,

d(ω1 + ω2) = dω1 + dω2,

∫
∂M

(ω1 + ω2) =

∫
∂M

ω1 +

∫
∂M

ω2.

This allows us to extend Stokes’ theorem from each piece φiω to the full form ω.

The theorem is valid for any ω of degree n− 1, and by linearity, also holds for sums of such forms.

Connection to de Rham cohomology: If M has no boundary, Stokes’ theorem states∫
M

dω = 0,

indicating that the integral over M relies only on the cohomology class of ω. This is why integrals of closed

forms over cycles define invariants in de Rham cohomology.

De Rham’s Theorem

Statement: For any smooth manifold M , the de Rham cohomology is naturally isomorphic to singular coho-

mology with real coefficients:

Hk
dR(M) ∼= Hk

sing(M ;R).

Proof idea: One defines a map from differential forms to singular cochains by integrating over simplices:

ω 7→
(
σ 7→

∫
σ

ω

)
.

Using tools such as the Mayer-Vietoris sequence (A tool which relates the cohomology of a space to that of two

overlapping parts, helping compute cohomology by breaking the space into simpler pieces, similar to how the

Seifert van Kampen theorem does the same thing for fundamental groups of connected spaces) and partitions

of unity, one shows this map induces an isomorphism (i.e a bijective homomorphism) between the two groups .

This theorem guarantees that the analytical approach of differential forms fully retrieves the classical topological

invariants represented by singular cohomology. De Rham cohomology connects analysis, geometry, and topology

by measuring global aspects of manifolds through differential forms.
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5 Examples and Explicit Computations

In this section we will look at and compute the de Rham cohomology groups of a few standard

5.1 Euclidean Space Rn

Consider M = Rn with coordinates (x1, . . . , xn).

0th de Rham cohomology group Since a 0-form on any manifold is a smooth assignment of a scalar to

every point on the manifold (as opposed to - for example - a one-form, which assigns a covector to each point

on the manifold in a smooth manner), we get that

Ω0(Rn) = C∞(Rn),

which corresponds to infinitely differentiable functions. The exterior derivative acts as the usual differential,

d0 : Ω0 → Ω1, f 7→ df =

n∑
i=1

∂f

∂xi
dxi.

A 0-form f is closed if and only if df = 0, which indicates that f is constant.

Exact 0-forms do not exist since d : Ω−1 → Ω0 is undefined. Thus, H0
dR(Rn) = {constant functions} ∼= R.

Higher-degree forms The Poincaré Lemma states that on Rn, every closed k-form with k ≥ 1 is exact.

Specifically, if ω ∈ Ωk(Rn) satisfies dω = 0, then there is an η ∈ Ωk−1(Rn) such that ω = dη. Thus,

Hk
dR(Rn) = 0 for all k ≥ 1.

Example: A closed 1-form that is exact Consider the 1-form

ω = 2x dx+ 2y dy on R2.

To check if ω is closed, compute its exterior derivative:

dω = d(2x dx+ 2y dy) = d(2x) ∧ dx+ d(2y) ∧ dy.

Since

d(2x) = 2 dx, d(2y) = 2 dy,

we have

dω = 2 dx ∧ dx+ 2 dy ∧ dy = 0 + 0 = 0,

because dx ∧ dx = dy ∧ dy = 0. Hence, ω is closed.

Now, we find a function f such that df = ω:

df =
∂f

∂x
dx+

∂f

∂y
dy = 2x dx+ 2y dy.

By integrating,

f(x, y) = x2 + y2 + C.

Thus, ω = df is exact.

5.2 The Sphere Sn

The n-sphere can be represented in Rn+1 as Sn = {x ∈ Rn+1 : ∥x∥ = 1}.
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0th de Rham cohomology group Since Sn is connected, the 0th de Rham cohomology group is

H0
dR(S

n) ∼= R.

0-forms are simply smooth functions, and a 0-form f is closed if df = 0, which means f is constant. A

constant function cannot be written as the derivative of another globally defined function on Sn, so it is non-

exact. Therefore, every closed 0-form on Sn is a real multiple of the constant functions, and the space of 0th

cohomology classes is one-dimensional, isomorphic to R.

Volume Forms The n-sphere Sn ⊂ Rn+1 has a natural volume form ωSn , which is an n-form giving the

standard surface measure on the sphere. It can be obtained by restricting the Euclidean volume form in

Rn+1 to the tangent space of Sn at each point. Intuitively, this volume form measures“surface area“ on the

2-sphere/the ”volume” of the 3-sphere and is not exact

Example: For the 2-sphere S2 ⊂ R3 with spherical coordinates (θ, ϕ), the natural volume form is

ωS2 = sin θ dθ ∧ dϕ,

which corresponds to the usual surface area element. Integrating this form over S2 gives the total area 4π.

To demonstrate this clearly:

- Assume ωSn = dη for some η ∈ Ωn−1(Sn). - By Stokes’ theorem,∫
Sn

ωSn =

∫
Sn

dη =

∫
∂Sn

η = 0,

because Sn has no boundary, ∂Sn = ∅.

- However, the volume form integrates to a nonzero volume for the sphere, which leads to a contradiction.

Thus, ωSn is closed but not exact.

kth De Rham Cohomology Group of Sn Let Sn be the n-dimensional sphere. Its de Rham cohomology

is

Hk
dR(S

n) ∼=

R, k = 0 or k = n,

0, 0 < k < n.

• H0
dR(S

n) consists of constant functions, so H0
dR(S

n) ∼= R.

• For 0 < k < n, every closed k-form is exact due to the contractibility of Sn minus a point, so Hk
dR(S

n) = 0.

• For k = n, the volume form ωn is closed but not exact (its integral over Sn is nonzero), giving Hn
dR(S

n) ∼=
R.

Cohomology in intermediate degrees

For 0 < k < n, the cohomology groups are zero: Hk
dR(S

n) = 0. This indicates there are no nontrivial ”holes”

of intermediate dimension.

5.3 The Torus T n = (S1)n

The n-torus is the cartesian product of n copies of the circle S1:

Tn = S1 × · · · × S1.
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Each circle S1 can be described by an angular coordinate θi ∈ [0, 2π). On each factor, the 1-form dθi is closed

but not exact, because θi is not a globally defined function on the circle (it jumps by 2π at the boundary).

Cohomology groups The de Rham cohomology of the torus is generated by wedge products of the dθi,

meaning that every cohomology class of degree k can be represented as a linear combination of wedge products

of k of the basic 1-forms dθ1, . . . , dθn, with indices increasing: dθi1 ∧ · · · ∧ dθik , 1 ≤ i1 < · · · < ik ≤ n. In

particular, the dθi form a basis of H1(Tn), and all higher-degree cohomology classes are constructed from these

through the wedge product. Thus :

Hk
dR(T

n) =

k∧
Rn,

with basis elements {dθi1 ∧ dθi2 ∧ · · · ∧ dθik |1 ≤ i1 < i2 < · · · < ik ≤ n}.

Example for T 2 Consider the 2-torus T 2 = S1 × S1 with angular coordinates θ1 and θ2. The 1-forms dθ1
and dθ2 are closed but not exact. Hence, the de Rham cohomology groups are

H0
dR(T

2) ∼= R, H1
dR(T

2) ∼= R2, H2
dR(T

2) ∼= R.

The 2-form dθ1 ∧ dθ2 is closed and represents the fundamental cohomology class in degree 2.

Non-exactness of dθi: Suppose dθ1 = df for some smooth function f on T 2. Then integrating along the

loop θ1 7→ θ1 + 2π gives ∫ 2π

0

dθ1 = f(θ1 + 2π, θ2)− f(θ1, θ2) = 2π,

which is impossible for a well-defined function f . Therefore dθ1 is not exact. A similar argument shows dθ2 is

not exact.
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