
LIE GROUPS AND LIE ALGEBRAS

MARIGOLD STRUPP

1. Manifolds

The fundamental goal of Lie theory is to understand smooth, continuous symmetry. In an
elementary group theory course, one often encounters the cyclic groups, the groups consisting
of rotations of regular n-gons. These groups tend to feel very discrete, words like smooth and
continuous do not describe them. Another common group is SO2(R), the space of rotations
in two dimensional (euclidean) space, or more generally SOn(R), the space of rotations in
n-dimensional space. These, unlike the cyclic groups feel smooth and continuous. In order
to mathematically articulate this feeling we need to understand what it means for an object
to be smooth.

For 1 and 2 dimensional objects we already have such a notion. A 1 dimensional smooth
object is a smooth curve and a 2 dimensional smooth object is a smooth surface. A curve can
be thought of as something that locally looks like R and similarly a surface can be thought of
as something that looks locally like R2. So, we might define a smooth object in n-dimensions
to be a topological space that looks locally like Rn. This definition has a problem, it only
captures part of the picture, under this definition a square, which has sharp corners and
is definitely not smooth, would be smooth. The issue here is that a smooth object must
have more structure than just a topology, it has to have what is called a smooth manifold
structure. With that in mind we have the following definition

Definition 1.1 (Smooth manifolds). An n dimensional smooth manifold is a topological
space that looks locally like Rn, in the sense that every point has an open neighborhood
homeomorphic to Rn. Equipped with a maximal choice of open cover {Ui} such that for
each Ui we have a homeomorphism (called a chart) φi : Ui → Rn where for any Ui, Uj,
φi|Ui∩Uj

◦ φ−1
j |Ui∩Uj

is smooth.

Example. Along with curves and surfaces an easy example of a smooth manifold is an n
sphere. Here the charts are given by the stereographic projection from the north pole and
the stereographic projection from the south pole

Example. Any open subset U of Rn is a manifold because if p ∈ U there exists some epsilon
ball p ∈ B ⊂ U . Since epsilon balls are smoothly homeomorphic to Rn the manifold structure
follows.

There are two important things to note about this definiton. The first is that a smooth
manifold is an additional structure on top of a topology, meaning one could have two identical
topological spaces with vastly different smooth manifold structures. The second is that
nowhere does this definition require that a manifold embed into euclidean space. While it is
true that every manifold can be embedded in euclidean space (This fact is known as the weak
Whitney embedding theorem [2]), the proof is highly non-trivial and so it is best to think of
manifolds as structures unto themselves as opposed to subsets of some ambient space.
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As with many other mathematical objects, we can not fully talk about smooth manifolds
without talking about the functions between them.

Definition 1.2 (Smooth maps). Let M and N be smooth manifolds. Then a function
f : M → N is said to be smooth if for every chart φ of M and every chart ϕ of N the function
ϕ ◦ f ◦ φ−1 is smooth. A smooth bijection with smooth inverse is called a diffeomorphism.

The key class of smooth functions on a manifold M are those from M → R. In fact, there
is an alternate way of defining manifolds by defining it as a topological space M equipped
with something called a structure sheaf of continuous functions M → R (if you have studied
sheaves trying to figure what the conditions on this sheaf are that allow it to define a manifold
is a fun exercise.) For our purposes though, the primary reason we care about smooth maps
from M → R is because such maps have the structure of an associative algebra.

Proposition 1.3. Let M be a smooth manifold and C∞(M) denote the set of smooth func-
tions f : M → R. Then C∞(M) is an associative algebra under the pointwise sum and
product.

Proof. Let f, g ∈ C∞(M), then because the pointwise sum and product of real valued func-
tions already satisfy the ring axioms it is sufficient to show that fg, f + g ∈ C∞(M). Note
that a function h : M → R is smooth if and only if for every chart ϕ on M , h ◦ ϕ−1 is
infinitely differentiable. Then (fg) ◦ϕ−1 = (f ◦ϕ−1)(g ◦ϕ−1) which since the product of two
functions is infinitely differentiable, is thus infinitely differentiable. Similarly because the
sum of two infinitely differentiable functions (f + g) ◦ ϕ−1 = (f ◦ ϕ−1) + (g ◦ ϕ−1). Thus if
f, g are smooth, f + g and fg are smooth. ■

This allows us to define one of the key constructions on manifolds, the tangent space.
For curves and surfaces the tangent space is the tangent line and tangent plane respectively.
Elements of the tangent space are usually thought of as vectors in whatever the ambient
space the curve or surface is embedded in. For manifolds however, we have to consider a
more intrinsic notion of tangent vector, the question then becomes, what is it that makes
a tangent vector a tangent vector? In differential geometry a tangent vector is often used
as something we can take a derivative in the direction of. With this in mind we define the
tangent space as follows.

Definition 1.4 (The tangent space). For any smooth manifold M and any point p ∈ M , a
derivation D is a linear map C∞(M) → R such that for any f, g ∈ C∞(M)

D(fg) = D(f)g(p) + f(p)D(g)

The tangent space of M at p, denoted TpM is the space of all derivations. importantly the
tangent space is a vector space under the operations

(aD)(f) := a(D(f))

(D1 +D2)(f) = D1(f) +D2(f)

Notably, if c is a constant then for any derivation D we have

D(c) = D(1c) = D(1)c+D(c)

meaning D(1) = 0 however 0 = cD(1) = D(c) So derivations sends constants to 0.
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Now that we have the notion of a tangent space we should be able to define the derivative
of a smooth map. When working with curves and surfaces the derivative is thought of as
giving the best linear approximation near a given point. This tells us that the derivative of a
smooth function at a point should be a linear map and should thus be a map of the tangent
space. Since we are considering tangent vectors as essentially directional derivatives we have
for any smooth function a very natural map between the tangent spaces. We will define the
derivative as that map.

Definition 1.5 (Total derivative). Suppose f : M → N is a smooth map and p ∈ M . Then
the total derivative or differential at p, denoted dpf is the map TpM → Tf(p)(N) given by:

(dpf(v))(g) := v(g ◦ f)
This is a well defined linear map because

(dpf(v))(gh) = v((gh) ◦ f)
= v((g ◦ f)(h ◦ f))
= v(g ◦ f)(h ◦ f)(p) + (g ◦ f)(p)v(h ◦ f)
= (dpf(v))(g)h(f(p)) + (dpf(v))(h)g(f(p)

(dpf(v))(g + h) = v((g + h) ◦ f)
= v(g ◦ f + h ◦ f)
= v(g ◦ f) + v(h ◦ f)
= (dpf(v))(g) + (dpf(v))(h)

dpf(v + w)(g) = (v + w)(g ◦ f)
= v(g ◦ f) + w(g ◦ f)
= dp(f(v))(g) + dp(f(w))(g)

dpf(rv) = rv(g ◦ f) = rdpf(v)

For derivatives in Rn we have the chain rule. One would hope that it generalizes to
manifolds and in fact it does, interestingly however it generalizes to a statement about the
functoriality of the derivative.

Proposition 1.6 (The chain rule). The map taking a (pointed) manifold to its tangent space
and a smooth function to its derivative is a functor.

Proof. First, let γ ∈ C∞(L) and v ∈ TpM . Then

(dp(g ◦ f)v)(γ) = v(γ ◦ g ◦ f) = ((df(p)g ◦ dpf)v)(γ)
And if ρ ∈ C∞(M) we have

(dpidv)(ρ) = v(ρ ◦ id) = v(ρ)

■

The tangent space allows us to define 3 special types of smooth map. These are essentially
local versions embeddings, quotient maps, and diffeomorphisms respectively.
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Definition 1.7. A smooth map f : M → N is a

• Immersion if and only if the differential is injective at every point
• Submersion if and only if the differential is surjective at every point
• local diffeomorphism if and only if the differential is an isomorphism at every point

Notably, by something called the inverse function theorem [2] (which we will not prove) f is a
local diffeomorphism if and only if for every point p ∈ M there exists some open p ∈ U ⊂ M
such that f |U is a diffeomorphism onto its image. In fact, the inverse function theorem is
slightly stronger, it states that the differential of f at p is an isomorphism if and only if there
exists some p ∈ U ⊂ M such that f |U is a diffeomorphism onto its image.

Immersions are of particular interest to us because the image of an immersion is known
as an immersed submanifold. This is in contrast to what’s called an embedded submanifold
which is the image of a smooth topological embedding.

One concept that is ubiquitous when dealing with curves and surfaces is the idea of a
velocity vector. We are now equipped to define these, they essentially allow us to speak of
the properties of curves on a manifold.

Definition 1.8. Let γ : R → M be a smooth curve on M . At any t ∈ R Let 1 be the
tangent vector given by

1(f) = f ′(t)

Then the velocity vector of γ at t, is given by γ′(t) := (dtγ)(1).

Now that we have defined the tangent space and a few constructions using it we should take
a step back and try to understand the structure of the tangent space. This has a surprisingly
nice answer, in order to reach that answer we first characterize the tangent space of Rn.

Lemma 1.9. The tangent space at any point in Rn is Rn.

Proof. Suppose p = (p1, . . . , pn) ∈ Rn. Then we have an isomorphism T0Rn → TpRn given by
v 7→ vp where, letting fp = f(x+ p), we define vp(f) := v(fp). This is clearly linear because
(av+w)p(f) = av(fp)+w(fp) = avp(f)+wp(f) and has an inverse given by v ∈ TpRn 7→ v−p

where v−p(f) = v(f−p).

Then letting ∂i be the derivation ∂i(f) = ∂f
∂xi

(0), it is clear by definition of partial deriva-

tives that the set of ∂i is linearly independent. Now suppose v is a derivation at 0 and
f ∈ C∞(Rn). Then by the fundamental theorem of calculus

f(x1, . . . , xn) = f(0) +

∫ 1

0

d

dt
f(tx1, . . . , txn)dt

rewriting using the chain rule we have

f(x) = f(0) +
n∑

i=1

xi

∫ 1

0

∂if(tx)dt

So

v(f) = v(f(0) +
n∑

i=1

xi

∫ 1

0

∂if(tx)dt) =
n∑

i=1

v(xi)∂
if +

n∑
i=1

0v(

∫ 1

0

∂if(tx)dt) =
n∑

i=1

v(xi)∂
if

So {∂i} form a basis for the tangent space meaning the tangent space is isomorphic to Rn. ■

This immediately characterizes the tangent space of all manifolds.
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Proposition 1.10. Let M be manifold of dimension n, then every tangent space on M is
isomorphic to Rn

Proof. Suppose p ∈ M and ϕ a chart containing p. Define a map ϕ∗ : TpM → Tϕ(p)Rn by
ϕ∗v(f) = v(f ◦ ϕ−1). Then this map is linear because

ϕ∗(av + w)(f) = av(f ◦ ϕ−1) + w(f ◦ ϕ−1) = aϕ∗v(f) + ϕ∗w(f)

and it has an inverse given by ϕ−1
∗ v(f) = v(f ◦ ϕ). So TpM ∼= Tϕ(p)Rn ∼= Rn ■

Finally, we will discuss the product of two manifolds, this generalizes the product of
topological spaces to manifolds, it will also be necessary to define Lie groups.

Definition 1.11 (Product of manifolds). Suppose M,N are manifolds. Then their product
M ×N is given the product topology. This means that we may define charts on M ×N by
taking any any chart ϕM : U → Rm on M and any chart ϕN : V → Rn on N and defining
a new chart on M × N by taking ϕM × ϕN : U × V → Rn+m. So M × N is an m + n
dimensional manifold. One important consequence of this is that the tangent space at any
point (a, b) is equal to TaM ⊕ TbN . Explicitely this isomorphism defines (v, w) to be the
derivation (v, w)(γ) = v(γ|a) + w(γ|b) where γ|a(m) = γ(m, b) and γ|b(n) = γ(a, n).

It is finally time to talk about Lie groups, these are groups that capture smooth symmetry,
they are both groups and manifolds.

Definition 1.12. A Lie group G has both the structure of a group and a smooth manifold,
such that group multiplication map m : G×G → G is smooth.

As stated previously, you can never really talk about mathematical objects without talking
about maps between them.

Definition 1.13. A homomorphism of Lie Groups is a homomorphism of groups that is
smooth. An isomorphism of Lie groups is a group isomorphism with smooth inverse

Example. The canonical examples of Lie groups are the matrix groups

• GLn(R) is the group of n× n invertible real matrices
• SLn(R) is the group of n× n matrices with determinant 1
• On(R) is the group of all n× n matrices with XTX = I
• SOn(R) is the group of all n× n matrices with XTX = I with determinant 1

Example. The non zero quaternions under multiplication form a lie group

I will leave the above two examples for you to verify if you want to, these verifications are
largely computational and generally working through them gives you a good idea of what
manifolds and Lie groups feel like.

2. Vector fields and their Lie algebra

An important idea in Lie theory is that we should try to study an algebraic structure on
the tangent space (called a Lie algebra) induced by the group multiplication. In order to
construct such an algebraic structure we have to look at what are called vector fields. A
vector field is roughly a smooth choice of tangent vectors at each point on a manifold. In
order to make this rigorous we need to introduce whats called the tangent bundle
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Definition 2.1. Let M be a manifold, the tangent bundle of M , TM consists of ordered
pairs (p, v) with p ∈ M and v ∈ TpM . The natural projection map π : TM → M is given
by π : (p, v) 7→ p.

This can be given a smooth structure, but that is not necessary for our purposes. We
actually need very little to define a smooth vector field.

Definition 2.2 (Vector field). A smooth vector field X is a function X : M → TM such
that

• For any point p ∈ M , denoting the application of X to p by Xp, we have π(Xp) = p.
• For any f ∈ C∞(M), viewing Xp as a derivation, the function Xf(p) := Xp(f) is
smooth.

Notably vector fields form a real vector space under the operations

• (X + Y )p = Xp + Yp

• (aX)p = aXp

A nice way of thinking about vector fields is as generalized derivatives. Specifically if f ∈
C∞(M) then we may obtain a new smooth function X(f) called the derivative of f along
X by taking X(f)(p) = Xp(f). Then this seems to give natural algebraic structure to
vector fields. We can define the composition of two vector fields XY such that (XY )p(f) =
Xp(Y (f)). This looks great on the surface, but we run into an issue. namely that this is
not, in general, a tangent vector. It doesn’t satisfy the product rule because:

X(Y (fg)) = X(Y (f)g + fY (g))

= X(Y (f)g) +X(fY (g))

= X(Y (f))g + Y (f)X(g) +X(f)Y (g) + fX(Y ((g))

You might notice that this almost satisfies the product rule. XY (fg) = fXY (g) +XY (f)g
plus some other stuff. What the you might also nptice is that this other stuff is the same for
XY and Y X. So, let’s define a new algebraic operation, called the Lie bracket, on vector
fields by [X, Y ] = XY − Y X. It’s easy to check that this is actually a vector field.

Proposition 2.3. If X, Y are vector fields so is [X, Y ] = XY − Y X.

Proof. We need only show that this acts linearly on f, g ∈ C∞(M) and that it satisifies the
product rule. This is fairly easy, linearity follows because:

[X, Y ](af + g) = X(Y (af + g))− Y (X(af + g))

= aX(Y (f)) +X(Y (g))− aY (X(f))− Y (X(g))

= a(X(Y (f))− Y (X(f))) +X(Y (g))− Y (X(g))

= a[X, Y ](f) + [X, Y ](g)

and the product rule follows because:

[X, Y ](fg) = XY (fg)− Y X(fg)

= X(Y (f))g + Y (f)X(g) +X(f)Y (g) + fX(Y ((g))

− (Y (X(f))g + Y (f)X(g) +X(f)Y (g) + fY (X((g)))

= (X(Y (f))− Y (X(f)))g + f(X(Y (g))− Y (X(g)))

= [X, Y ](f)g + f [X, Y ](g)
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■

There are 3 identities satisfied in general by the Lie bracket. These allow us to decipher
all of the general algebraic properties of the Lie bracket.

Proposition 2.4. Let X, Y, Z be vector fields. Then we have (i) The alternating property
[X,X] = 0

(ii) Bilinearity
(iii) The jacobi identity

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0

Proof. (i) This is nearly trivial because

[X,X] = XX −XX = 0

(ii) let a ∈ R be a scalar, then

[aX+Z, Y ] = aX(Y )+Z(Y )−Y (aX+Z) = aX(Y )−aY (X)+Z(Y )−Y (Z) = a[X, Y ]+[Z, Y ]

meaning the Lie bracket is linear in the first slot and it is linear in the second slot because

[X, aY+Z] = X(aY+Z)−aY (X)−Z(X) = aX(Y )−aY (X)+X(Z)−Z(X) = a[X, Y ]+[X,Z]

(iii) The jacobi identity is the hardest to prove of any of these identity but still not terrible.
It follows by

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = XY Z −XZY − Y ZX + ZY X

+ ZXY − ZY X −XY Z + Y XZ

+ Y ZX − Y XZ − ZXY +XZY

= (XY Z −XY Z) + (XZY −XZY )

+ (Y ZX − Y ZX) + (ZY X − ZY X)

+ (ZXY − ZXY ) + (Y XZ − Y XZ)

= 0

■

As you might notice, none of these properties depend on the objects operated on by the
Lie bracket being vector fields. We only need them to be vectors (or elements of a module
but we won’t get into that). So we may define a new sort of algebraic structure known as
a Lie algebra. Lie algebras generalize the Lie bracket on vector fields and ultimately will be
what allows us to “flatten” a Lie group to its tangent space.

Definition 2.5. A Lie algebra g is a vector space equipped with a bilinear operation [−,−]
called the Lie bracket satisfying

• The alternating property

[x, x] = 0

• The jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]]

A morphism of Lie algebras is just a linear function between Lie algebras that preserves the
Lie bracket.
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While it is true that vector fields induce Lie algebras, there is one Lie algebra in particular
that I am almost certain you have seen before.

Example. the vector space R3 is a Lie algebra with the cross product as the Lie bracket.
Bilinearity and the alternating property are immediate from the definition, the jacobi identity
follows because

a× (b× c) + c× (a× b) + b× (c× a) = (a · c)b− (a · b)c
+ (c · b)a− (c · a)b
+ (b · a)c− (b · c)a
= 0

3. The Lie algebra of a Lie group

The primary goal of this section is to show how exactly we flatten a Lie group to a Lie
algebra. The first step to this process is to note that Lie groups act in a very natural way
on tangent vectors.

Definition 3.1. Let G be a Lie group and g, h ∈ G. Then denote left multiplication by g
on h by Lg(h). Then Lg is smooth by definition and thus we call have the derivative map
dhLg : ThG → TghG left translation by g.

In particular we are able to talk about those vector fields invariant under this action.
These vector fields will turn out to be the key in defining the lie algebra.

Definition 3.2. A smooth vector field X on a Lie group G is said to be left-invariant if for
any g, h ∈ G, dhLg(Xh) = Xgh.

Importantly, every left-invariant vector field is determined by its value at 1. This is because
for any g ∈ G we must have Xg = Xg1 = (d1Lg)(X1). Further if v ∈ T1G then we may define
a vector field Xv by Xv

g = (d1Lg)(v). We will now show that left-invariant vector fields are
closed under the Lie bracket operation because if they are, we would be able to define a Lie
algebra structure on the tangent space.

Lemma 3.3. If X, Y are left-invariant vector fields then [X, Y ] is left-invariant.

Proof. Let G be a Lie group and X, Y be left invariant vector fields on G. Then for any
g, h ∈ G we have

((dhLg)[X, Y ]h)(f) = [X, Y ]h(f ◦ Lg) = Xh(Y (f ◦ Lg))− Yh(X(f ◦ Lg))

Then since X is a left invariant vector field

(X(f ◦ Lg))(h) = Xh(f ◦ Lg) = Xgh((f) = X(f) ◦ Lg)(h)

So

Xh(Y (f◦Lg))−Yh(X(f◦Lg)) = Xh(Y (f)◦Lg)−Yh(X(f)◦Lg) = Xgh(Y (f))−Ygh(X(f)) = [X, Y ]gh(f)

So ((dhLg)[X, Y ]h)(f) = [X, Y ]gh(f) meaning [X, Y ] is left-invariant. ■

So, to obtain a Lie algebra from a Lie group we take the underlying vector space to be
T1G and define the Lie bracket of v, w ∈ T1G by lifting each v, w to their corresponding left
invariant vector fields Xv, Xw and taking [v, w] = [Xv, Xw]1.

After seeing such a construction one might have two questions.
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• Is this assignment functorial?
• Is every Lie algebra the Lie algebra of some Lie group?

The answer to both of these questions is yes. However the proof of the second is highly
nontrivial and beyond the scope of this text. The first on the other hand is decently simple.

Theorem 3.4. Let G,H be Lie groups and f : G → H a Lie group homomorphism. Then
the map d1f : T1G → T1H is a Lie algebra homomorphism.

Proof. We already know that this is a linear map so we need only show that it preserves the
Lie bracket. Now, note that f ◦ Lg = Lf(g) ◦ f and so for any γ : H → R

(d0f ◦ d0Lg)v)(γ) = (d0(f ◦ Lg)v)(γ)

= v(γ ◦ f ◦ Lg)

= v(γ ◦ Lf(g) ◦ f)
= (d0(Lf(g) ◦ f)v)(γ)
= (d0Lf(g) ◦ d0f)v)(γ)

So for any tangent vector v letting Xv denote the corresponding left-invariant vector field
we have dfXv = Xd0f(v). Therefore

d0f([v, w]) = df([Xv, Xw])0

= df(XvXw −XwXv)0

= (dfXvdfXw − dfXwdfXv)0

= (Xd0f(v)Xd0f(w) −Xd0f(w)Xd0f(v))0

= [Xd0f(v), Xd0f(w)]0

= [d0f(v), d0f(w)]

So the derivative is a Lie algebra homomorphism. Further, since the derivative respects
identity and composition we therefore obtain functoriality. ■

We denote the functor taking Lie groups to Lie algebras Lie.

4. The exponential map and connected Lie groups

We are now going to discuss the exponential map and how it relates connected Lie groups
and their Lie algebras. Note that from here on we will denote the derivative of the left and
right multiplication maps by dpRg(v) = vg and dpLg(v) = gv. First we prove a few results
about how differentiation and group multiplication interact

Proposition 4.1. Let f, g : G → H be Lie group homomorphisms. Then the smooth map
fg has derivative dpfg = (dpf)g(p) + f(p)(dpg)

Proof. Let m denote the the multiplication map

(dpfg) = df(p),g(p)m ◦ (dpf, dpg)
Now let us find da,bm. Then this is a linear map on TaH ⊕ TbH meaning da,bm(v, w) =
d(a,b)m(v, 0) + d(a,b)m(0, w) Since (v, 0)(γ) = v(γ|a) and (0, w)(γ) = w(γ|b) we thus have

d(a,b)m(v, 0) + d(a,b)m(0, w) = vb+ aw



10 MARIGOLD STRUPP

Therefore
((dpfg)v)(γ) = df(p),g(p)m ◦ (dpf, dpg) = (dpf)g(p) + f(p)(dpg)

■

Now let’s talk about the exponential map. This is roughly the map from T1G = Lie(G) →
G obtained by wrapping a tangent vector onto G. To define this we first have to show
existence and uniqueness of a certain curve. In order to do so we will be using existence and
uniqueness results for ordinary differential equations [1], if you don’t know these feel free to
black box them.

Proposition 4.2. For any v ∈ Lie(G) there is a unique Lie group homomorphism γv : R →
G such that γ′(0) = v.

Proof. First note that such a function must have

γv(b)γv(a) = γv(b+ a) = γv(a+ b) = γv(a)γv(b)

In particular
γv(2t) = γv(t)

2

so differentiating with respect to a we find

γ′
v(a+ b) = γ′

v(a)γv(b)

So if we set a = 0 then we have
γ′
v(b) = xγv(b)

This articulates an ODE with initial condition γv(0) = 1 which by existence and uniqueness
for ODEs has a unique solution on some neighborhood |t| < δ. To show that this solution
extends to the whole real line we induct on n to show that it exists for |t| < 2nδ. We already
have the base case so now suppose a solution exists on |t| < 2n−1δ, then we define for any
|t| < 2nδ, γv(t) = γv(

t
2
)2. We have already seen that this must agree with the previous

solution for |t| < 2n−1δ and since

γ′
v(t) =

1

2
(γ′

v(
t

2
)γv(

t

2
) + γv(

t

2
)γ′

v(
t

2
) =

1

2
(xγv(

t

2
)2 + xγv(

t

2
)2) = xγv(

t

2
)2 = xγv(t)

meaning that this is a solution to our differential equation. Thus a solution exists globally
meaning our claim holds. ■

The existence of this curve allows us to define the exponential map, which uses the curve
to figure out how a vector is “wrapped” onto a Lie group.

Definition 4.3. The exponential map exp : Lie(G) → G is defined by exp(v) = γv(1). This
immediately tells us that exp(tv) = γv(t).

Example. The exponential map of the general linear group (and by extension any matrix Lie
group) is given by

exp(X) :=
∞∑
n=0

Xn

n!

where X ∈ Rn2
is viewed as a real matrix. This follows because

∞∑
n=0

0n

n!
= I
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and because the derivative of exp(tX) is given by
∞∑
n=0

tnXn+1

n!

which when t = 0 evaluates to X. Thus exp(X) = γX(1).

As with many mathematical objects we only ever care about the useful properties exp has.
One such very useful property is as follows

Proposition 4.4. viewing the tangent space as the smooth manifold Rn we have exp(0) = 1,
d0exp = Id and that for some for some open subset U containing 0 such that exp|U is a
diffeomorphism onto its image.

Proof. Note that exp(tv) = γv(t) so exp(0) = 1. Further we have v = γ′
v(0) =

d
dt
exp(vt)|t=0 =

d0 exp(v) So d0 exp = Id. By the inverse function theorem this immediatlly implies that for
some for some open subset U containing 0 such that exp|U is a diffeomorphism onto its
image. ■

This should give you a nice idea of why exp is in some sense the canonical map from
Lie(G) → G, This also allows us to define an inverse to exp on some open subset of 1, we
notate this inverse by log, it is called the logarithm. The exponential map also has a couple
more nice properties that allow us to more easily connect Lie(G) and G.

Proposition 4.5. We have

• if f is a Lie group homomorphism then f ◦ exp = exp ◦d0f
• for any v ∈ Lie(G) and a, b ∈ R exp((a+ b)v) = exp(av) exp(bv)

Proof. The functions (exp ◦d0f)(tv) and (f ◦ exp)(tv) both satisfy the differential equation
γ′(t) = γ(t)d0f(v) with the same initial conditions, so by uniqueness of solution to ODEs,
they are equal.

Now let a, b ∈ R then

exp((a+ b)v) = γv(a+ b) = γv(a)γv(b) = exp(av) exp(bv)

■

This proposition implies a possible connection between morphisms of Lie groups and their
derivatives given by the exponential map. In order to make such a relationship more rigorous
we have to discuss connected Lie groups. Connected Lie groups are of particular interest to
us because every Lie group is an extension of a discrete group by a connected Lie group.
First recall that the connected component of a point p in some topological space is the
maximal connected subset containing p. (Note, we will really be using the notion of path
connectedness instead of connectedness, this doesn’t change anything because the notions
coincide for manifolds.)

Proposition 4.6. Let G be a Lie group and let G(1) be the connected component of the
identity. Then G(1) is a normal subgroup and G/G(1) with the quotient topology is discrete.

Proof. First suppose x, y ∈ G(1) then we have a path fx from 1 to x and a path fy from 1 to
y. Then xfy is a path from x to xy meaning via concatanating paths we have a path from 1
to xy. Therefore xy ∈ G(1). This shows that G(1) is a subgroup, to show it is normal suppose
g ∈ G, then gfxg

−1 is a path from 1 to gxg−1 meaning gxg−1 ∈ G(1). This shows that
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G(1) is a normal subgroup. Now note that since multiplication by any g ∈ G is continuous
with continuous inverse it sends open sets to open sets. Since every point in G has an open
neighborhood homeomorphic to Rn it is thus locally connected meaning that its connected
components are open [3]. Thus the cosets gG(1) are open and thus G/G(1) is discrete. ■

Connected Lie groups have the wonderful property that neighborhoods of 1 generates the
whole group.

Theorem 4.7. suppose 1 ∈ U is an open subset of some connected Lie group G, then the
subgroup generated by U is G.

Proof. Let H be the subgroup of G generated by U . Then H =
⋃

h∈H hU so H is open.
Now suppose g ∈ G−H then the coset gH ⊂ G−H contains g and is open, thus G−H =⋃

g∈G−H gU and thus H is closed. By connectedness the only clopen subset of G is G itself
meaning G = H. ■

This and theorem along with the exponential map finally allows us to give a very strong
relation between Lie group homomorphisms of connected Lie groups and their derivatives.

Theorem 4.8. Suppose G is a connected Lie group and f : G → H is a Lie group homo-
morphism. Then f is determined by its derivative at 1.

Proof. Suppose g : G → H is another Lie group homomorphism with the same derivative.
Recall that exp is a diffeomorphism onto some open neighborhood U of 1 when restricted
to some open neighborhood of 0. Additionally note that exp(d1f(v)) = f(exp(v)), so for
any u ∈ U g(u) = f(u). Now suppose x ∈ G, then since U generates G we have some
u1u2 . . . un = x meaning

f(x) = f(u1u2 . . . un) = f((u1)f(u2) . . . f(un) = g(u1)g(u2) . . . g(un) = g(u1u2 . . . un) = g(x)

■

This gives us a very strong relationship between the category of Lie groups and Lie alge-
bras. The functor Lie from the category of connected Lie groups to Lie algebras is faithful.

5. The general theory of Lie algebras

In this section we will discuss the general algebraic theory of Lie algebras. We begin by
discussing a few basic facts and definitions to do with Lie algebras

Proposition 5.1. Let g be a Lie algebra. Then [x, y] = −[y, x]

Proof.
[x, y] + [y, x] = [x+ y, y + x] = 0

Thus
[x, y] = −[y, x]

■

We also have the notion of a Lie subalgebra ideal.

Definition 5.2. For any Lie algebra g a Lie subalgebra h ⊂ g is a subspace of the underlying
vector space such that if x, y ∈ h then [x, y] ∈ h. This can be abbreviated as [h, h] ⊂ h. h is
an ideal if [g, h] ⊂ h.

A certain type of Lie algebra is especially interesting.
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Definition 5.3. Let A be any associative algebra, then we may define a lie bracket by

[x, y] = xy − yx

These fulfill bilinearity from the bilinearity of multiplication, the jacobi identity comes from
the associativity of multiplication and the alternating properties follows by

[x, x] = xx− xx = 0

Proposition 5.4. Let A,B be associative algebras, then if f : A → B is an algebra homo-
morphism, it is also a Lie algebra homomorphism

Proof. If x, y ∈ A then

f([x, y]) = f(xy − yx) = f(x)f(y) = f(y)f(x) = [f(x), f(y)]

■

One particularly important such lie algebra is the lie algebra of n × n matrices denoted
gln(R). We can of course generalize this to any associative algebra of endomorphisms,
including infinite dimensional ones. We denote the Lie algebra of endomorphisms of a given
vector space V by gl(V ). Importantly the endomorphisms of the underlying vector space of
a given lie algebra g is indeed a lie algebra. One of the key ideas we use to study Lie algebras
is that of a representation.

Definition 5.5. A representation of a Lie algebra g is a lie algebra homomorphism g →
gl(V ).

In particular every lie algebra has a representation called the adjoint representation.

Definition 5.6. If g is a Lie algebra with underlying vector space V then the adjoint
representation is the map x 7→ adx where adx ∈ end(V ) is defined by

adx(y) := [x, y]

Linearity follows from linearity of the lie bracket and preservation of the Lie bracket follows
because from the alternating property and the Jacobi identity.

In general, having an associative algebra structure is very useful and it would be ideal if
every Lie algebra came from an associative algebra. It is fairly trivial to show that there
are some Lie algebras that aren’t also associative algebras (look at the lie algebra of vector
fields for example) but it is actually true that every Lie algebra is a Lie subalgebra of some
Associative algebra. In order to show this we will construct a sort of free associative algebra
on a Lie algebra called the universal enveloping algebra. In order to do so we will construct
a “free” associative algebra on a vector space.

Definition 5.7. For any vector space V the tensor algebra on V , T V is defined to be

T V :=
⊕
n≥0

V ⊗n

With multiplication defined by vw 7→ v ⊗ w. There is a natural injection i : V → T V
sending v 7→ (0, v, 0, . . .).

In particular the tensor algebra fulfills a certain universal property
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Proposition 5.8. Let V be any vector space and A any associative algebra with g : V → A
a linear map. Then there exists a unique associative algebra homomorphism ϕ : T V → A
such that

V

T V A

i
g

ϕ

Commutes

Proof. By the universal property of direct sums every map T V → A is defined uniquely by
maps V ⊗n → A. So define ϕ by

• For any a ∈ R, ϕ(a) = a1A
• For any v1 ⊗ v2 ⊗ . . .⊗ vn, ϕ(v1 ⊗ v2 ⊗ . . .⊗ vn) = g(v1)g(v2) . . . g(vn)

Then this map respects multiplication because ϕ(x⊗ y) = ϕ(x)ϕ(y) and is linear because g
is linear. Furthermore since ϕ(v) = g(v)

V

T V A

i
g

ϕ

commutes. As for uniqueness suppose ρ is another such map, then because it respects
multiplication

ρ(v1⊗v2⊗ . . .⊗vn) = ρ(v1)ρ(v2) . . . ρ(vn) = ρ(i(v1))ρ(i(v2)) . . . ρ(i(vn)) = g(v1)g(v2) . . . g(vn)

and because it respects identity, for any a ∈ R

ρ(a) = ρ(a1) = aρ(1) = a1A

Thus by the universal property of direct sums ρ = ϕ meaning ϕ is unique. ■

The universal enveloping algebra is now constructed as a quotient of the tensor algebra.

Definition 5.9. For any Lie algebra } with underlying vector space V , define the universal
enveloping algebra Ug by

Ug := T V/⟨[v, w]− (v ⊗ w − w ⊗ v)⟩

The natural injection V → T V descends to an injective lie group homomorphism g → Ug

via the surjection T V → Ug. This is a lie group homomorphism by definition of Ug and is
injective because the ideal of T V generated by [x, y]− (x⊗ y − y ⊗ x) does not contain any
elements in the image of i.

Similarly to the tensor algebra Ug fulfills a certain nice universal property.

Proposition 5.10. If g is any lie algebra and A is any associative algebra then every lie
algebra morphism g : g → A lifts uniquely to an associative algebra morphism ϕ : Ug → A
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such that
g

Ug A

I
g

ϕ

commutes

Proof. Since g is linear it lifts uniquely to a map ρ : T V → A which must identify ρ([x, y])−
ρ(xy − yx) and thus descends uniquely to a homomorphism ϕ : Ug → A. ■

The final theorem of this section will show that every Lie algebra has a faithful (but likely
infinite dimensional) representation. That is for every Lie algebra g there is some vector
space V such that there exists an injective Lie algebra homomorphism g → end(V ).

Theorem 5.11. Let g be a Lie algebra and Ug its universal enveloping algebra, let V be the
underlying vector space of the universal enveloping algebra. Then there exists an injective
lie algebra homomorphism g → end(V ).

Proof. For any v ∈ g define ϕv : V → V by ϕv(x) = i(v)x. Then we define a map g → end(V )
by v 7→ ϕv, this map is a lie algebra homomorphism because i is a lie algebra homomorphism.
It is injective because if v ̸= w, i(v) ̸= i(w) and thus ϕv(1) = i(v)1 ̸= i(w)1 = ϕw(1). ■

There is a more specific version of this theorem called Ado’s theorem which states that
every finite dimensional Lie algebra has a finite dimensional representation. This theorem is
much harder to prove but much more powerful. It a primary tool used in the proof of Lie’s
third theorem, that every Lie algebra is the Lie algebra of some Lie group.

6. Conclusion

In this paper, we have developed the tools needed to pass from the global, nonlinear world
of Lie groups to the local, linear world of Lie algebras. Starting with the language of smooth
manifolds, we introduced tangent spaces and vector fields, and saw how the Lie bracket
endows the space of vector fields with a rich algebraic structure.

For a Lie group G, the special class of left-invariant vector fields allowed us to transport
this structure to the tangent space T1Gat the identity. This space, equipped with the in-
duced bracket, is the Lie algebra Lie(G). We saw that the construction is functorial: a
homomorphism of Lie groups induces a homomorphism of their Lie algebras.

The exponential map then provided a canonical way to move back from Lie(G) to G. In
the connected case, neighborhoods of the identity generate the entire group, and Theorem
4.8 showed that a Lie group homomorphism is determined entirely by its derivative at the
identity. This gives a strong link between the category of connected Lie groups and the
category of Lie algebras: the Lie functor is faithful. Finally, we discussed a few of the more
algebraic theory of lie groups. Constructing the universal enveloping algebra and using it to
find a faithful representation of any Lie algebra.

The correspondence between Lie groups and lie algebras lies at the heart of Lie theory
and underpins many applications, from geometry to physics. The results presented here are
only the starting point: further study leads to classification of Lie algebras, representation
theory, and the interplay between topology and algebra.
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