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Abstract

The classical isoperimetric inequality asserts that among all simple closed curves of fixed length
in the plane, the circle encloses maximal area. This article gives a concise proof outline via Steiner
symmetrization and then explains how the isoperimetric principle extends beyond the Euclidean plane.
On the unit 2-sphere, the minimizers of boundary length for a given area are spherical caps, leading to the
sharp inequality L2 ≥ A(4π − A). In negatively curved space (H2), geodesic disks minimize length and
the sharp profile becomes L2 ≥ A(4π + A). In discrete settings, the appropriate notion of “boundary”
is combinatorial: for finite graphs, one studies the edge boundary of a vertex set. We discuss model
cases, including the path and cycle, and sketch Harper’s edge-isoperimetric theorem on the hypercube
via compression. Throughout, the emphasis is on the common theme: curvature and combinatorial
structure shape how “volume” is controlled by “boundary.”

1 Introduction and brief history

The isoperimetric problem asks: among all closed planar curves of given length, which encloses the largest
area? Already present in antiquity (often associated with Dido’s problem), the modern mathematical treat-
ment matured in the 18–19th centuries. Steiner popularized symmetrization arguments; rigorous existence
and regularity issues were settled later via the calculus of variations and geometric measure theory. Today the
inequality is a cornerstone of geometry, analysis, and probability, and it admits far-reaching generalizations
on manifolds and in discrete structures.

Two viewpoints. There are (at least) two complementary pictures:

• Rearrangement/symmetrization: compare an arbitrary set to a symmetric model by equimeasurable
rearrangement that does not increase perimeter.

• Variational/first-variation: minimize perimeter under a volume constraint; Euler–Lagrange gives con-
stant (geo)desic curvature/mean curvature, which identifies the optimizer.

In the plane these both single out disks. On curved surfaces, curvature modulates the optimal profile but the
principles persist. On graphs, rearrangement becomes compression, and the variational picture is replaced
by local combinatorial improvements.

2 The classical isoperimetric inequality in R2

We work with sufficiently regular Jordan domains; more generally, the statements extend to measurable sets
of finite perimeter with the standard tools of geometric measure theory.

Definition 2.1 (Perimeter and area). For a bounded set Ω ⊂ R2 with smooth boundary ∂Ω, its area is

A(Ω) = |Ω|,

where | · | denotes the two-dimensional Lebesgue measure, and its perimeter is

P (Ω) = H1(∂Ω),
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the one-dimensional Hausdorff measure of the boundary, i.e. the boundary length.
For more general sets of finite perimeter, the perimeter P (Ω) can be characterized as the total variation

of the characteristic function χΩ. Here χΩ is the function

χΩ(x) =

{
1, x ∈ Ω,

0, x /∈ Ω,

and the “total variation” means the distributional gradient ∇χΩ is a finite measure, whose mass gives P (Ω).

Theorem 2.2 (Planar isoperimetric inequality). For every bounded domain Ω ⊂ R2 with smooth boundary,

P (Ω)2 ≥ 4π A(Ω),

with equality if and only if Ω is a Euclidean disk.

We will present a robust route via Steiner symmetrization. The method isolates a one-dimensional
rearrangement improvement on lines, then integrates it by means of the coarea formula.

Steiner symmetrization and the key inequality

Fix the x-axis. For almost every x ∈ R (that is, for all x outside a set of measure zero where the slice may
be ill-defined), consider the vertical slice

Ix = { y ∈ R : (x, y) ∈ Ω }.

Each slice Ix is a (possibly disconnected) union of intervals. The Steiner symmetral Ω∗ (with respect to the
x-axis) is obtained by replacing each slice Ix with a single centered interval of the same length,

I∗x =
[
− |Ix|

2 , |Ix|
2

]
.

In words: instead of keeping track of where the mass of Ω sits along the vertical line at x, we redistribute it
into one contiguous block, centered on the x-axis, but preserving the one-dimensional measure |Ix|.

This construction has two immediate consequences:

(i) Area preservation: A(Ω∗) = A(Ω), since each slice has the same measure before and after sym-
metrization.

(ii) Perimeter monotonicity: P (Ω∗) ≤ P (Ω), i.e. symmetrization does not increase boundary length.

Item (ii) is the substantive inequality: rearranging each slice into a single interval reduces the vertical
boundary complexity, and the BV slicing machinery upgrades this one-dimensional improvement into a global
perimeter inequality.

Lemma 2.3 (Perimeter monotonicity under Steiner). Let Ω ⊂ R2 be a bounded set of finite perimeter and
let Ω∗ be its Steiner symmetral (with respect to the x-axis). Then

P (Ω∗) ≤ P (Ω),

with equality only if almost every vertical slice Ix is a single interval (up to null sets).

Proof sketch. Write u = χΩ. For almost every x, the function y 7→ u(x, y) is a BV function on R, i.e. a
function of bounded variation taking values in {0, 1}. Its one-dimensional total variation along the vertical
line {x} × R equals twice the number Nx of connected components of the slice Ix:

Vary(u(x, ·)) = 2Nx.

Replacing u(x, ·) by its centered decreasing rearrangement u∗(x, ·) preserves the length |Ix| and minimizes
this 1D variation. Hence,

Vary(u
∗(x, ·)) ≤ Vary(u(x, ·)) for a.e. x.
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Vol’pert’s slicing theorem for BV functions states that the map

x 7−→ |Ix|

is itself a function of bounded variation. Its one-dimensional total variation (denoted TV) is given by

TV
(
x 7→ |Ix|

)
= |DxχΩ|(R2),

where TV(f) means the total variation of a real-valued function f on R, and |DxχΩ| denotes the total
variation measure of the distributional derivative of χΩ in the x-direction. Similarly, |DyχΩ| measures
the variation in the y-direction. Viewing DχΩ = (DxχΩ, DyχΩ) as a R2–valued Radon measure, its total
variation is

P (Ω) = |DχΩ|(R2).

Steiner symmetrization preserves |Ix| slice-wise, and thus preserves the x-component |Dxχ|. On the other
hand, integrating the one-dimensional variation inequality gives

|DyχΩ∗ |(R2) ≤ |DyχΩ|(R2).

ViewingDχ as a vector-valued Radon measure and using lower semicontinuity together with the convexity
of the Euclidean norm, one concludes

P (Ω∗) = |DχΩ∗ |(R2) ≤ |DχΩ|(R2) = P (Ω).

Equality forces Vary(u
∗(x, ·)) = Vary(u(x, ·)) for almost every x, hence Nx = 1 almost everywhere. That

is, almost every vertical slice is already a single interval.

Proof of Theorem 2.2 (via iterated Steiner). Apply Steiner symmetrization first with respect to the x-axis
to obtain Ω1, then with respect to the y-axis to obtain Ω2, and iterate over a dense set of directions. The
sequence {Ωk} has constant area, nonincreasing perimeter, and remains uniformly bounded. Compactness
for finite-perimeter sets gives an L1-limit Ω∞ with

A(Ω∞) = A(Ω), P (Ω∞) ≤ lim inf
k

P (Ωk) ≤ P (Ω).

By construction, Ω∞ is invariant under reflections across a dense set of lines through the origin; continuity
of the action yields full rotational invariance, hence Ω∞ is a disk Br. Therefore

P (Ω) ≥ P (Ω∞) = 2πr, A(Ω) = A(Ω∞) = πr2,

and eliminating r yields P (Ω)2 ≥ 4πA(Ω). If equality holds, then equality holds at each symmetrization
step; by Lemma 2.3 this forces the slices in each symmetrized direction to be single intervals a.e., and the
dense family of symmetries forces Ω itself to be a disk up to null sets.

Remark 2.4 (Strengthenings and stability). For convex planar sets, Bonnesen’s inequality refines the basic
isoperimetric deficit:

P (Ω)2 − 4πA(Ω) ≥ π2 (R− r)2,

where r and R denote the inradius and circumradius of Ω.
Beyond exact inequalities, there are also stability results: if the deficit

δ := P (Ω)2 − 4πA(Ω)

is small, then Ω must be quantitatively close to a disk. One convenient way to measure “closeness” is the
Fraenkel asymmetry, defined by

A(Ω) = inf
x,r

|Ω△Br(x)|
A(Ω)

,

where △ denotes the symmetric difference and the infimum is over all disks Br(x) of area A(Ω). In words:
A(Ω) measures the relative fraction of area where Ω fails to overlap with the best-fitting disk.

Quantitative stability then says

A(Ω) ≲

√
δ

P (Ω)
,

where the notation X ≲ Y means that X is bounded above by a constant multiple of Y (with the constant
universal, not depending on Ω).
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A variational aside: constant curvature

If one minimizes P (Ω) subject to A(Ω) = A0, the first variation gives

κ ≡ λ on ∂Ω,

i.e. the boundary has constant curvature κ, hence is a circle. This complements the rearrangement route
and generalizes to higher dimensions (constant mean curvature).

3 Isoperimetry in spaces of constant curvature

Let S2 ⊂ R3 be the unit sphere with the induced metric; let H2 denote the hyperbolic plane of curvature
−1.

Definition 3.1 (Spherical caps). Fix p ∈ S2 and θ ∈ (0, π). The cap of angular radius θ is

Cθ(p) = {x ∈ S2 : arccos⟨x, p⟩ ≤ θ }.

Its boundary is a geodesic circle of geodesic curvature cot θ.

Theorem 3.2 (Spherical isoperimetric inequality). For any regular region Ω ⊂ S2 with area A ∈ (0, 4π)
and boundary length L,

L2 ≥ A (4π −A),

with equality if and only if Ω is a spherical cap (up to measure zero).

Proof sketch (two routes). (Symmetrization). Perform zonal symmetrization about a pole: along each circle
of latitude, replace the arc(s) Ω∩{latitude = ℓ} by the centered arc of the same length. As in Lemma 2.3, one-
dimensional rearrangement along latitudes decreases boundary count; integrating in the orthogonal direction
preserves area. The result is a rotationally symmetric set C with A(C) = A(Ω) and L(∂C) ≤ L(∂Ω);
symmetry forces C to be a cap.

(Variational). Existence of perimeter minimizers under an area constraint follows from compactness
on S2. First variation yields boundary with constant geodesic curvature; simple closed curves of constant
geodesic curvature on S2 are geodesic circles, bounding caps. For a cap of angular radius θ,

A = 2π(1− cos θ), L = 2π sin θ.

Eliminate θ via cos θ = 1− A
2π to obtain L2 = A(4π −A).

Theorem 3.3 (Hyperbolic isoperimetric inequality). In the hyperbolic plane H2 of curvature −1, for any
regular region of area A and boundary length L,

L2 ≥ A (4π +A),

with equality precisely for geodesic disks.

Proof sketch. Geodesic disks minimize boundary for fixed area by either a symmetrization argument in a
disk model or by first variation (constant geodesic curvature implies geodesic circles). If Dr is a disk of
radius r, then L = 2π sinh r and A = 2π(cosh r − 1). Hence

L2 = 4π2 sinh2 r = 4π2(cosh2 r − 1) = 4π2
((
1 + A

2π

)2 − 1
)

= 4πA+A2 = A(4π +A).

Remark 3.4 (Curvature comparison). Compare the three constant-curvature profiles (for K ∈ {−1, 0, 1}):

L2 ≥ A
(
4π −KA

)
.

Positive curvature (K = +1) makes enclosing large regions cheaper; negative curvature (K = −1) makes it
more expensive. All three are symmetric under complement when K = +1, consistent with A 7→ 4π −A on
S2.
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4 Higher-dimensional Euclidean isoperimetry

Write ωn = |B1(0)| for the volume of the unit ball in Rn.

Theorem 4.1 (Euclidean isoperimetric inequality in Rn). For a finite-perimeter set Ω ⊂ Rn,

P (Ω) ≥ nω1/n
n |Ω|

n−1
n , equivalently P (Ω)n ≥ nn ωn |Ω|n−1,

with equality if and only if Ω is a ball (a.e.).

Several proofs exist: Brunn–Minkowski (via concavity of t 7→ |(1 − t)Ω + tB|1/n), calibration with the
Newtonian potential, and the Pólya–Szegő inequality (decreasing symmetric rearrangement does not increase
the Dirichlet energy, leading to a sharp isoperimetric inequality through the coarea formula).

Remark 4.2 (First variation). Minimizers under a fixed volume constraint necessarily have boundary with
constant mean curvature (CMC). Alexandrov’s theorem shows that embedded closed hypersurfaces in Rn

with constant mean curvature which are topological spheres must in fact be round spheres, recovering the
equality cases in Theorem 4.1.

5 Discrete isoperimetry on graphs

Let G = (V,E) be a finite simple graph. For S ⊂ V , the edge boundary is

∂S = { {u, v} ∈ E : u ∈ S, v ∈ V \ S }, b(S) := |∂S|.

One seeks lower bounds on b(S) in terms of |S| and the structure of G.

Two warm-up examples

Paths and cycles. If G = Pn is the path on n vertices, the sets minimizing b(S) for fixed |S| = k are
contiguous intervals; for 1 ≤ k ≤ n − 1 one gets b(S) = 1 if S touches exactly one endpoint and b(S) = 2
otherwise. On the cycle Cn, every nonempty proper S satisfies b(S) ≥ 2, with equality for contiguous arcs.
These mirror the 1D Euclidean picture: intervals minimize boundary for fixed measure.

The hypercube and compression

Let Qn denote the n-dimensional hypercube with vertex set {0, 1}n and edges between Hamming-neighbors.
For S ⊂ {0, 1}n, b(S) counts edges leaving S.

Theorem 5.1 (Edge-isoperimetric theorem on the hypercube (informal form)). Among all S ⊂ {0, 1}n with
|S| = m, the sets that minimize the edge boundary b(S) are lexicographic initial segments (in particular, for
m = 2k the minimizers are k-dimensional subcubes). For the vertex boundary, the minimizers are Hamming
balls (initial segments by Hamming weight).

Proof sketch via compression. For i ∈ {1, . . . , n}, partition {0, 1}n into pairs differing only in the i-th co-
ordinate. The i-compression Ci replaces S by a set Ci(S) where, within each pair, mass is moved to the
member with i-th coordinate 0 whenever the pair was split. Then |Ci(S)| = |S|, and one checks locally that
b(Ci(S)) ≤ b(S): edges in directions j ̸= i are unaffected and edges in direction i can only be removed.
Iterating C1, . . . , Cn in any order yields a down-set ; among down-sets of a given size, lexicographic initial
segments minimize b(S), giving the claim. (For vertex boundary, a related compression and layer-counting
argument leads to Hamming balls.)

A convenient lower bound that captures the correct growth in m is:

Proposition 5.2 (A clean lower bound). For every S ⊂ {0, 1}n with m = |S|,

b(S) ≥ m log2

(2n
m

)
.
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Proof idea. It suffices to check lexicographic initial segments; for m = 2k these are k-dimensional subcubes
with b = m(n− k) = m log2(2

n/m), and convexity/monotonicity in m gives the general bound (the discrete
analogue of P ≳ |S|(n−1)/n).

Remark 5.3 (Expansion and Cheeger viewpoint). For a d-regular graph G, the edge-isoperimetric number
(Cheeger constant) is

h(G) = min
∅≠S⊂V, |S|≤|V |/2

b(S)

|S|
.

Cheeger’s inequality relates h(G) to the spectral gap of the Laplacian, but on product graphs like Qn the
purely combinatorial compression method identifies sharp extremals directly. In expander graphs, h(G) is
bounded away from 0, mirroring linear isoperimetric growth.

6 A probabilistic cousin: Gaussian isoperimetry (briefly)

In (Rn, γn) with standard Gaussian measure γn, the correct boundary notion is the Gaussian surface measure.
The sharp inequality states that among all sets of a given Gaussian measure, half-spaces minimize Gaussian
surface measure. Equivalently, if µ = γn(A) and Φ is the standard normal CDF,

Gauss-perimeter(A) ≥ ϕ
(
Φ−1(µ)

)
,

where ϕ is the standard normal density. This isoperimetry controls concentration of measure and underlies
many inequalities in high-dimensional probability.

7 Comparisons and Unifying Themes

Across these settings, isoperimetry expresses a universal principle: boundary controls volume. Yet geometry
and structure shape the sharp form:

• In R2, Steiner symmetrization drives sets to disks, yielding P 2 ≥ 4πA and stability of near-equality.

• On S2 and H2, constant curvature bends the profile to L2 ≥ A(4π − A) and L2 ≥ A(4π + A), with
geodesic circles extremal.

• In Rn, balls uniquely optimize P ≥ nω
1/n
n |Ω|(n−1)/n; first variation gives constant mean curvature and

Alexandrov rigidity.

• On graphs, product structure makes compression effective, identifying lexicographic initial segments
as edge-isoperimetric extremals in Qn (subcubes at powers of two) and giving entropy-flavored lower
bounds like b(S) ≥ m log2(2

n/m); for vertex boundary, Hamming balls are extremal.

Curvature (continuous) and product/combinatorial structure (discrete) thus play analogous roles: they con-
strain optimal shapes and determine the isoperimetric profile.

Technical note on finite-perimeter sets

For completeness: a measurable set Ω ⊂ Rn has finite perimeter if χΩ ∈ BV (Rn); its perimeter is P (Ω) =
∥DχΩ∥(Rn). The coarea formula for u ∈ BV ,∫

R
Hn−1(∂∗{u > t}) dt = ∥Du∥(Rn),

underlies the passage from 1D slice inequalities to global isoperimetry. Lower semicontinuity of total variation
ensures compactness under L1 convergence in symmetrization schemes.
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