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Introduction

What happens if we dip a wire loop into a soapy water solution and then carefully lift it out?
We would see a shimmering soap film stretched across the wire frame, forming a surface that
seems to balance itself perfectly every time we repeat this process. This surface is not random
as expected, but it naturally arranges itself to have the smallest possible area considering
the boundary created by the wire. This observation inspires the question known as Plateau’s
problem, the subject of this paper: Given a fixed boundary curve in three-dimensional space,
does there exist a surface spanning the curve that has the minimal possible area?

Named after the Belgian physicist Joseph Plateau, who studied soap films in the 19th
century, this problem holds a significant role in connecting physical intuition with deep
mathematical theory. Soap films naturally minimize surface tension, which mathematically
corresponds to minimizing area, and form minimal surfaces, surfaces characterized by zero
mean curvature at every point. As a result, minimal surfaces represent critical points of the
area function where the area is as small as possible.

Plateau’s problem not only investigates the existence of such surfaces, but also questions
their properties and mathematical descriptions. The problem also motivated some of the
earliest and most influential studies in the calculus of variations and geometric analysis. For
instance, in the 1930s, Jesse Douglas and Tibor Raddé proved that for any simple closed
curve, there is a minimal surface spanning it.

This paper will analyze the geometry behind Plateau’s problem, introduce the mathe-
matical concepts, and highlight some classic examples inspired by soap films with the help
of several visual representations.
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1 Historical Context and Motivation

Emergence of the study of minimal surfaces starts from experimental observations and math-
ematical inquiry. In the 1800s, mathematicians such as Joseph Louis Lagrange and Leonhard
Euler asked the question of whether a minimal surface exists for a given boundary, laying
the groundwork Plateau’s problem.

In the mid-19th century, the problem gained empirical significance as Plateau conducted
experiments by immersing wire frames into soapy water and observing the soap films that
formed. These films possessed properties of minimal surfaces, naturally adopting shapes that
minimized surface area under the constraints of the wire boundary. Plateau’s observations
led to the formulation of Plateau’s laws, which describe the geometric properties of soap
films.

Furthermore, Plateau’s experimental findings inspired mathematical investigations into
the existence and properties of minimal surfaces. In 1930, mathematicians Jesse Douglas
and Tibor Radé independently provided rigorous proofs establishing the existence of minimal
surfaces for given boundaries. Douglas’s approach utilized variational methods, while Radé
used techniques ranging from potential theory to conformal mapping. Their work marked
a significant advancement in the field, earning Douglas the Fields Medal in 1936 [2, 8, 4].
The study of minimal surfaces, initiated by Plateau’s experiments and advanced through
mathematical analysis, continues to be a vibrant area of research, bridging the gap between
physical phenomena and abstract mathematical theory.

2 Foundational Definitions

Let U C R? be open and let X : U — R3 be a smooth immersion, meaning that the
differential dX, has rank 2 for all p € U. The image S = X (U) is then a smooth surface
in R3. The tangent space at X (u,v) is spanned by X, = 0X/0u and X, = dX/0v. The



induced metric on U is given by
Gij = <X27Xj>7 ZJJ € {U7U}7
and the corresponding area element is
dA = y/det(g;;) dudv = || X, x X,|| dudv.

The unit normal vector is defined by

Xy x X
N = cuXAv
[ X X Xo]
The second fundamental form is given by
hij = (Xij, N).

The principal curvatures are the eigenvalues of the Weingarten map S : 7,8 — 1,5, S(v) =
—dN(v), and the mean curvature and Gaussian curvature are defined by

H=1(k+k), K=hkbh.

Most importantly, a surface S is called minimal if its mean curvature vanishes identically,
H = 0. Equivalently, a parametrization X is minimal if and only if it is harmonic with respect

to the induced metric,
AgX = 0.

Minimal surfaces are critical points of the area functional with respect to compactly sup-
ported variations.

3 Plateau’s Problem Formulation

Let v C R3? be a Jordan curve. The Plateau problem asks for the existence of a surface S
with boundary 0S = 7 that minimizes the area function

A[S] = inf{Area(T) : 0T =T'}.

Here, the expression means that among all admissible surfaces T spanning ~, we seek one
with the least possible surface area. The notation Area(T') denotes the geometric surface
area of T, while 9T = ~ indicates that the boundary of T" coincides with the prescribed
curve 7. The symbol inf (infimum) expresses the idea that the minimal surface may not be
unique, but its area is the smallest possible value within the admissible class. Physically, this
corresponds to the phenomenon that a soap film spanning a wire loop ~ naturally arranges
itself to minimize surface tension, and hence surface area.

The admissible class of surfaces depends on the precise formulation, ranging from smooth
immersions to rectifiable currents. In classical theory, one seeks conformal harmonic maps
X : D — R? such that X(0D) = I'. In the modern approach, the problem is studied in the
context of geometric measure theory, replacing surfaces by integral currents or varifolds.



4 Existence Theorems

The existence of solutions is guaranteed by several classical theorems for Plateau’s problem.

Theorem 4.1. Let v C R3 be a Jordan curve that bounds a disk-type surface. Then there
exists a conformal harmonic map

X:D—=R} X(0D)=+.

Radd’s result shows that any rectifiable Jordan curve in R? indeed bounds a parametrized
minimal surface of disk-type. The proof relies on considering harmonic extensions of bound-
ary data and employing the Dirichlet principle. The Dirichlet principle asserts that, among
all functions taking prescribed boundary values on a domain, the one minimizing the Dirich-
let energy

E(u):/|Vu]2dxdy
D

is harmonic. In this context, harmonic extensions provide natural candidates for parametriza-
tions of minimal surfaces [8]. However, Radd’s approach did not guarantee the regularity of
the parametrization at the boundary, and a significant refinement was made shortly there-
after:

Theorem 4.2. For every Jordan curve v C R3, there exists a conformal harmonic map
X:D—R?

such that X (0D) = v and X minimizes the area among all such parametrizations. In par-
ticular, X is a solution to Plateau’s problem.

Douglas introduced a variational method, minimizing a functional now known as the
Douglas integral, to obtain the existence of minimal surfaces with prescribed boundary [2].
The Douglas integral is defined for a continuous map f : ST — R" by

LT F(E?) = f(e))
D(f)—47T/0 /0 T (5 do dp,

and it measures, in a certain sense, how well the boundary data f can be extended har-
monically to the disk. Minimizing this functional among parametrizations of a given Jordan
curve 7 yields a harmonic extension with minimal area. In this way, Douglas provided a
constructive solution to Plateau’s problem.

Together, the theorems of Rad6 and Douglas form the cornerstone of the modern math-
ematical treatment of Plateau’s problem, establishing that every Jordan curve in R? bounds
a minimal surface. These results were later generalized to higher dimensions and broader
classes of boundary data.




5 Uniqueness and Regularity

Minimal surfaces spanning a given boundary curve need not be unique. For example, the
circle in R3 bounds both the flat disk and a catenoid, depending on the admissible class.
Nevertheless, uniqueness can be obtained in certain special cases: for instance, if v is a
convex planar curve, then the only minimal surface spanning ~ is the flat disk [10].

Theorem 5.1 (Regularity). If v is a real analytic Jordan curve, then any minimal surface
spanning v 1s real analytic up to the boundary. In general, the interior of a solution is
analytic, and boundary reqularity depends on the smoothness of .

Interior regularity follows from the fact that minimal surfaces satisfy an elliptic system,
implying real analyticity inside the domain. For boundary behavior, finer results are known:
if v € C% then the solution is C** up to the boundary [5]. If T is merely rectifiable,
solutions may fail to be smooth at the boundary.

A further subtlety is the occurrence of branch points, where the parametrization is not
an immersion. While branch points cannot occur on the boundary if I' is analytic, they
may appear in the interior of a minimal disk. The questions of uniqueness and boundary
regularity thus remain delicate in the general case, and are central themes in the modern
study of Plateau’s problem.

6 Derivation of the Minimal Surface Equation

Consider a surface parametrized as a graph z = u(z, y) over a domain 2 C R%. The functional

area 1s
Alu] = / 1+ a2+ 2 drdy,
Q
where u, = g—z and u, = g_Z‘ To find a surface that minimizes area, we consider a variation.

us(z,y) = u(r,y) +en(z, y),

where 7(x,y) is a smooth function that disappears on the boundary 9€2. The first variation
of the functional area is

d UMy + UyTy
0A[u(n) = £A[Ua] = NETET dx dy.
e= x Yy

Integrating by parts and using 7|sq = 0 gives

, Vu
dA[u](n) = —/lev (W) ndx dy.

For the surface to be minimal, the first variation must vanish for all 7, which implies

, Vu
div| ———= ] =0
V1+ [ Vul?
This is a nonlinear second-order partial differential equation and its solutions correspond
to surfaces whose mean curvature vanishes everywhere, minimal surfaces [7].
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7 Examples of Minimal Surfaces

7.1 Plane
Method 1: Parametrize the plane as X (u,v) = (u,v,0).
Xy x X
X, =(1,0,0), X,=(0,1,0), N=--2"2v__(0,0,1).
[[Xu > Xo|

First fundamental form: £ = (X, X,) =1, F = (X,,X,) =0, G = (X,, X,) = 1. Second
derivatives: X, = Xuw = Xy = (0,0,0). Hence second fundamental form

€:<X’U,’LL7N>:O7 f:<Xm,,N>:O, 9:<anN>:0-

Mean curvature
- eG—-2fF+gF 0-1-2-0-0+0-1 _0
- 2(EG-F?) 2(1-1-0) -
Since both principal curvatures vanish, the plane has H = 0 and is a minimal surface.
Method 2: By the minimal surface equation for graphs. Write the plane as a

graph z = u(x,y) with « = 0. The minimal surface equation is

Vu
| ——— | =0
<\/1+ |Vu]2>

Step 1: Compute the gradient

ou Ou
VU’ - (%aa_y> - (OvO)a

since u = 0.
Step 2: Compute the norm of the gradient

2 2
|Vul? = (%) + (2—2) =0+0=0,

VI+[Vu2=vI+0=1

Step 3: Compute the vector inside the divergence

so that

Vu ~ (0,0 — (0,0).

VIF Va2 1

Step 4: Compute the divergence

. Vu 0 0



Hence, the minimal surface equation is satisfied and the mean curvature is
H =0,

confirming that the plane is a minimal surface.

Method 3: By the Laplace—Beltrami characterization. For an immersion X :
¥ — R?, the mean curvature vector H can be expressed in terms of the Laplace—Beltrami
operator A, associated with the induced metric g on the surface:

-1

The Laplace—Beltrami operator generalizes the usual Laplacian to curved surfaces. If
f ¥ — R is a smooth function on the surface, then

1 0 L Of
A = i~ (\/ det & —> 5
of Vdet g Out 99" ui
where (u',u?) are local coordinates, g = (g;;) is the first fundamental form, and ¢* its
inverse. In particular, A, reduces to the usual Laplacian when the metric is flat. For the
plane parametrized by X (u,v) = (u,v,0), the induced metric is the standard Euclidean
metric, so A, acts componentwise as the usual Laplacian:

A,X = (Au, Av, AD) = (0,0,0),

since the components of X are affine functions. Therefore,
-1
H= §A9X =0 = H=0,

confirming that the plane is a minimal surface.

7.2 Catenoid

The catenoid is parametrized by
X (u,v) = (coshvcosu, coshvsinu, v), wu€|0,27), v € R.

This surface is generated by rotating the catenary curve z = v, r = cosh v about the z-axis,
where r = /2?2 4+ y2. To verify that it is a minimal surface, we compute the first and second
fundamental forms. The partial derivatives are

X, = (—coshvsinu, coshvcosu, 0), X, = (sinhvcosu, sinhvsinu, 1).
The first fundamental form coefficients are
E=(X,,X,) =cosh’v, F=(X,X,)=0G=(X,X,) =sinh®v+ 1= cosh®wv.
The unit normal vector is

X, X X,

N=-F—F—.
[[Xu > X
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Computing the second derivatives X, Xy, Xy and taking their inner products with N
gives the second fundamental form coefficients e, f, g. Using the mean curvature formula
eG —2fF + gF

2(EG — F?)

H =

one finds that H = 0, confirming that the catenoid is a minimal surface.

It is also the only nontrivial minimal surface of revolution: any minimal surface generated
by rotating a curve about an axis must satisfy the differential equation for minimal surfaces
of revolution, and the catenary is the unique solution. This makes the catenoid the simplest
nonplanar minimal surface.

7.3 Helicoid
The helicoid is parametrized by The helicoid is parametrized by
X (u,v) = (ucosv, usinv, v), u,v € R.

To apply the minimal surface equation, we can locally represent the helicoid as a graph
z = u(z,y). Solving for v gives v = z, and then

r=wucosz, y=usinz = u=\/x>+y>

Thus, locally the helicoid can be written as
z(x,y) = arctan Y,
x

The minimal surface equation for a graph z = u(z,y) is

div L =0
V1+ | Vul?

Computing the gradient for u(z,y) = arctan(y/x) gives

Vu = @% — (-7 *
S \oz’ oy ) 22 +y? 24 y2 )’

22 + y? B 1
(1:2+y2)2_3:2+y2'

and then
[Vul? =

A computation shows that

div[ —Y“ )
V14 |Vul?

confirming that the helicoid satisfies the minimal surface equation. Hence the helicoid is a
minimal surface.



8 Soap Films and the Plateau Problem

Soap films provide a physical realization of minimal surfaces. When a wireframe is dipped
into a soap solution, the resulting film naturally adjusts to minimize its surface area due to
surface tension. Observing soap films provides not only a physical realization of minimal
surfaces but also a valuable experimental tool for mathematical research. Recent studies
have shown that the dynamic behavior of soap films, including the formation and evolution
of singularities, can be used to test and illustrate complex mathematical concepts such as
topology and surface minimization [12]. By analyzing phenomena like the location of sin-
gularities and the behavior of systolic curves, researchers can gain insights that are relevant
beyond pure mathematics, with applications in fields ranging from fluid dynamics to as-
trophysics. This demonstrates that simple experiments with soap films can have profound
implications for both theoretical and applied sciences.

Mathematically, a soap film can be modeled as a surface S with boundary I' that satisfies

H=0,

where H is the mean curvature of the surface. For simple wireframes, the film is often
smooth and can be locally represented as a graph z = u(x, y), satisfying the minimal surface
equation

an (V_) -
V1+[Vul?

Soap films illustrate several important properties of minimal surfaces:

1. Local area minimization: Any small portion of the soap film minimizes area locally,
although globally the surface may not be unique.

2. Boundary dependence: The shape of the film is entirely determined by the boundary
wireframe.

3. Singularities and branching: For complex wireframes, the film may develop singular
points or branch into multiple surfaces to minimize area.

Experimentally, soap films have been used to visualize solutions to Plateau’s problem
and to inspire mathematical examples of minimal surfaces, such as the catenoid, helicoid,
and more complex configurations.

The study of soap films not only provides intuition but also motivates rigorous math-
ematical investigations into the existence, uniqueness, and regularity of minimal surfaces.

9 Geometric and Analytical Properties

Minimal surfaces exhibit rich geometric and analytic structures. Locally, they satisfy the
maximum principle: if two minimal surfaces S; and S5 intersect tangentially at an interior
point p, then they coincide in a neighborhood of p. This follows from the unique continuation
property of solutions to the minimal surface equation, which is a nonlinear elliptic partial
differential equation.



Figure 1: Examples of soap films formed on wireframes. [6][9]

Globally, minimal surfaces are constrained by theorems such as Osserman’s: a complete
minimal surface in R3 with finite total curvature

/|K|dA<oo
S

is conformally equivalent to a compact Riemann surface punctured at finitely many points,
where K is the Gaussian curvature of the surface.

Symmetries play a central role in the classification of minimal surfaces. For instance, the
catenoid and helicoid are, respectively, the only complete embedded minimal surfaces of rev-
olution and ruled type. More generally, the structure of properly embedded minimal surfaces
in R? has been extensively studied by Meeks, Pérez, and Ros, yielding strong constraints on
topology, ends, and curvature.

9.1 Plateau’s Problem for Soap Films with Multiple Boundaries

(Classical Plateau’s problem considers a single boundary curve, but real-world soap films often
span multiple boundaries and meet along edges and vertices, forming complex networks. Such
configurations are governed by Plateau’s laws, which describe the angles and junctions in
equilibrium minimal surfaces:

1. Soap films meet in threes along edges at angles of 120°.

2. Edges meet in fours at vertices at the tetrahedral angle arccos(—1/3) ~ 109.47°.

Mathematically, these phenomena motivate the study of minimal networks and varifolds
with boundary. Let {S;} denote a collection of surfaces spanning a set of boundary curves
{I';}. The total area functional becomes

AlSH =3 /g a,

and a soap-film configuration is a minimizer of this functional, subject to the junction con-
straints given by Plateau’s laws. Existence results in this context are established using
geometric measure theory. For instance, a rectifiable varifold V' representing the soap film
satisfiesoV (X)) = 0 for all smooth vector fields X vanishing on the boundaries, where 6V is
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the first variation of area. Regularity theory shows that such minimizers are smooth except
along a set of singular curves and points where films meet, corresponding physically to edges
and vertices.

These multi-boundary configurations not only provide insight into the geometry and
topology of minimal surfaces but also demonstrate the deep connection between physical
experiments with soap films and rigorous mathematical theory. Visualizations of such films
can guide intuition about singularities, junctions, and area-minimizing networks, making
them a rich source of examples for both analysis and geometry.

10 Modern Extensions and Perspectives

Plateau’s problem has been extended to more general contexts until today. In higher codi-
mension and Riemannian manifolds, minimal surfaces are studied via the first variation of
area;
SA(S)(X) = / (H,X)dA=0 VX,
S

where H is the mean curvature vector. Federer and Fleming developed the theory of “cur-
rents,” providing existence results in general geometric measure-theoretic settings. Almgren
and Simon extended regularity theory for these generalized minimal surfaces and varifolds.
Current research connects minimal surface theory to calibrated geometry, mean curvature
flow, and mathematical physics (e.g., string theory), highlighting the deep interplay between
geometry, analysis, and applied mathematics[3, 11, 1].

As an example of the most exciting modern applications, minimal surfaces appear in the
study of black hole horizons in general relativity, where they are used to define apparent
horizons and to analyze the geometry of spacetime. This demonstrates how Plateau’s clas-
sical problem continues to influence not only pure mathematics but also our understanding
of fundamental physical theories.

Conclusion

The Plateau problem, inspired by simple physical experiments, has developed into a central
theme of geometric analysis. From the pioneering proofs of Douglas and Rad6 to modern
approaches via currents and varifolds, the problem illustrates the deep interaction between
geometry, analysis, and topology. Minimal surfaces remain an active field of study, with
connections to global geometry, variational methods, and mathematical physics.
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