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Abstract

In Morse theory, we study the topology of smooth manifolds by analyzing smooth
functions and the flow lines that connect their critical points. In this paper, we will
state and use the Morse inequalities, work through examples (spheres, tori, complex
projective spaces, and closed surfaces of genus g). We skim through the overarching
principles of Morse theory to gain a general understanding of what it is about.

1 Notation

Let M be a smooth compact n-dimensional manifold without a boundary (unless we say
otherwise). We say that a smooth function f : M → R has a differential df and, at a critical
point, a Hessian d2f . We use a fixed Riemann metric on M to identify covectors with vectors
and also to write the gradient ∇f . When we speak about ”the flow,” we mean the negative
gradient flow unless otherwise specified:

ẋ = −∇f(x(t)).

We call a point p ∈ M critical if (df)p = 0. If the Hessian d2f(p) is nondegenerate, then
p is nondegenerate and has an integer index ind(p) ∈ 0, . . . , n that is equal to the number
of negative eigenvalues of d2f(p). A smooth function is Morse if all of its critical points are
nondegenerate. We write
Critk(f) for the set of index-k critical points.

Given a complete vector field X on M with flow φt, the stable and unstable manifolds
of a rest point p are

W s(p) = {x ∈ M : lim
t→+∞

ϕt(x) = p},W u(p) = {x ∈ M : lim
t→−∞

ϕt(x) = p}.

We will use M(a, b) to denote the set of flow lines γ : R → M solving γ̇ = −X(γ) with
limt→−∞ γ(t) = a and limt→+∞ γ(t) = b. Using the quotient by time-translation gives us

M̂(a, b) = M(a, b)/R.
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2 Morse Theory: General

Morse theory is based on a precise normal form for f near a nondegenerate critical point
p.

Morse Lemma: There are local coordinates (x1, . . . , xn) centered at p in which

f(x) = f(p)− x2
1 − x...− x2

λ + x2
λ+1 + ...+ x2

n,

where λ = ind(p). This formula tells us that nondegenerate critical points are isolated;
the stable manifold W s(p) is an embedded open (n− λ)-disk; the unstable manifold W u(p)
is an embedded open λ-disk; and that the flow decreases f strictly away from critical points.

We can visualize this with these examples: on the sphere S2 with the height function,
there is a minimum of index 0 and a maximum of index 2, and there are no saddles. On the
torus T 2, a generic height function has four critical points: the minimum (0), two saddles
(1, 1), and the maximum (2).

Although we can work with the metric gradient −∇f , it is more convenient to allow a
larger class of vector fields adapted to f .

Pseudo-gradients. A vector field X is a pseudo-gradient for f if df(X) ≤ 0 with
equality only at critical points. Near each critical point p, there are Morse coordinates where
X and the negative Euclidean gradient of the quadratic normal form coincide. This means
that the local dynamics of X align with those of −∇f , while providing global flexibility
(useful for achieving transversality).

Morse–Smale condition. For critical points a, b, the stable and unstable manifolds
W s(b) and W u(a) are immersed sub manifolds. The pair (f,X) is Morse–Smale if all these
manifolds intersect transversally, written as W u(a) ⋔ W s(b). Under this, we can write the
intersection M(a, b) = W u(a) ∩W s(b) as a smooth manifold of dimension ind(a) − ind(b),

and its time-translation quotient M̂(a, b) has one less dimension.
Transversality is crucial because it makes trajectories’ spaces behave like manifolds;

in particular, zero-dimensional moduli spaces are finite sets that can be counted, one-
dimensional ones are unions of intervals, and so on.

3 Compactness and Broken Trajectories

An important part of M̂(a, b) is that it has a natural compactification by adding broken

trajectories. Suppose ind(a) − ind(b) = 2. Then M̂(a, b) is a one-dimensional manifold.
Flow lines cannot ”wander off” except by breaking near intermediate critical points, which
is a sequence of unparametrized trajectories that can limit a concatenation to a → c → b
where ind(c) = ind(a)− 1.

The compact nature that we get by conjoining these endpoints turns M̂(a, b) into a
compact 1-manifold with boundary. The boundary points correspond precisely to these
broken trajectories.
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4 The Morse Complex

Fix a Morse function f and a Morse–Smale pseudo-gradient X. For a coefficient ring (or
field) k, the chain group in degree k is the free k-module

Ck(f ;ℸ) =
⊕

a∈Critk(f)

ℸ · a.

The boundary operator counts index-drop-one trajectories. Let a ∈
Critk(f):

∂a =
∑

b∈Critk−1(f)

nX(a, b)b,

where nX(a, b) is the number of points in the zero-dimensional space M̂(a, b). If k = Z/2,
then this is the parity of that finite set.

∂2 = 0. When ind(a) − ind(b) = 2, the compact one-dimensional manifold M̂(a, b) has
a finite boundary consisting of broken trajectories a → c → b with ind(c) = k − 1. Each
broken trajectory contributes exactly one boundary point, and the boundary of a compact
1-manifold has an even number of points. We can read the coefficient of b in ∂(∂a) as the
boundary count ∂2 = 0.

The resulting homology groups are Hk(C∗, ∂), and these are the Morse homology of M
with coefficients in k. We will soon identify them with the singular homology of M .

4.1 Orientations and Integer Coefficients

To define ∂ over Z, we have to choose orientations of stable manifoldsW s(p) for all critical
points p. This choice orients the unstable manifolds and orients transverse intersections
W u(a) ∩W s(b). This means that M̂(a, b) is an oriented zero-dimensional manifold, and we
let NX(a, b) ∈ Z be the algebraic count of its points. The signed boundary map is then

∂a =
∑

b∈Critk−1(f)

NX(a, b), b

which still satisfies ∂2 = 0 by the same compactness-by-breaking argument.

4.2 Theorems and Exploration

We will summarize the main theorems that follow from everything we covered above
Theorem 5.2.1 (Morse Lemma). Near a nondegenerate critical point p of index λ,

there are coordinates in which f is exactly f(p)− x2
1 − · · · − x2

λ + x2
λ+1 + · · ·+ x2

n.
Theorem 5.2.2 (Stable/unstable disks). For an adapted pseudo-gradient X, W u(p)

and W s(p) are embedded open disks of dimensions ind(p) and n− ind(p).
Theorem 5.2.3 (Transversality and dimensions). If (f,X) is Morse–Smale, then

M(a, b) = W u(a) ∩W s(b) is a smooth manifold of dimension ind(a) − ind(b), and M̂(a, b)
has one dimension less.
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Theorem 5.2.4 (Compactness by breaking). If ind(a) − ind(b) = 2, then M̂(a, b)
is a compact 1-manifold whose boundary consists of broken trajectories a → c → b with
ind(c) = ind(a)− 1.

Corollary 5.2.5 (∂2 = 0). The boundary operator is defined by counting index-drop-one
trajectories satisfies ∂2 = 0.

Theorem 5.2.6 (Invariance). The homology of (C∗, ∂) does not depend on the choice
of f or X and agrees with the singular homology of M .

5 Cellular Picture and Invariance

The unstable manifolds of a Morse–Smale pair (f,X) give a decomposition of M with
precisely one k-cell for each a ∈
Critk(f). We can read the attaching maps from the flow near the intersections W u(a) ∩
W s(b), and the cellular boundary operator coincides with the Morse boundary. Collapsing
the flow lines tells us that each unstable manifold with an open disk whose boundary attaches
along lower-index unstable manifolds.

A different route to invariance is by using continuation: given two Morse–Smale pairs
(f0, X0) and (f1, X1), we know that one of them constructs a chain map by counting flow
lines in M × R for a time-dependent interpolation.

6 Morse Inequalities and Euler Characteristic

Let ck =
Critk(f) and let bk be the k-th Betti number of M with coefficients in k. The weak Morse in-
equalities say that ck ≥ bk for every k. The strong Morse inequalities compare the alternating
partial sums:

m∑
i=l

(−1)m−ici ≥
m∑
i=l

(−1)m−ibi(0 ≤ l ≤ m ≤ n)

Taking ℓ = 0 and m = n yields equality

n∑
k=0

(−1)kck =
n∑

k=0

(−1)kbk = χ(M)

so any Morse function has some critical points whose total alternating sum equals the
Euler characteristic. When equalities hold term by term, the function is called perfect.

7 Worked Examples

We will look at various cases of the Morse complex.

4



7.1 The n-sphere

On Sn ⊂ Rn+1, the height function has exactly two critical points: a minimum of index
0 and a maximum of index n. By choosing X so that there are no additional connecting
orbits except the ones forced by index considerations, we get C0

∼= Cn
∼= k and Ck = 0. The

boundary operator is zero and HM0
∼= HMn

∼= k, HMk = 0 for 0 < k < n, as expected.

7.2 The two-torus

On T 2 = R2/Z2, consider f(x, y) = cos(2πx) + cos(2πy). There are four critical points
with indices (0, 1, 1, 2). For a generic pseudo-gradient, there are two index-drop-one trajecto-
ries out of each saddle, one to the minimum and one to the maximum, which we can arrange
so that the signed counts cancel in ∂ for degree 1. The complex therefore has C0

∼= C2
∼= k,

C1
∼= k2, with ∂ = 0 and HM1

∼= k2.

7.3 Complex projective space

On CP n, a generic (real) moment-map-like function has one critical point in each even
index 0, 2, . . . , 2n and none in odd degrees. The Morse complex has one generator in each even
degree and HM2k

∼= k for k = 0, . . . , n, HM2k+1 = 0, matching the standard cohomology
ring structure (after dualizing).

7.4 Closed oriented surfaces

Let Σg be a closed surface of genus g ≥ 1. Any Morse function must have at least
2 critical points in degrees 0 and 2 and at least 2g saddles (by the Euler characteristic
χ(Σg) = 2− 2g). We can choose f to achieve one minimum, one maximum, and 2g saddles.
The Morse complex then has C0

∼= C2
∼= k, C1

∼= k2g. The index forces ∂ = 0 on C2 and C1,
and HM1

∼= k2g, which recovers H1(Σg).

8 Relative Morse Theory and Boundary

IfM has a boundary, we decompose ∂M into an incoming part ∂−M and an outgoing part
∂+M , which is determined by the sign of ⟨X, ν⟩ where ν is the outward normal. Assuming
that f has no critical points on ∂M and X is everywhere transverse to ∂M , one obtains a
relative Morse complex whose homology computes H∗(M,∂+M). The associated long exact
sequence for the pair is compatible with inclusions and can be read off from filtrations by
sublevel sets of f .

9 Functoriality, Products, and Duality

Morse homology is functorial under smooth maps respecting the gradient flow. For
example, at the chain level, we can construct maps by counting solutions of hybrid flow
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equations associated with the map. On product manifolds, we get a Künneth formula

HM∗(M ×N) ∼= HM∗(M)⊗HM∗(N)

for suitable coefficients. On closed oriented n-manifolds, reversing the function (−f) in-
terchanges stable and unstable directions and gives us a dual complex, leading to Poincaré
duality HMk(M) ∼= HMn−k(M).
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