LIE GROUPS

DRAGOS GLIGOR

1. INTRODUCTION

In this paper, I will give a brief introduction to notions of group theory necessary for the
study of Lie groups, define and explore a few interesting examples of them, and define Lie
algebras and highlight their connection to Lie groups. I will also introduce a few properties
that will not be explored, as to encourage and point the reader towards further study. This
paper is intended as a jumping-off point for those interested in Lie groups and Lie theory,
but with otherwise little to no background in it.

2. A BRIEF JOURNEY INTO GROUP THEORY

In order to start inspecting Lie groups, we must first familiarize ourselves with groups and
other notions from abstract algebra.
We will first give a brief definition of what a binary operation is:

Definition 2.1. A binary operation on a nonempty set A is a function x : A x A — A such
that for all a,b € A, axb is defined.

Informally, groups are a way to encode symmetry and geometric transformations. For-
mally, they are defined as:

Definition 2.2. A group is a nonempty set GG together with a binary operation - : GXG — G
such that it satisfies the following axioms:
(1) Associativity: For all a,b € G we have (a-b)-c=a-(b-c);
(2) Identity element: There exists an element e € G such that for all a € G we have
a-e=e-a=a;
(3) Inverse element: For all a € G, there exists an element o' € G such that a-a™! =
al-a=e.
In addition, if - is commutative, i.e., for all a,b € G, a-b = b - a, we call it an abelian or
commutative group. We use the notation (G, -) for a group with the operation -, although
if the operation is implicit, we may just write G.

Example. (R™, +) is an abelian group where + is the addition of vectors.

Example. We define U = {z € C||z| = 1} as the units of the complex numbers. If - is the
multiplication of complex numbers, then (U, -) is an abelian group. We call it the unit circle
group, since it can be represented as the unit circle.

Ezample. We define GL,(R) = {A € M,(R)|det(A) # 0} be the set of all invertible real
matrices. Then with - being matrix multiplication we get the group (GL,(R),-). We call it
the general linear group of degree n.
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Now we shall take a look at a few objects useful in the study of groups.

Definition 2.3. Let (G, ) be a group, a nonempty subset H C G is a subgroup of G if the
following conditions are met:

(1) Forall z,y €e H, z -y € H;

(2) If x € H, then ' € H.
In other words, H is a subgroup of G if (H,-|g) is a group, where |y is the restriction of -
to H. We denote this relation as H < G, read as H is a subgroup of G. We call H a proper
subgroup if it is not the trivial subgroup {e} or G itself. We denote this as H < G.

Ezample. We define the set SL,(R) = {A € M,(R)|det(A) = 1}. It is a subgroup of
GL,(R) with matrix multiplication, and we call the group (SL,(R),-) the special linear
group of degree n.

Another notation shorthand we shall use is writing x - y as xy. This is the multiplicative
notation of groups.

Definition 2.4. Let H be a subgroup of G. Then we define:

(1) The left coset of H as gH = {h € H| gh} for a g € G;
(2) The right coset of H as Hg = {h € H| hg} for a g € G.

We can think of a coset as a "transposition” of H by g. Since in general groups are not
commutative, in general gH # Hg. But for certain subgroups, it is true that gH = Hg for
all g € G. We call these special subgroups:

Definition 2.5. A normal subgroup N of GG is a subgroup such that gN = Ng for all g € G.
This is equivalent to the statement N = gNg=! = {n € N| gng~'} for all g € G. We denote
this as N < G.

Definition 2.6. Let (G, -) be a group. The set Z(G) ={z € G| xz-y=y -z for all y € G}
is called the center of G.

It is clear that a group is abelian if and only if Z(G) = G. Thus one can think of Z(G) as
a sort of measure of how abelian a group is. Z(G) is also never the empty set because the
identity element e commutes with all other elements.

Definition 2.7. We say that a group G is simple if and only if its only normal subgroups
are {e} and itself.

It is quite clear that for G to be simple and non-abelian, Z(G) = {e} i.e it needs to include
only the identity element. If there were an x € Z(G),x # e then we can take the set of
powers of z, () = {k € Z| 2*} # G and it is clear that for any g € G, g(x) = (x)g and thus
(x) 9@, so G cannot be simple.

Definition 2.8. Let N be a normal subgroup of (G,-). We define the set G/N = {g €
G| gN} as the set of all left cosets of N in G. If we define the binary operation x :
G/N x G/N — G/N as ¢1N * gogN = (g1 - g2)N for all g1,90 € G. Then we can define
a group, called the Quotient group between G and N, as (G/N, x).

Note: You get the same construction if you use the right coset instead. You can prove
that it is necessary and sufficient for N to be a normal subgroup of G in order for (G/N, *)
to be a group. This is left as an exercise to the reader.
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As we have often encountered, we are interested in functions between objects that preserve
their structure. For example, in linear algebra, we are interested in linear transformations.
In topology, we are interested in homomorphism. In group theory, we are interested in:

Definition 2.9. A group homomorphism [ between the groups (Gi,-) and (Gsg,x*) is a
function f : G; — G5 such that:

(1) fler) = ez

(2) f(z-y) = f(z)* f(y) for all z,y € Gy;

(3) f(a™h) = (f(x))7? for all x € G.
If in addition f is bijective, we call f a group isomorphism. If there is a group isomorphism
between the groups GG; and G,, then we say they are isomorphic, and denote this relation
as G1 & G,.
A group homomorphism from G to itself is called a group endomorphism. If in addition, it
is bijective, we call it a group automorphism.
We denote the set of all group endomorphisms and automorphisms of G as End(G) and
Aut(QG) respectively.

Definition 2.10. Let (G4,-), (Ga,*) be groups and f : G; — G5 a group homomorphism.
We define the set ker(f) = {g1 € G1| f(g1) = e2}. It is called the kernel of f.

Theorem 2.1. [Noe27] Let Gy and Go be group homomorphism, then, if we let Im(f)
denote the image of f:

(1) ker(f) < Gy;

(2) Im(f) < Ga;

(3) Im(f) = G/ ker(f).

In particular, if f is surjective, we have Gy = G/ ker(f).

The proof is outside the scope of this paper. One can find it in any abstract algebra
textbooks.

3. LIE GROUPS

We now turn to the main topic of our discussion. In order to define lie groups, we must
first define:

Definition 3.1. Let M be a set. A chart on M is a bijection of a subset U C M onto an
open subset of R”. We say the chart takes values in R" or simply that the chart is R™-valued.
A chart f: U — f(U) is traditionally indicated by the pair (U, f) and the pair itself is also
called a chart.

Definition 3.2. An dimensional differentiable manifold of class C" is a set M together with a
specified C" structure on M such that the topology induced by the C" structure is Hausdorff
and paracompact. If the charts are R"-valued then we say the manifold has dimension n.

If one wants to understand this definition better, I point towards [Mun00] for the necessary
topological background and [Leel3] for a detailed discussion of manifolds.

We will deal with smooth manifolds i.e C**° class manifolds. Informally, one can view them
as a generalization of surfaces to n dimensions instead of just 3.
It is now time to define:
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Figure 1. The rotations of the unit circle.

Definition 3.3. A smooth manifold G is a Lie group if it is a group and the maps u :
GxG— G, ug,9)=aggandv:G— G, v(g) =g ' are smooth.

As groups in general are a way to represent symmetry, Lie groups represent symmetry
that is also continuous. We can see this with a few examples of Lie groups, specifically those
embodying rotations:

Example. If you recall, we defined the set U as the set of units in the complex plane, and
they form a group under complex multiplication. From Euler’s formula, we have e¥ =
cos(0) +isin(), which clearly all members of U can be written as, since they are of length 1.
From here we get that €™ - e® = cos(x+y) +isin(z+y). So if we represent it in the complex
plane, we get that €' is rotated by y radians counterclockwise around the unit circle. If we
take x to be 7 and y to be £ we can draw it.

This is the Lie group of rotations of the unit circle, SO(2) = U. Note that it is an abelian

group.
Ezrample. Now we turn to 3D euclidean space. We shall look at the origin and rotations

around it. A rotation around the origin in R?® is an orientation-preserving isometry of
Euclidean space that leaves the origin fixed. If we define r : R® — R3 as a rotation,

then |r(x) —r(y)|| = ||x —y] for all x,y € R®. Since the origin is fixed, r(0) = 0 and

|r(x)]] = ||x|| for all x € R3. If we take {e;, e, es} the standard basis vector for R®. Then:
[r(es)l] = llesl] = 1

Also if i # j:

r(es) — r(ey)l|” = Jles — egl|* =2
Ir(es) — x(ey)]* = llr(en)||” + [x(ey)||* — 2r(es)r(ey)

Since the norms are all 1, we get that r(e;)r(e;) = 0 and for all ¢ # j so, the vectors
{r(e;),r(ez),r(e3)} form an orthonormal basis of R? and thus the rotation can be represented
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Figure 2. Composition of rotations in R3

as an orthogonal matrix i.e a matrix A with real entries such that A7 is its inverse. Due
to it preserving orientation, this forces det(A) = 1. Thus we can characterize the group
of rotations around the origin in R?* as SO(3) = {A € M3(R)| AAT = ATA = [; and
det(A) = 1} with the operation being matrix multiplication. Note that it is not abelian,
unlike SO(2), since matrix multiplication is not generally commutative.

From this characterization, arises another Lie group! Notice that we didn’t depend on
being in R3, so we might be able to do a generalization in R™. In fact, if we drop the
requirement for it to be orientation preserving and let it fix any point, we can describe the
Lie group of all isometries that preserve a fixed point, called the general orthogonal group,
O, ={A € M,(R)] AAT = ATA = I,}. Tt is evident that SO(3) < O3. Similarly, we get the
group of rotations in R* as SO(4) = {A € My(R)| AAT = ATA = I, and det(A) = 1} < O,.
In general, the Lie group SO(n) = {A € M, (R)] AAT = ATA = [, and det(A4) =1} < O,
is called the special orthogonal group or the rotation group of degree n.

Ezample. A unitary matrix A € M, (C) is a matrix such that its conjugate transpose A* = AT
is also its inverse. We define, with the operation of matrix multiplication, the Lie group
U(n) = {A € M,(C)| AA* = A*A = I,,} called the general unitary group. As det(AB) =
det(A) det(B) and the property of unitary matrices that |det(A)| = 1, i.e. it lies in the unit
circle, it can be verified that the map det : U, — U is a group homomorphism. From
we get ker(U(n)) < U,. Obviously, ker(det(U(n))) = {A € M,(C)| AA* = A*A =1, and
det(A) = 1}, which we define as the set SU(n) called the special unitary group. If one is
familiar with quaternions, a way to describe SU(2) is by the fact that is isomorphic to the
group of quaternions of norm 1, which means it is diffeomorphic to a 3 — sphere.

Ezample. The Lie group T? = U x U, where we define the group operation as (ay,b) -
(ag,be) = (ay-as, by -bs), is called the 2-dimensional torus. More generally, we define the k-th
dimensional torus group is T* = U x U x --- x U with the group operation defined similarly.

k times
We call it the torus group because it can be represented on a torus, as the intersection of

two circles, one horizontal and one vertical, each an element of U.

The torus groups are quite important for studying the structure of Lie groups along with
a few other notions. I will give their definitions, as they are important, but we shall not
dwell on them, as they have little direct connections with notions from differential geometry
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Figure 3. A point on the torus represented as the intersection of 2 circles.

and are thus outside the scope of this paper. I do, however, encourage the reader to research
them, as there are some amazing results, like the complete classification of simple Lie groups.

Definition 3.4. The mazimal tori of a Lie group (G,-) is a subgroup H such that H = T*
where k is maximal.

Definition 3.5. A Lie group (G, -) is path connected if G is path-connected. A topological
space S is path connected if for any two points x,y € S, there exists a continuous function
v :[0,1] — S such that v(0) = 2 and v(1) = y.

A way to view this in terms of differential geometry is that you can draw a curve between
any two points on the surface. An interesting result that that is not immediately obvious is:

Proposition 3.1. For any n, SO(n) is path-connected.

Proof. For n = 2, we have the circle SO(2), which is obviously path-connected. We shall use
an induction argument. Now suppose SO(n — 1) is path-connected and let A € SO(n). It is
sufficient to prove there is a path from I, to A, since if there is a path from I,, to A and B,
then there is a path from A to B.

Then we have to find a continuous motion taking the basis vector {eq,es,...,e,} to the
final positions after the transformation, Ae;, Aes, ..., Ae,. If e; and Ae; are distinct(we
can assume they are, since if not we can look at e; and so on), they define a plane P, so by
the path connectedness of SO(2) we can move e; to Ae; continuously via a rotation R of P.
It then suffices to move continuously Res, Res, ..., Re, to Aes, Aes, ..., Ae, respectively,
keeping Ae; fixed.

Notice that since A and R are rotations, they preserve the orthogonality, therefore Re; is
orthogonal to Re; = Ae; and Ae; is orthogonal to Ae; for all # € N, 1 < ¢ < n. Thus the
required motion can take place in the space R"~! orthogonal vectors to Ae;, which exists by
the assumption of path-connectedness of SO(n — 1) and is given by performing A and R in
succession.

By induction we get that SO(n) is path connected for all n € N [ |
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Definition 3.6. A Lie group (G, -) is simple if it is algebraically a simple group.

Note: There is a disagreement in the literature on what the exact definition of a simple
Lie group is, since many authors also require for the Lie group to be path-connected.

Definition 3.7. A Lie group (G, ) is simply connected if the topological space G is simply
connected. A topological space S is simply connected if it is path connected and any loop
7, i.e a path v at zp such that y(0) = v(1) = xy can be shrunken down to a point. More
explicitly, if there exists a continuous function H : [0,1] x [0,1] — S such that

(1) H(s,0) =~(s) for all s € [0,1];
(2) H(s,1) = x¢ for all s € [0,1];
(3) H(0,t) = H(1,t) = x¢ for all t € [0, 1].

Informally, this implies that the space has no holes in it. For example T? is not simply
connected but SU(2) is.

4. LIE ALGEBRAS

Often in math, it is useful to define auxiliary objects in order to study the one of interest.
Lie groups are no different.

Definition 4.1. A Lie algebra is a vector space g over a field F' together with a binary
operation [-,-] : g X g — g called the Lie bracket, satisfying the following axioms:

e Bilinearity:
0z + by, 2] = alw, 2] + by, 2], [ a2 + by] = alz, 2] + bz, y]

for all scalars a,b € F' and all elements z,vy, z € g.
e Alternating property:

[z,2] =0
for all x € g.
e Jacobi identity:
[z, [y, 2] + [, [z, 9l + [y, [2,2]] = 0
for all z,y,z € g.

Using bilinearity to expand the Lie bracket [z + vy, 2+ y| and using the alternating property
shows that

[z, y] + [y, 2] =0

for all z,y € g. Thus, bilinearity and the alternating property together imply
Anticommutativity:

[z, y] = —ly, 2],

for all z,y € g. If the field does not have characteristic 2, then anticommutativity implies
the alternating property, since it implies

[r,2] = =[x, z].

Ezample. A vector space V' can become a Lie algebra with the Lie bracket [X,Y] = XY -Y X
for all X,Y € V. This Lie bracket is called the commutator.
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5. THE CONNECTION BETWEEN LIE ALGEBRAS AND LIE GROUPS

There’s a very interesting connection between the Lie algebras and Lie groups. Recall that
Lie groups are defined over smooth manifolds. If we let our Lie group (G, -), and we consider
a point p € GG and a curve v on GG that passes through p, and consider its tangent vector ~
at point p. Similarly to the tangent plane, we define an analogue in higher dimension, the
tangent space.

Definition 5.1. Let M be a smooth manifold and p € M a point on it. The tangent space
at p, denoted T, M is the vector space of all tangent vectors to all curves 7 passing through
p at point p.

Note: This definition is simplified. If one wants to understand the full nuances of it,
check [Leel3].
We can now create a correspondence between a Lie algebra and a Lie group as follows. This
is sometimes given as an alternative definition.

Definition 5.2. Let (G, -) be a Lie group. The corresponding Lie algebra is the Lie algebra
g= T.G. This is codified in notation as Lie(G) = g.

Defining the Lie bracket in the general sense for the Lie algebras requires background
beyond the scope of this paper.If one wants to learn and see the concrete definition, check
[Hall5]. But if we restrict ourselves to matrix Lie groups, it is actually the commutator!
Another way to view the connection between them is through the exponential map.

Definition 5.3. Let (G,-) be a Lie group. A curve v : R — G is called a one-parameter
subgroup if it satisfies the condition v(t)v(s) = v(t + s) for all s,t € R.

Definition 5.4. Let (G,-) be a Lie group and g its corresponding Lie algebra. The expo-
nential is a function exp : g — G where the exponential of X € g is given by exp(X) = (1)
where v : R — G is the unique one-parameter subgroup of G whose tangent vector at identity
is equal to X.

From the chain rule, you easily get exp(tX) = ~(t). Therefore we can get a few other
properties, like exp((t + s)X) = exp(tX) - exp(sX) and exp(—X) = (exp(X)) ! as well as if
X,Y commute then exp(X +Y) = exp(X) - exp(Y).

In the case of matrix Lie algebras, we get a very explicit form for the exponential map,
exp(X) = ZOZOXT!k = I, + X + 5X*+ $X% 4+ ... which is very similar to the Taylor
expansion of e*.

Ezample. Let us take the Lie group (GL,(R),-). Then its lie algebra is gl, = M,(R) with
the Lie bracket [X,Y] = XY — Y X. and the exponential map as above.

Ezample. For the torus group T?, we can actually visualize it and its tangent plane! Check
figure 4 Its exponential map is given by exp(X) = (e, ei'2).

I will end this paper with two theorems, whose proofs are significantly beyond the scope
of this paper, but nonetheless I find extremely beautiful and that showcase the powerful
connection between the two concepts.

Theorem 5.1. (Lie’s third theorem) [Hall5] Every finite-dimensional real Lie algebra is the
Lie algebra of some simply connected Lie group.



LIE GROUPS 9

Figure 4. T?, the identity element and the tangent plane

In short, you can find a smooth manifold with no holes such that its tangent space at
identity is your Lie algebra. It’s extremely powerful to not only know that whatever Lie
algebra you find, there is a corresponding Lie group, but also that the manifold it is defined
on has no holes!

Theorem 5.2. (The homomorphisms theorem) If ¢ : Lie(G) — Lie(H) is a Lie
algebra homomorphism and if G is simply connected, then there exists a (unique) Lie group
homomorphism f : G — H such that ¢ = df.

This again, by way of Lie algebras, gives you tools to investigate the underlying Lie groups.
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