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1 Introduction

Studying the symmetries of an object is well-known to be an important way to study the
object itself, and the objects of differential geometry are no exception to this. We study
the algebraic structure of the group of diffeomorphisms of a manifold, or, more specifically,
the structure of the subgroup of diffeomorphisms with compact support that are isotopic
to the identity. In the process of proving that this latter group is perfect, we attempt to
give the reader an elementary introduction to the theory of diffeomorphism groups as a
whole, introducing important themes, concepts, and results. We assume some familiarity
with differential topology and differential topology equivalent to the first 3 chapters of [13],
as well as basic group theory.

2 Diffeomorphism Groups

We will throughout this paper concern ourselves only with smooth manifolds, which we
consider to be Hausdorff and second-countable. Also, our convention will be that a diffeo-
morphism is smooth with a smooth inverse. We now describe rigorously our central object of
study, the diffeomorphism group of a manifold.

» Definition 2.1. Let M be a smooth manifold. We write Diff (M) to mean the group
{f: M — M : f is a diffeomorphism}, implicitly with the operation o : Diff(M)? — Diff (M)
which is composition of diffeomorphisms as functions.

It is not difficult to verify that this is a group. Associativity of composition is simply a
property of functions in general, f~! is a diffeomorphism if f is by definition because f is
smooth and bijective with smooth inverse, and the function id : M — M defined by = — x is
a diffeomorphism and an identity with respect to function composition. This is an interesting
group in its own right, but in fact it has great significance if one wishes to study the manifold
M itself, given the following theorem of Filipkiewicz [7]:

» Theorem 2.2 (Filipkiewicz). Let My, My be connected smooth manifolds. If there exists
an isomorphism o : Diff (M) — Diff (Ms), then there exists a diffeomorphism w : My — Mo
such that p(f) = wfw=! for all f € Diff(My).

In other words, we may realize Felix Klein’s Erlangen program, in that the algebraic
structure of the symmetries of the manifold entirely determines the geometric structure of the
manifold itself. Understanding the structure, then, of Diff (M) seems an important task. As
it turns out, Diff (M) has a manifold-esque structure itself. Before we turn to that, though,
we introduce a different notion with which to draw parallels.

Define a topological group to be a group G and a topology T on G such that the group
structure and topology are compatible in the sense that for every x € G, the maps y — y~!,

y — xy, and y — yx are continuous with respect to 7. A Lie group is a group G together
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with instead a compatible smooth manifold structure (U;, ;)5 such that the aforementioned
maps are smooth. Motivating examples of topological, but especially Lie, groups often come
from groups of matrices. For instance, consider the set M(n,R), the set of n x n matrices
over R. Taking instead the set GL(n,R) of invertible elements of Mat(n, R) under matrix
multiplication, we have a group (because matrix multiplication is associative, I is the identity,
and inverses exist by construction). We can treat this as an abstract group, i.e., a set with
a binary function, but if we consider each A € GL(n,R) as an element of Euclidean space
RPX™ = ]R"2, the topology inherited from R™ makes GL(n,R) a topological group. It is
somewhat nontrivial to show that we can actually give a smooth manifold structure compatible
with this topology, and that GL(n,R) is a Lie group given this smooth manifold structure.
As we will come back to later, the subgroup SL(n,R) = {4 € GL(n,R) : det(4) = 1}, and
its quotient PSL(n,R) = SL(n,R)/Z(SL(n,R)) are both Lie groups by taking the inherited
and quotient smooth structure respectively. Here, Z(SL(n,R)) denotes the center, and is
equal to either {I} or {I,—1I} for odd and even n respectively.

Unfortunately, Diff (M) is far too large for a manifold structure. The natural topology
on it is the compact-open topology, which has as a basis sets of the form N (U;, Uy, K ¢, f)
with U; and Uy sets in the atlas of M with charts (U;, ;) and (U, ir), K a compact subset
of M, ¢ >0, and f € Diff(M), where g € N(U;, Uy, K¢, f) if and only if g(K) C V and
| D*[pige; *)(x) — DF[pw fo;'](x)]| < € for all x € K and k € N. The topology this basis
induces turns out to be an infinite-dimensional manifold of sorts: locally, it is homeomorphic
to a Fréchet space, which will be unimportant enough that the reader can consider this an
infinite-dimensional, separable, complete normed vector space. Still, this topology is larger
than what we would like. In fact, another failing of this topology is that the behavior at
infinity, so to speak, cannot be accounted for, because individual neighborhoods only take
into account compact sets.

However, if we define the support of g € Diff (M), denoted supp(g), to be the closure of
the set {x € M : g(x) # x}, the set {g € Diff (M) : supp(g) is compact} is a normal subgroup.
This is not only significantly smaller, but also has a nicer metric which we will consider
further later, and avoids the behavior at infinity issue. Recalling that the (path) component
of x € X for a topological space X is the maximum (path-)connected subset of X containing
x with respect to inclusion, we may consider the (path) component of id € Diff(M). The path
component and component are, in the case of many groups (including Lie groups and Diff (M))
the same set, and we will denote the component of the identity by Diff(M). The subgroup
Diffy(M) is normal, and its structure is very closely related to Diff (M), so to prove structural
theorems about Diff (M) one often considers Diffo(M). Diffg(M), while nicer in several ways
than the full Diff (M), still suffers from many issues topologically, so we will actually mostly
consider the subgroup Diff.(M) = {g € Diffo(M) : supp(g) is compact}. Of course, when
M is compact, Diff .(M) = Diffo(M). In general, the relationship between Diff (M) and
Diffy(M) is paralleled by that of Diffy(M) and Diff .(M) in that proving theorems about the
latter often gives us theorems about the former. Two results of Thurston [19] exemplify this,
where we recall that a group is called perfect if it equals its own commutator subgroup:

» Lemma 2.3 (First Thurston Lemma). If Diff.(M) is perfect as a group, then Diffo(N) is
simple for every N of the same dimension as M.

» Lemma 2.4 (Second Thurston Lemma). For U C M with the closure of U compact, let Gy
denote the normal subgroup of Diff .(M) of elements g with supp(g) contained in U. Then
Gy C Diff .(M) is perfect if and only if Diffo(M) is perfect.
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Actually, simplicity is quite a strong algebraic condition on a group, so by Theorem 2.2,
perfectness of Diff.(M) gives us useful information about M. In fact, the simplicity of
Diffo (M) was a conjecture of Smale [18] resolved by Thurston using these lemmas. However,
it was was an essential input to Thurston’s proof of simplicity that Diff .(M) was perfect,
and a more accessible one by far than the proofs of Thurston’s lemmas. This motivates what
will become our central theorem:

» Theorem 2.5. For every smooth manifold M of dimension at least 2, Diff .(M) is perfect.

There are a number of important things to note here. First, the theorem does hold true
for M of dimension 1, though having dimension at least 2 is necessary for the proof we give
here. Second, we do prove the theorem for M = S, the circle. Finally, proving the theorem
for S is, in a rigorous sense, as close as we can get to proving the theorem for dimension 1
without fully proving it. This is because of the well-known fact that every 1-dimensional
smooth manifold is diffeomorphic to a disjoint union of copies of S* and R, as well as the
additional fact that diffeomorphisms isotopic to id must preserve connected components.
From these, we can conclude that Diff .(M) with M 1-dimensional is isomorphic to the direct
product (Diff.(S1))" x (Diff.(R))™ for some n,m € N.

We had mentioned that Diffo(M) is nicer than Diff(M). For us, one of the most significant
ways in which it is nicer is that it is connected, because that allows us to apply the following
lemma:

» Lemma 2.6. Let U C G be an open subset of a connected topological group G such that
e € U. Then U generates G.

Proof. We show that (V), the subgroup generated by V.= U NU~! C U, is open, closed,
and nonempty. From those three, connectedness of G forces (V) to be the entirety of G. By
hypothesis, e is in U and thus in V', so V' is nonempty. Note that y — gy is bijective and
bicontinuous for any g € G, so it is a homeomorphism. Thus, gV is open for any g € (V), so
(V') is open because it consists of words in V. We move on to closedness to finish the proof.
If g & (V), then gV is open, contains g, and is disjoint from (V'), so G \ (V') is open. |

Actually, this applies not only to Diffg(M), but also Diff.(M), every Gy, and every Gk
where G = {g € Diff (M) : supp(g) C K} for compact K.

Earlier, we referred to path-connectedness in Diff (M). Given that we only currently have
a topology on Diff (M), defining smoothness requires a different perspective on a path from
the usual continuous function [0, 1] to Diff(M). We give this alternative perspective.

» Definition 2.7. An isotopy is a smooth function ¢ : M x [0,1] — M such that for every
t €[0,1], () : x — ¢(x,t) is a diffeomorphism of M.

This intuitively aligns with what a smooth path in Diff (M) should be. We claim something
stronger, though: that isotopies characterize what smooth functions on Diff (M) are entirely.
This would traditionally be a theorem, but for our purposes may be a definition, as the
traditional definition of smooth functions on Diff (M) is not so important to us.

» Definition 2.8. A function F : Diff (M) — Diff (M) is smooth if and only if, for every
isotopy (¢1)icjo,1]: F'(P1) is an isotopy.

Our last piece of preliminary information is the metric on Diff .(M) that we mentioned
earlier. This is, in full generality, a metric on C$°(M, M), the C*° functions from M to M
with compact support. It is defined as follows:
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3(f,9) = sup sup [|D*[pirg; () — D* (i fio; ().
zeM xeU;, U,
keN
Balls are of course defined accordingly. The following, which we will invoke later, is more

or less a consequence of the Inverse Function Theorem.

» Lemma 2.9. Diff (M) is open in C°(M,M).

3 Reduction to Single Manifolds

Our overall goal for this paper will be to prove Theorem 2.5. Unless stated otherwise,
everything past this point is an adaptation of [14] modulo several interludes for differential-
geometric background (whose proofs are largely lifted from [13]). The bulk of our efforts in
this paper will be devoted to the case M = R"™ for n > 2. In this section, we aim to prove
that this case is enough.

» Proposition 3.1. For any n-dimensional smooth manifold M with n > 2, the group
Diff.(M) is perfect if Diff .(R™) is.

In turn the bulk of this reduction will consist of proving the well-known Fragmentation
Lemma:

» Lemma 3.2 (Fragmentation Lemma). Let M be a smooth manifold, (U;)icr an open cover
of M, and g any element of Diff .(M). Then g can be written as a product g1 0 gz 0 -+ 0 gy
of elements of Diffo(M) such that for every 1 < j < n, supp(g;) C U; for some i € I.

However, before we can move onto the proof of Lemma 3.2, we must introduce a tool.
We say that a collection of open subsets (U;);cr of a smooth manifold M is locally finite if
for every x € M, the set {i € I : x € U,} is finite.

» Definition 3.3. Let (U;);cr be a locally finite open cover of a smooth manifold M. We
define a partition of unity subordinate to (U;);crr to be a collection of functions (¢;)icr such
that:

1. v; is a smooth function M to R for everyi e I',

2. 0<(x) <1 for everyi € I' and x € M,

3. supp(vy;) C U; for everyi € I', and

4. 3 cpi(x) =1 for every x € M.

This notion is useful very broadly for differential geometry. The idea behind it is that we
may take locally defined notions, such as an integral over a part of a manifold, and build
them up from local pieces to make them global, which continuing the integral example would
be defining integrals for functions whose domains are the entire manifold. For us, we will
use them to gradually build up a diffeomorphism whose support is contained in some entire
compact set from diffeomorphisms that only affect smaller parts of that compact set. The
following theorem, which we will prove later, tells us that for any atlas we can define a
partition of unity. One should keep in mind that by the paracompactness of manifolds any
atlas may be reduced to a locally finite one.

» Theorem 3.4 (Existence of Partitions of Unity). Let (U;);cr be a locally finite open cover of
a manifold M. Then there exists a partition of unity subordinate to (U;)icy-
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With this preparation out of the way, we move on to the proof of the Fragmentation
Lemma:

Proof of Lemma 3.2. Let M be our smooth manifold, g our diffecomorphism in Diff.(M),
and (W));cr, our open cover. We will instead consider for most of this proof the collection
(Ui)ier of open sets which are contained in some W; and whose closures are compact. Of
course, if we can prove the theorem for (U;);ey, it follows for (W})ier.-

First, note that supp(g) is compact, so there is a finite I’ C I such that supp(g) € ;¢ Ui
Letting U = ;¢ Ui, consider some isotopy g; from gy = id to g1 = g contained in
Gy C Diff .(M). For any r, we can write g as

9= (90 '91/r) © (913.92/) 0 -0 (9,1 /,91)-

Notice that for such an r, we only need to provide the fragmentation for each g, =
g(_kl_l)/7,gk/r factor. We claim that for any open neighborhood V of id in Diff.(M), there
exists an ry such that g, is in V for every 1 < k < 7, or in other words, that we may
make the factors we are considering as close to id as we like. To prove this, recall that the
isotopy g; is a path v in Gy, so we may consider (by a slight abuse of notation) its image
v = {g¢ : t €[0,1]}. Define the family of sets V,, = {f € Diff.(M): fg; ', g:f L €UNU'}.
Then V,, is open in Diff (M) for every t, so V,, N~ is by definition open in 7. The path
is a homeomorphism onto its image, so v~ (V,,) is open in [0,1], and there must be some
q € v"1(Vy,) such that ¢ € Q. Therefore, g, € V,,, and because the relation defining V,, is
symmetric, we have g; € V,, . Thus, (Vg )4ecq is an open cover of 7. By compactness, there
must be some finite T' C Q such that (ng)qu also covers . There must be some r1 such
that every element of T is expressible with denominator r, so we take ry, = rp, yielding the
claim.

With this in hand, we may proceed to prove the lemma for each g, term, using the fact
that g, is arbitrarily close to the identity. Informally, doing this will consist of building up
gr,k successively on each of the elements of the finite cover (U;);e;r. We use partitions of
unity to make this gradation idea rigorous. By Theorem 3.4, if U is considered as a smooth
manifold itself, then there is a partition of unity (¢;);c;r subordinate to the open cover
(Us)ier of U. Denoting J = {1,2,...,|I'|}, we re-index (U;);er as (Uj)jes, allowing us to
define

Hm = Z ¥j.

JjeJ

Jj<m
Take some isotopy (g )¢ in Diff.(M) from (grx)o = id to (gr k)1 = grk, which we may
construct such that for every ¢, (g, )+ is arbitrarily close to id in the same sense that g,y is.
Then we may define, for m € J, fo rx(2) = (9r.k) () (). The idea here is roughly what we
described when we introduced partitions of unity: to get from fp,—1, % to fm rk, we partially
apply grx on Uy, and so in each iteration we build a function closer to g, . In symbols,

fm,’r,k:(x) = [(gr,k)qj)m(m) o fmfl,r,k](l‘)

As we mentioned earlier, for any neighborhood V of id in Diff.(M), we can pick an r € N
and an isotopy (g )¢ such that each function in the isotopy (g, k)¢ is in V, so each fi, ,k is
as well, because f, . is closer in C2°(M, M) to id than (g, )max, u(z)- Thus, because the
set C = {f € C(M,M) : f has a smooth inverse} is open in C°(M, M) by Lemma 2.9,
we may choose 7 and our isotopies such that each fy, . is contained in C. Taking this
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openness of C for granted for now, f, . is in Diff (M), has support contained in supp(g)
and thus compact support, and v = (gr.k)¢.4,, () (%) is an isotopy from fy, . to id, s0 f rx
is in Diff.(M). Therefore, we may write

grk() = fir) re(T)
= [(gr,k)wuq(w) 0---0 (gr,k)wl(z)](ﬂf)
= [(f|1'|,r,kf|}1|_1mk) CRERRS (fm,nkf,;l_u,k) o---0(f1,rrid)](z)

Because (gr.k)y,, (z)(7) = x when z & Up,, supp(fmmkf;lilmk) C Uy, and fm7r,kf7;171mk is
an element of Diff .(M), so this gives us a fragmentation of g, ;. The fragmentation of g
follows from the fragmentation of each g, as noted previously, so we are done. |

For the existence of partitions of unity, we follow the proof of [13].

Proof of Theorem 3.4. A smooth function i : R” — R is a bump function if there exist
positive reals a > b > 0 such that

1. if ||z|| > a, then h(z) =0,

2. if a > ||z|| > b, then 0 < h(z) < 1, and

3. if ||z|| < b, then h(z) = 1.

We will demonstrate such an h for every n, a, b later, but for now take it to exist. We have
our smooth n-dimensional manifold M with atlas (V},¢;)jes and our locally finite open
cover (U;);er. Construct the open cover

{WCM:WCU NV, forsomeiel,jelJ
and (W) = B,.(z) for some r € R,z € R"},

and take a locally finite subcover (W;);cr. For each I € L we can find j € J, 2; € R, and a
bump function h; such that ¢;(W)+ x is the support of h;. We then define ; as ho (p; + ;)
on V; and 0 elsewhere. From this we may define

Yi(x) = Y la),
zeW,;
Wi CU;

and our claimed partition of unity is
Yi(x)
2vev, Yi(@)
Each of our functions is well-defined, because the open covers are locally finite and thus
the sums are finite for each x. Smoothness of ;, supp(t;) C U;, and ., ¥i(z) = 1 are

obvious. It is also clear that each v; is nonnegative, so we also have 0 < ¢;(z) < 1.
All that is left is our bump functions. We can define the auxiliary function

W) = {exp(l/x) x>0

0 z <0,

Yi(x) =

and from this we can define a bump function for arbitrary n, a, b:

B h(a — ||z|)
Jap(T) = h(a —||z|)) + h(]|z]| — b)"

It is not difficult to verify that this satisfies the conditions of a bump function, so we are
done. [ |
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Given the Fragmentation Lemma, our main result of the section follows fairly naturally:

Proof of Proposition 3.1. At a high level, we construct an isomorphism between Gy and
Diff .(R™) for every open U diffeomorphic to a ball, and then use the Lemma 3.2 to reduce
perfection of Diff.(M) to perfection of each Gyy. In more detail, suppose that Diff.(R"™)
is perfect, that (U;,;)ier is a chart of M, and that (V;);cs is an indexing of the set
{V:V C U and ¢;(V) = B,.(z) for some i,7,2}. Then we take a locally finite subcover
(Vj)jeq of M. For each Vj there is a diffeomorphism ~; : ¢(V;) — R"™. V; is a smooth
manifold in its own right, and f + f|y; is an isomorphism from Gy, to Diff.(V;). In turn,
the map f — (pi 0;)f(¢iov;)~! is an isomorphism from Diff.(V;) to Diff.(R"). Thus,
because Diff.(R") is perfect, Gy, is for each V}, so f € Gy, is a product of commutators
[f1, f2] -« - [fn-1, fn]. By Lemma 3.2, any g € Diff.(M) is a product g = g; 0 --- 0 g,, with
gk € Gy, for every k and some j,. Thus, we conclude that

g=gio--0og,
= (lg1,1,912] - [91,m1 15 91,m, ) © -+ 0 ([9n15 Gn2] -+ - [Gnm —15 Groma ])

and Diff .(M) is perfect. |

4 Diffeomorphisms of the Circle

The main result of this section will be, modulo some technical details, that Diff.(S*) is
perfect. It may not be so immediately obvious to the reader why S! is relevant at all, but in
fact it will be essential to our argument for the perfectness of Diff.(R™). To even properly
state our result, though, will require some background.

4.1 Vector Fields, PSL(2,R), and the Theorem Statement

We begin by giving an introduction to exponentials of vector fields. Recall that the tangent
bundle TM of a manifold M is the disjoint union | |, .,, T.M = {(z,v) : x € M,v € T,M}
together with the linear structure of T,,M on each fiber {a} x T, M.

» Definition 4.1. Let M be a smooth manifold. A smooth vector field on M is a smooth
function X : M — TM such that X (z) is in {x} x T, M, and the support of X is the closure
of the set {x € M : f(x) # 0}. The set of smooth vector fields on M is denoted X(M), and
the set of smooth vector fields on M whose support is compact is denoted X.(M).

We will, for the most part, identify an element (z,v) € {x} x T, M simply with v.

Now, this definition of support more closely aligns with what the reader is likely familiar
with from previous experiences, such as real or complex analysis, and it is not immediately
apparent that this is particularly related to our notion of the support of a diffeomorphism.
However, as we will show, the support of a vector field and the support of a diffeomorphism
are closely related. This relationship is due to the fact that a smooth vector field induces a
smooth diffeomorphism in the following manner.

We say that a function ¢ : M xR — M is a flow if ¢(z,0) = x and ¢(P(z, $),t) = é(z, s+t)
for z € M and s,t € R. If we have a function ¢ : M x R — M which is smooth and a flow,
then intuitively it is a way to move around M for some time ¢ such that moving according
to ¢ for time s and then time ¢ is the same as simply moving according to ¢ for time s + ¢.
For any smooth vector field X € X.(M), we can define a flow ¢x(x,t) via the (autonomous)
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differential equation

Sox(@t) = X(6x(r,1)

with initial condition ¢x (z,0) = x. While the theorem of existence and uniqueness tells
us that a solution exists locally, it is nontrivial that a solution to this differential equation
exists globally. We prove this in a somewhat hand-wavy manner. We can deduce from the
aforementioned existence and uniqueness theorem that for every x € M there must exist a
unique solution on some open U, C M x R containing (x,0), so there must exist an open
U C M containing = and an &, > 0 such that there exists a unique solution on U, X (—&,&5).
By compactness of the support of X, there must exist a finite set I C M such that | J,.; Uy
contains the support of M. Therefore, if we denote £)y = min({e, : « € I'}), there is a unique
solution for every z with ¢ € (—eps, epr). Finally, we may extend this uniform time solution
to a global solution by, for each z € M, taking the curve

(bx(l‘,t) te (—EM,EM)
’Yz(t) = ¢X(¢X($,EM),t - 6]%) te (0,00)
ox(dx(x,—enm),t +epm) t€(—00,0).

This last step in particular requires some hefty justification, but these details are not so
important to us, and the fact that this works is intuitively clear. For the curious reader, [13]
makes much more precise and detailed all of the above.

We may denote the time ¢ map of the flow ¢x(z,t), for fixed ¢, by qbg?, so the time
one map of the flow is ¢§)- We call the function exp : X.(M) — Diff (M) X — ¢>g§) the
exponential map. In fact it takes a little bit of thought not just to prove well-definedness
of exp, but also to prove that the image of exp is Diff .(M). Our first consideration is
support. We claimed earlier that the support of the vector field is related to the support of
the corresponding diffeomorphism, and in fact the support of X is equal to the support of
exp(X), because when 0 = X (2) = X(¢x(y,1)) for some z,y, then $¢X(m,t)’ =0 and

t=1
(bg? is constant at z. For the isotopy to the identity, simply consider v; = exp(tX).

Some readers with more background might notice the similarities to the exponential for a
Riemannian manifold or, much more importantly to the study of diffeomorphism groups, the
analogue of the exponential for finite-dimensional Lie groups. (In more detail about that
remark, X.(M) is the Lie algebra of Diff (M), and in spite of the fact that the exponential
for Diff.(M) is neither injective nor surjective onto any neighborhood of the identity, the
nice properties of the elements of the image of the exponential make these elements and the
exponential important to the study of Diff.(M) generally and to our proof in particular.)

We may now, at least, state our main theorem for the section in full.

» Theorem 4.2. There is a neighborhood U of the identity in Diffo(St) = Diff.(S1) such
that any g € U can be written as a product of four commutators g = [G1(g), f1] - . - [Ga(9), fal,
with f; independent of g and each G; : Diffo(S') — Diffo(S*) smooth. Further, we may take
G;(id) = id and f; = exp(F;) with each F; in X.(S').

Before beginning the proof of Theorem 4.2, we introduce the notable subgroup PSL(2,R) C

Diff(S1), which is isomorphic as a group to the quotient group SL(2,R)/{I,—I}. However,
in this inclusion, the action of PSL(2,R) on S! is not the action of matrices on R?, but instead

the action of Mébius transformations. Here, M&bius transformations are functions z — %ig,

where z is an element of RP' = R U {oo}. The action is defined by the aforementioned
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fractional linear transformation when cz 4+ d # 0 and z # oo; when cz +d =0, z = oo and
c#0,or z=o00and ¢ =0, we have z — o0, z = %, and z + oo respectively. Consider the
inclusion Cy : S* — C, the Cayley transform Cy : RP' — C defined by z — z;z when z # oo
and z — 1 when z = oo, and the identification of A with its Mdbius transformation M 4.

The action of [A] € PSL(2,R) on x € S! is defined by

[A](z) = [Cq" 0 CLo Ma o Cy o Col(x)

Notice that this is well defined because A and —A produce the same action this way. One
reason we wish to focus on these is that this is, as mentioned earlier, a group action of
PSL(2,R), which is to say that [AB] = [A] o [B] and [A™!] = [A]~!. This will allow us to
make explicit a number of constructions and computations. Another reason for this is that

cosf sinf
Ao} = [(— sin 0 cos@)}

acts on S! via rotation by —26:

_ cosf —isin0)Cy(z) + (—sinf — icosh
C1 (M, (7 (2))) = 80 = 1510y () + (= sinf — icosf)
(cos@ +isin@)Cy " (z) + (—sind + icosh)
e 001 (z) — je~if
0O (x) + iet?

00O ()~
7

)+

(x
—e —
Cy (x
— o200,

(Strictly speaking, these manipulations only hold when C]!(x) # oo, but because C; 0 M4, o
C; ! and thus [Ag] are smooth, we must still have Cy (M4, (C; (1)) = e=2%.)

It is clear that PSL(2,R) is contained in Diff(S!). Note that PSL(2,R) is connected
because [A] — det(A) is continuous with connected image, and that PSL(2,R) is locally
path-connected because it is locally Euclidean. Every connected and locally path-connected
space is path-connected, so every element of PSL(2,R) has an isotopy to [I] = id € Diff(S*)
inside of PSL(2,R), and we have the inclusion PSL(2,R) C Diff.(S*).

An indispensable tool in our proof of Theorem 4.2 will be a result of Herman, Corollary
5.2 of [11]. Unfortunately, the proof of Herman’s Theorem is too deep for this paper, so we
do not cover it here, though it is proved as Theorem 2.33 of [2].

» Theorem 4.3 (Herman). Denote by Ry the rotation of S* by 0. There is a neighborhood U
of the identity in Diffo(S*) and a dense set A C [0, 27) such that for any u € A, any g € U can
be written as Ryg)[Go(g), R,.], with X : Diff (M) — [0,27) and Gy : Diff (M) — Diff.(M).

4.2 Proving Diff .(S') is Perfect

Armed with this, we proceed to prove our main theorem of the section.

Proof of Theorem 4.2. Consider the neighborhood U of Theorem 4.3. We will show that
there is a neighborhood inside U that satisfies the conditions of Theorem 4.2. By The-
orem 4.3, there exist A, 6, and Gy such that every element g of U can be expressed as
Ra(g,m[Go(g, 1), Ry] for any p € A. From here on, we will largely omit g when writing
functions of g.
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We will let G4 = Go. Now, we will explicitly construct Fy such that R, = exp(Fy) and
Gh Gg, Gg, Fl, FQ, F3 such that

Ry = [G1, exp(F1)][G2, exp(F3)][G3, exp(F5)].

We begin with Fj. Notice that, because S! is 1-dimensional, T},S' is 1-dimensional subspace
of R? for every z (in particular, if z = (cos#,sin ), then T,.S! is the span of (sin#, — cosf)).
Therefore, for every = the function y — ||y|| is an isometry and an isomorphism. Because of
this, we can effectively consider a smooth vector field X on S! to be a function from S! to R.
To make this slightly more rigorous, for every X € X.(S!), we have a Yx € C>°(S!, R) defined
by = — || X (z)]|, and this Yx corresponds to X in various ways we will expound on later.
Of course, this correspondence goes the other way, and we may define for Y € C>°(S!,R)
the smooth vector field Xy € X.(S!) by z — Y (z) - (sinf, —cosf). This is in fact a
correspondence; i.e., Yx,) =Y and X(y,) = X.

Define R(x,0) = Rg(z). One of the ways in which Xy and Y correspond to each other is
the following:

V@) =R (x /O Yl S?(:c))ds) .

In other words, traveling along the flow of X is the same as rotating according to Yx.
Therefore, if we take Y, 9 = 6, then

exp(Xy,,) (@) = 0¥, (@)
’ 1
=R <x /0 Y4,9(¢§l4’9(x))ds)

1
=R <x,/ 0ds>
0
R

o().

Thus, if we let Fy(g) = X(y, ), then exp(Fy) = R,,.
We now move on to the product of three commutators.

We take Y7 ((cos6,sinf)) =1 — cos@ and Ya((cosf,sinf)) = —1 — cosf. Setting F; =
F3 = Xy, and F, = Xy,, we have

exp(F1) = exp(F3) = K(l) D}

and

e[ 9]

Also, for a nonzero angle «, define G, = [g 0491} .

Note that det(G,) = det(exp(F;)) = 1 for i = 1,2,3, so we may easily compute the
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commutators

cumtn-ouemen= [ 2) ()G 1))

We may compute, again fairly easily, our other commutator:

=3 )G DG ) ()]
(65 ) 0]
B _<5‘21—1 m

We then compute the product of commutators

[Ga, exp(F1)][Gg, exp(F2)][Ga, exp(F3)]

166 D6

S |

Letting 8()\) = (sin(—A(g)/2) + 1)~ 2, if we may choose a(g) such that
—(BN)T2 =1) =2(a(V)? = 1) + (a(A)* = D)*(BAN) > - 1),
then we have —\(g)/2 = sin™!(B(A\)~2 — 1) and

cos(—=A(g)/2) sin(—/\(g)/2)>}
—sin(=A(g)/2) cos(=X(g)/2)

= Rx(g)-

[Gary, exp(F1)][G ), exp(F2)][Gan), exp(F3)] = K

Thus, we only need show that a()) can be chosen in this manner. In (0,+/2), there exists
such a f for each a:

BZ(W_DQJA)

1+ (a2—1)

[N

—2(a?-1)
1+(a2-1)2

+ 1) - B(a) is a local diffeomorphism
on some open U containing oo = 1, so we take the inverse ap(3). The function (\) is a local

By the Inverse Function Theorem, o +—> (
diffeomorphism on an open V containing A = 0, and $(0) = 1, so because ag(1) = 1, then
a(A) = ap(B(N)) is a local diffeomorphism on V' N 371(U) containing A = 0. By smoothness
of \, \=Y(V N B=1(U)) is open, so U NA~L(V N B~H(U)) satisfies the theorem statement. M

11
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5 The Proof for R"

In this last section, we apply the perfectness of S* to induct on n and prove that Diff,.(R™)
is perfect for n > 2.

Before that, though, we introduce a lemma that is more apparently applicable to our
stated goal. The lemma breaks an element of Diff.(R™) into pieces closer to elements of
Diff.(R"!) and Diff.(R). If g and h are in Diff .,(R"), we say that g preserves horizontal
hyperplanes and h preserves vertical lines if g(R"™! x {z}) = R"~! x {z} for every z, and
h({v} x R) = {v} x R for every v € R""1. The lemma is below.

» Lemma 5.1. There is a neighborhood U of the identity in Diff .(R™) such that any f € U
can be written as G(f) o H(f), where H(f) preserves each vertical line, G(f) preserves each
horizontal hyperplane, and both G, H : U — Diff .(R™) are smooth.

Proof. Let m; : R — R denote projection to the ith coordinate; i.e., (z1,...,Z,) — Z;.
Suppose f : R™ — R"™ has compact support. We claim that there exists & C Diff.(R")
such that if f € U, then for any v € R""1, f, : R — R defined by f,(z) = m,f(v,2) is a
diffeomorphism. Note that if 7, f(v,z1) = 7, f (v, x2), then by the Mean Value Theorem,
fuo(xz3) = 0 at some x3 € [21,x2], and

d

5(id, 1) > | S id(@) — (o)

T=x3
—1-0
=1.

Note that f — sup,cgn-1 0(id, f,) is continuous, so the preimage of (—1, 1) under it is open.
Let this preimage be U.

Given some f € Diff.(R") in U, define G;(v,z) = m;(v, f, }(z)), and define H,G : R" —
R"™ by

H(v,z) = (v, fo(x))
and

G, z) = (G1(v,2),...,Gn_1(v,2),2).
Clearly H and G are smooth in terms of f, and G;o H =m; 0 f,so Go H = f. |
We now come to our direct application of Theorem 4.2.

» Lemma 5.2. Let U,V CR"™ be open such that the closure of U is compact and contained

in V. Then there exist vector fields X1, ... X4 € X.(R™) whose supports are contained in V

such that the following condition holds:

o There is an open U C Diff .(R™) containing id such that for every g € U with supp(g) C U,
if g preserves vertical lines, then g can be decomposed as

g = [G1,exp(Y1)]...[G4,exp(Ya)],
with each G; : Diff.(R™) — Diff .(R™) smooth.

Proof. Let B"~! be a ball in R”~!. Then S' foliates U inside of V, in that we may construct
a smooth embedding ¢ : B"~! x ST — R" with U C ¢({b} x S') C V such that ¢(S* x {b})
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is a subset of a vertical line for every b € B"~!. One way to do this is to use the compactness
of the closure of U, and the resulting boundedness of U, to take some cylinder B! x T
containing U for some open interval I, and from there embedding the rest of the circle, as is
visualized below. See [14] for a nice visualization of this.

If g € Gy preserves vertical lines, then we may instead consider it as a diffeomorphism
R™ to R™ of the form (v,y) + §(v,y) for v € R*~! and some §. Letting g,(y) denote §(v,y)
and g, denote (v,y) — (v, g»(y)), each g, has support on the vertical line {v} x R and thus
on {b,} x S for some b,. Letting o, : S* — B"~1 x S be s — (b,, s), we can conjugate g,
by ¢ o oy, yielding a diffeomorphism of S'. By Theorem 4.2, we may write this as

(¢ o O—v)il o gv o (¢ o Uv) - [Gv,la EXp(Fl)] e [Gv,47 exp(F4)],

with Fy independent of g, and G, ; a smooth function of g,. We conjugate the F;’s this time by
the differential map Dy (¢po0y) ™! : T ST = Tipoo,)-1(2) (@({bu} x S1)), giving us vector fields
F,;=Dy(¢poc,) 'F; on (¢o0,)(S'). We also conjugate the G, ;’s by (¢ o 0,) 7!, yielding
diffeomorphisms G, = (¢po0oy)"toG, ;0(doay) of (pooy,)({by} x ST). Because of the smooth
dependence of G, ; on §,, G i is also a smooth function of §,, so the G, ;/’s piece together
to form smooth functions G on ¢(B"~ ! x S1). Since g(x) = id(z) when x & ¢(B" ! x S1),
we can trivially extend each G; to a diffeomorphism on the entirety of R”. We can piece
together the vector fields because of their smooth dependencies on v, and then we can extend
these pieced together vector fields to smooth vector fields F; on all of R™ supported on
V 2 ¢(B"! x S1). Thus, we have the decomposition g = [G1/,exp(F1/)] ... [Gy,exp(Fy )],
with all of the supports contained in V and each G, a smooth function of g.

|

With Lemma 5.1 and Lemma 5.2 in hand, we may proceed to close out our proof of our
main theorem.

Proof of Theorem 2.5. We prove that Diff.(R") is perfect for n > 2 via induction on n,
and then invoke Proposition 3.1 to yield the full theorem.

We begin with the base case n = 2. We show that for an arbitrary compact K C R?
which is the closure of an open set, every element of G is a product of a fixed number of
commutators, which yields the theorem because definitionally every element of Diff,(R?)
is in some Gg. Take said arbitrary K, and take some open set U containing K such that
the closure of U is compact. In turn, take some open set V containing the closure of U
such that the closure of K is compact. Applying Lemma 5.2 yields a neighborhood U of id
such that every g € U with supp(g) C U preserving horizontal lines, g can be decomposed
as [G1,exp(Y1)]...[Gy4,exp(Yy)]. In fact, we may symmetrically apply Lemma 5.2 to find a
neighborhood V satisfying the same hypotheses, except we assume that g preserves horizontal
lines, and we have a decomposition [G5,exp(Ys)]...[Gs,exp(Yg)]. We invoke Lemma 5.1,
yielding a decomposition g = G(g) o H(g) for any g in some open W. By smoothness of G
and H, T =WNG (V)N H YU) is open. For any g € T, G(g) and H(g) are in V and U
respectively, so

g = [G5,exp(Ys)] ... [Gs,exp(Ys)][G1, exp(Y1)]. .. [G4, exp(Ys)].

Thus, every element of 7 is a product of commutators. By Lemma 2.6, 7 generates Gy,
so every element of Gy and thus Gx C Gy is a product of commutators. Note that the
number of commutators involved is fixed.

We now perform the inductive step, which is very similar to the base case. Assume that
for n < k, there exists a natural r(n) such that any g € Diff.(R™) can be decomposed into a

13
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product of commutators g = [G1,exp(F1)]. .. [Gr(n),exp (Fr(n))], with each G; smooth and
each F; independent of g. Let K be compact and the closure of an open set, and let U,V C
RE+1 be open such that K is contained in U and the closure of U is contained in V. Take
the neighborhood U given to us by Lemma 5.2 and the neighborhood V given by Lemma 5.1.
Taking the decomposition G o H from Lemma 5.1, and letting f be an element of VN H 1 (U),
the action of G(f) on each horizontal hyperplane R¥ x {z} can be decomposed by the inductive
hypothesis as G4 (f) = [Ga.1,exp(Fp1)] - - - [Gar(n)s €XP(Fyr(n))]. The proof of Lemma 5.2
lets us piece together the G, ;’s and F; ;’s into diffeomorphisms and vector fields on all of
RAFL, 5o we have G(f) = [G1,exp(F1)] ... [Gr(n),exp(Fy(n))]. Therefore, Lemma 5.2 tells us
that we may decompose H(f) as H(f) = [Grn)+1, exp(Fr(nH))] o [Grn)4as exp(Fr(n+4))].
We have

f :[Gl, exp(Fl)] PN [Gr(n)z exp(Fr(n))}
© [Gr(n)+17 eXP(Fr(n+1))} s [Gr(n)+47 eXp (Fr(n+4))]

Thus, every element of VN H~!(U) is a product of commutators, so by Lemma 2.6, every
element of Gk is a product of commutators. Because K was arbitrary, we conclude the
proof. |

6 Conclusion

We give several resources with which the interested reader could study these further. First and
foremost is Banyaga’s The Structure of Classical Diffeomorphism Groups [2], the standard
text on the topic, and a source of a great number of references for related topics such as
the algebraic topology or infinite-dimensional Lie theory of diffeomorphism groups. Another
expository work, which gives few proofs but a nice overview of the field, is [15].

We close with a short sketch of the history of the study of perfectness and simplicity
of diffeomorphism groups, both to place the article in context and to give candidates for
further reading. The history begins not with diffeomorphisms themselves, though, but with
homeomorphisms. In the 1960s and 1970s, the works of Anderson, Cernavskii, Edwards, and
Kirby [1, 4, 12, 23] resulted in the theorem that the group of homeomorphisms isotopic to
the identity of a manifold M is always simple. As a result, Smale conjectured that Diff (M),
the group of C" diffeomorphisms [18] with compact support and isotopic to the identity is
simple. The first progress on Smale’s conjecture was the work of Epstein, showing that the
commutator subgroup of Diff, (M) is simple. With the question of simplicity reduced to
perfectness, Herman [10] showed that Diff,(7™), where T™ is the n-torus, is perfect using the
Nash-Moser-Sergeraert Implicit Function Theorem. This was followed by the full result from
Thurston [19], who used perfectness of Diff(T") to reduce to prove perfectness and thus
simplicity of Diff].(M). Thurston’s proof utilizes a deep connection between the perfectness
of the groups and the homology of certain classifying space of foliations.

Following Thurston, Mather [16, 17] provided another proof of simplicity of Diff. (M),
assuming that 1 < r < oo and r # dim(M) + 1, and Epstein improved Mather’s methods
in the case r = oo [5]. In more recent years, new proofs of perfectness and interest in
commutator bounds have surfaced. For the latter, the number of commutators needed to
express an element of Diff.(R™), Diffo(S™), Diffo(M) for compact, 3-dimensional M are
uniformly bounded by 2, 4, and 10 have been proved by Burago et al. [3], with related uniform
bounds [20] and non-uniform bounds [21, 22] from Tsuboi. As it turns out, the uniform
commutator width bounds of [3] actually take as an input our non-uniformly-bounded result
of perfectness. In the vein of new proofs of perfectness, Haller et. al [9, 8] provided a proof
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improving on [6], including a stronger result, that the commutators can be chosen to depend
smoothly on the diffeomorphism. This was even further streamlined by Mann [14], whose
proof we have followed.
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