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1 What are minimal surfaces?
Earlier in the course, we considered the problem of calculating the shortest distance
between two points on a surface – i.e., a geodesic. Analogously, a minimal surface seeks
to minimize its area across a boundary region being a fixed curve.

In 1849, Joseph Plateau demonstrated that soap films can be used as physical represen-
tations of some minimal surfaces, as the boundary is the curve formed by the wire frame;
finding the existence of a minimal surface subject to a boundary is known as Plateau’s
problem. Minimal surfaces are surfaces that locally minimize their area, subject to some
bounding constraint. A classical example commonly used to demonstrated the connection
between minimal surfaces and soap films is the helicoid, swept out by a soap film on a
helical frame.

Lagrange later expanded on this idea of minimal surfaces with the Euler-Lagrange
(minimal-surface) equation for a graph z = f(x, y):

∂

∂x

(
fx√

1 + |∇f |2

)
+ ∂

∂y

(
fy√

1 + |∇f |2

)
= 0

Lagrange noted that a plane trivially satisfies this equation, and later, Euler and
Meusnier discovered the catenoid and helicoid, respectively, which are now the most well
known, classical minimal surfaces of the 18th century. Meusnier eventually established
the connection between curvature and minimal surfaces, and derived what is now the
canonical definition of minimal surfaces:

Definition 1 (Zero mean curvature). A surface S ⊂ R3 is minimal if and only if it
maintains zero mean curvature H = 0 at all points.
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If we expand out the two partial derivative terms found above, we can express the
equation solely in terms of partial derivatives of f :

(1 + f2
y )fxx − 2fxfyfxy + (1 + f2

x)fyy = 0
Recall from Exercise 6.1, however, that the mean curvature can be expressed with a

numerator of the expression above. These definitions of zero mean curvature (H = 0)
and the original equation Lagrange derived are thus equivalent.

2 An alternative definition for minimal surfaces
When we discussed geodesics, we analyzed a family of curves, all in close proximity of
each other, and compared how the length of each curve in the family varied throughout
the family. We then showed that the geodesic is a local minimum of a function that
examines various different curves that passes through two points.

Definition 2 (Variational definition). A surface S ⊂ R3 is minimal if and only if it is a
critical point of the area functional for all compactly supported variations.

Likewise, we will analyze a family of surface patches σ : U → R3, where τ varies across
the open interval −ϵ < τ < ϵ for ϵ > 0. Call the original surface σ0. Choose a differential
function h : D → R, where D ⊂ U . This normal variation φ, determined by h, is a map
defined by

φ(u, v, τ) = σ(u, v) + τh(u, v)N(u, v)
For a certain τ ∈ (−ϵ, ϵ), the map στ : D → R3

στ (u, v) = φ(u, v, τ)
is a parameterized surface that satisfies

στ
u = σu + τhNu + τhuNσ

τ
v = σv + τhNu + τhuN

which follows from the product rule. After computing the first fundamental forms and
plugging these constants into the formula for mean curvature, we find the area can be
computed as

A(τ) =
∫

D

√
EτGτ − (F τ )2dA

EτGτ − (F τ )2 can be written as

EτGτ − (F τ )2 = (EG− F 2) − 2τh(LG− 2MF +NE) +O(τ2)

where limO(τ2)→0
O(τ2)

τ = 0. If ϵ is sufficiently small, then στ is a regular surface, and
A(τ) is a differentiable function. The area of A(τ) is then

A(τ) =
∫

D

√
1 − 4τhH +O′(τ2)

√
EG− F 2 dA

where O′(τ2) = O(τ2)√
EG−F 2 . Then

A′(0) = −
∫

D
2hH

√
EG− F 2dA

which vanishes at H = 0 and thus has a local minimum at τ = 0, as desired.
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3 Examples of minimal surfaces

(a) Catenoid (b) Enneper’s surface
(c) Scherk’s doubly periodic

surface

Figure 1: Three classical minimal surfaces.

3.1 The catenoid
A catenoid is a surface obtained by revolving the curve x = 1

a cosh(az) about the z-axis
in the xz-plane. To simplify calculations, assume that a = 1. We can parameterize the
catenoid as follows:

σ(u, v) = (cosh(u) cos(v), cosh(u) sin(v), u)
If we compute the first and second fundamental form constants, we find that E = G =

cosh(u)2, F = M = 0, L = −1, and N = 1. Using the formula for mean curvature yields

H = LG− 2MF +NE

2(EG− F 2) = 0

as desired.

3.2 Enneper’s minimal surface
More complex is Enneper’s minimal surface, which is parameterized by

σ(u, v) =
(
u− 1

3u
3 + uv2, v − 1

3v
3 + vu2, u2 − v2

)
σ is technically not a surface patch, as it is not injective (self intersections can be seen

in figure X), but we can partition σ’s domain into various different open sets.

3.3 Scherk’s doubly periodic minimal surface
Scherk’s minimal surfaces are a pair of surfaces, the first of which we will be discussing:

σ(u, v) = (u, v, log(cos(u)) − log(cos(v)))
Scherk’s minimal surface follows a checkerboard pattern of many separate unit cells

that have vertices at points (π
2 +mπ, π

2 +nπ),m, n ∈ Z. We will be analyzing the domain
U =

{
(u, v) ∈ R2 : −π

2 < u, v < π
2
}
. It can also easily be shown to be minimal by using

Lagrange’s equation from earlier:

(
1 + tan(v)2

) (
− sec2(u)

)
− 2 (− tan(u)) (tan(v)) (0) +

(
1 + tan(u)2

) (
sec2(v)

)
which, by using the pythagorean trigonometric identity, is equal to zero.
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4 A sprinkle of complex analysis and some other lemmas
Complex analysis is absolutely essential for constructing minimal surfaces, so we’ll
mention a few basic definitions necessary for Weierstrass-Enneper.

Definition 3. A map or parameterization is isothermal (or conformal) if all the angles
on the surface are conserved after the transformation. It has the property of E = G and
F = 0.

Definition 4. A function f : U → R is a harmonic function if f is at least of class C2

and satisfies

fuu + fvv = 0

For instance, the function f(u, v) = eu cos(v) is harmonic. We now have the tools to
prove a fundamental identity necessary for Weierstrass:

Claim 5. Let σ be a regular and isothermal parameterized surface. Then

σuu + σvv = 2λ2HN

where HN is the mean curvature vector, and λ2 = E = G.

Proof. Since we have σu · σu = σv · σv, we find that

d

du
(σu · σu) = d

du
(σv · σv)

σuu · σu = σvu · σv = 0

Since σu · σv = 0, we have

d

dv
(σu · σv) = σuv · σv + σu · σvv = 0

and so σuu · σu = σvu · σv = −σu · σvv. By the distributive properties of dot products,
we thus have

(σuu + σvv) · σu = 0

Similarly (by differentiating the original dot product with respect to v), we have that

(σuu + σvv) · σv = 0

It then follows that σuu + σvv is parallel to σu × σv and thus N .
Recall the definition for mean curvature in terms of first and second fundamental form

constants:

H = LG− 2MF +NE

2(EG− F 2)
Since σ is isothermal (F = 0, E = G), this can be reduced to

H = L+N

2λ2 = N · (σuu + σvv)
2λ2 .

So by multiplying out and taking the dot product of both sides with respect to the
unit normal N , we have our result
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σuu + σvv = 2λ2HN

as desired.

A corollary of this is that if a surface σ(u, v) = (x(u, v), y(u, v), z(u, v)) is isothermal,
it is is minimal if and only if each of its coordinate functions x, y, z are harmonic.

Surfaces can also be written in terms of complex coordinates, parameterized by a
complex ζ = u+ vi, where ζ ∈ C, (u, v) ∈ R2. Before we start proving the fundamental
lemma that we’ll be using, we will establish some definitions from complex analysis first:

Definition 6. A function f : U ⊂ C → C is analytic (or holomorphic) if f can be written
as

f(ζ) = f1(u, v) + if2(u, v)

where f1, f2 ∈ C1 and satisfy the Cauchy-Riemann equations

∂f1
∂u

= ∂f2
∂v

,
∂f1
∂v

= −∂f2
∂u

Definition 7. Define φ to be

φ = σu − iσv

φ can be expressed as φ = (φx, φy, φz); i.e., in terms of components.

Claim 8. σ is isothermal if and only if φ2
x + φ2

y + φ2
z = 0. If σ is isothermal, then σ is

minimal if and only if φ is analytic.

Proof. Expanding out each term yields

φ2
x + φ2

y + φ2
z = E −G = 2iF

which is equal to zero if and only if E −G = 0 and F = 0.
Moreover, σuu = −σvv (i.e., the condition for zero mean curvature from earlier) if

∂

∂u

(
∂x

∂u

)
= − ∂

∂v

(
∂x

∂v

)
for each component function in σ, which then satisfy the negative case of the Cauchy-

Riemann equations for φ. However, the positive case of the Cauchy-Riemann equations
are trivially true in this case, so σuu + σvv = 0 if and only if φ is analytic.

5 How can I construct a minimal surface?
Claim 8 is absolutely instrumental in our next claim on minimal surfaces; however,
before we prove our next claim, we must define what it means for a surface to be
simply-connected.

Definition 9. An open subset U of R2 is said to be simply-connected if every simple
closed curve in U can be shrunk to a point staying inside U . Intuitively, this means that
U has no “holes.”
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Claim 10. Let φ = (φx, φy, φz), φ : U → C3 – where U is simply connected – be an
analytic vector-valued function that is nowhere zero and satisfies φ2

x +φ2
y +φ2

z = 0. Then
there exists an isothermal parameterized minimal surface σ : U → R3 with an associative
analytic function φ. Furthermore, σ is uniquely determined by φ up to a translation.

Proof. Let U ⊂ C be simply connected and φ = (φx, φy, φz) : U → C3 be analytic,
nowhere zero, and satisfy |φ|2 = 0.

Fix z0 ∈ U and set

F (z) :=
∫ z

z0
φ(ζ) dζ ∈ C3, σ(z) := ℜF (z) ∈ R3.

Each component φk is analytic, so by Cauchy’s theorem
∫

γ φk dz = 0 for every closed
loop γ in U . Since U is simply connected, F is path-independent and F ′(z) = φ(z);
hence F is analytic.

With ζ = u+ iv and using Fz̄ = 0,

Fu = φ, Fv = iφ,

so
σu = ℜφ, σv = ℜ (iφ) = −ℑφ.

so φ = σu − iσv, as desired. From our conditions, we already know σ is isothermal, so
we only need to prove that σ is unique up to a translation.

Say there is another isothermal minimal surface σ̃ that corresponds to the same analytic
function σ. Then σu = σ̃u and σv = σ̃v. Differentiating, we find that σ̃ − σ must be a
constant. This must mean that σ̃ is a translation of σ obtained by translating by this
constant, as desired.

Example 11 (Helicoid). Let’s find the corresponding analytic function for a helicoid,
which is an isothermal surface.

φ(ζ) = σu − iσv

= (− sinh v sin u− i cosh v cosu, sinh v cosu− i cosh v sin u, 1)
= (−i cos(u+ vi),−i sin(u+ vi), 1)
= (−i cos(ζ),−i sin(ζ), 1)

Note that φ satisfies the conditions in Claim 8. A complex integral of φ shows that σ
is actually the conjugate surface (i.e. they have the same Weierstrass data rotated by a
phase) of a catenoid.

Theorem 12 (Weierstrass-Enneper parameterization). Let U be simply connected and
f, g : U → C be two analytic functions with f ≠ 0 on all of U . Then φ = (φx, φy, φz) :
U → R3 expressed as
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φx = ℜ
∫ 1

2f(ζ)
(
1 − g(ζ)2

)
dζ

φy = ℜ
∫
i

2f(ζ)
(
1 + g(ζ)2

)
dζ

φz = ℜ
∫
f(ζ)g(ζ) dζ

is an isothermal minimal surface.

Proof. The functions

ψx(ζ) = 1
2f(ζ)

(
1 − g(ζ)2

)
ψy(ζ) = i

2f(ζ)
(
1 + g(ζ)2

)
ψz(ζ) = f(ζ)g(ζ)

satisfy the equation ψ2
x + ψ2

y + ψ2
z = 0. Likewise,

|ψx|2 + |ψy|2 + |ψz|2 = 1
4

∣∣∣f(ζ)2
∣∣∣ (∣∣∣1 − g(ζ)2

∣∣∣2 +
∣∣∣1 + g(ζ)2

∣∣∣2 + 4 |g(ζ)|2
)

= 1
2 |f(ζ)|2

(
1 + |g(z)|2

)2
̸= 0

Where we used the identity∣∣∣1 − ζ2
∣∣∣2 +

∣∣∣1 + ζ2
∣∣∣2 + 4 |ζ|2 = 2(1 + |ζ|2)2

Since both critereon of Claim 10 are satisfied, φ is an isothermal minimal surface, as
desired.

Example 13 (Enneper’s surface). Let f(ζ) = 1 and g(ζ) = ζ. Clearly, f ̸= 0 and both
functions are analytic. Furthermore, C is simply connected. Then the corresponding
minimal surface φ is

φx(u, v) = ℜ
∫ 1

2
(
1 − ζ2

)
dζ = ℜ

(1
2

(
ζ − 1

3ζ
3
))

= 1
2

(
u− 1

3u
3 + uv2

)
φy(u, v) = ℜ

∫
i

2
(
1 + ζ2

)
dζ = ℜ

(
i

2

(
ζ + 1

3ζ
3
))

= 1
2

(
−v + 1

3v
3 − u2v

)
φz(u, v) = ℜ

∫
ζ dζ = ℜ

(1
2ζ

2
)

= 1
2
(
u2 − v2

)
The surface φ =

(
u+ uv2 − 1

3u
3,−v + 1

3v
3 − u2v, 1

2u
2 − 1

2v
2
)

is called Enneper’s sur-
face, scaled by a factor of 1

2 . It can be shown that φ(u, v) is isothermal.
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