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1. Introduction

What would a finite, bounded universe look like? The intuitive answer is that a bounded
universe would have some kind of boundary. This is not actually the case—our universe
could be bounded yet still complete.

Definition 1.1. We say that a surface S is complete if any geodesic in S can be extended
indefinitely in either direction.

A particle traveling in a straight line in such a bounded and complete universe could
travel indefinitely without encountering any boundary, and could even return to its starting
position. The Bonnet-Myers theorem allows us to show, given certain hypotheses, that a
complete manifold actually must be compact (hence bounded). For this paper, we will prove
a simpler version of the Bonnet-Myers Theorem, stated for surfaces:

Theorem 1.2 (Bonnet-Myers). Let S be a complete and connected surface with positive
Gaussian curvature bounded away from zero. Then S is compact.

Remark 1.3. If we weaken the conditions of the theorem to K > 0, then the conclusion does
not hold. For a counterexample, consider the surface S {(x, y, f(x, y))} where f(x, y) =
x2 + y2. We can compute

K =
fxxfyy − f 2

xy

(1 + f 2
x + f 2

y )
2

=
2(2)− 02

(1 + (2x)2 + (2y)2)2

=
4

(1 + 4x2 + 4y2)2

> 0.

However, S is not bounded, ergo it is not compact.

We will prove compactness by bounding the diameter of S. In fact, the distance bound
can be seen as a part of the Bonnet-Myers Theorem.

Definition 1.4. The diameter of a surface S is the supremum of the set of all distances
between two points in S. (By distance, we mean the length of the shortest curve connecting
the two points.)

Theorem 1.5 (Bonnet-Myers). Let S be a complete surface with K ≥ δ > 0. Then the
diameter of S is at most π√

δ
.

It is not entirely immediate that having a bound on the diameter of S implies that S is
compact. We can show this using one version of the Hopf-Rinow theorem:
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Theorem 1.6 (Hopf-Rinow). Let S be a connected smooth surface. Then the following
statements are equivalent:

(1) The closed and bounded subsets of S are compact.
(2) S is a complete surface.

If S is bounded, then S is a closed and bounded subset of S, which implies S is compact
if S is also a complete surface by the Hopf-Rinow Theorem. So the second version of the
Bonnet-Myers Theorem we’ve stated implies the first.

Remark 1.7. Where does the bound π√
δ
come from? We imagine that a surface S achieving

the maximum diameter would have a uniform Gauss curvature of δ—intuitively, the more
curved a surface is, the faster it has to curve in on itself, so the curvature should be minimized
everywhere. What does a surface with a uniform Gauss curvature of δ look like? One such
surface is a sphere with radius 1/

√
δ. The diameter (in the differential geometry sense) of this

sphere is π/
√
δ, since the shortest curve between two antipodal points is half a great circle,

which has length π/
√
δ. It turns out that the sphere is the only surface that achieves the

maximal diameter—this is a difficult result known as Cheng’s Maximal Diameter Theorem.

Before going through the proof, we will first introduce some definitions.

2. Definitions

The approach presented in this paper is from [1].

Definition 2.1. Let α : [0, l] → S be a regular parametrized curve with s ∈ [0, l] as its
parameter. A variation of α is a differentiable function h : [0, l]× (−ϵ, ϵ) → S such that

h(s, 0) = α(s)

for all s ∈ [0, l].

Definition 2.2. With notation as before, we say that h is proper if

h(0, t) = α(0),

h(l, t) = α(l),

for t ∈ (−ϵ, ϵ).

In other words, we say that h is a proper variation if h does not “vary” the endpoints of
α.

Definition 2.3. The variational vector field of h is defined as

V (s) =
∂h

∂t
(s, 0)

for s ∈ [0, l]. Note that if h is proper, then

V (0) = V (l) = 0.

Definition 2.4. Let p be a point on a surface S, and let v ∈ TpS. If v ̸= 0, then let γ be
the unique geodesic with γ(0) = p and γ̇(0) = v. Then we define

expp(v) = γ(1).

If v = 0, then we define expp(v) = p. We call exp the exponential map.
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We may think of expp v as following the unique geodesic with derivative v at p for time
1, laying down a distance of |v|.

Proposition 2.5. If V is a tangent vector field to a curve α, then there exists a variation
h : [0, l] × (−ϵ, ϵ) of α such that V is the variational vector field of h. Furthermore, if
V (0) = V (l) = 0 then we may choose h to be proper.

Proof. We first choose a δ > 0 such that |v| < δ implies expα(s) v is well defined for every
s ∈ [0, l]. We do not prove this key step, which requires another lemma; a proof can be
found in [1]. Now, let M be an upper bound on |V (s)| and let ϵ = δ/M . Define h(s, t) =
expα(s) tV (s). It can be checked that h(s, 0) = α(s) and ∂h

∂t
(s, 0) = V (s). If V (0) = V (l) = 0,

then we can easily see that h(0, t) = h(0, 0) = α(0) and h(l, t) = h(l, 0) = α(l) since ∂h
∂t

= 0
for s = 0 and s = l. ■

Definition 2.6. We write D
∂x

to denote taking covariant derivatives with respect to x.

3. Variations of Arclength

We now require tools to investigate how the arclength of α(s) changes as we move to
variations on h(s, t). In what follows, we use the notation of S, V , h, and so on as before,
and assume that h is proper. Now define L : (−ϵ, ϵ) → R as

L(t) =

∫ l

0

∣∣∣∣∂h∂s (s, t)
∣∣∣∣ ds.

We would like a formula for L′′(0), so that we understand the behavior of L at 0. We now
prove a series of lemmas.

Lemma 3.1. There exists a δ > 0 such that L(t) is differentiable for t ∈ (−δ, δ), and the
derivative is given by

L′(t) =

∫ l

0

∂

∂t

∣∣∣∣∂h∂s (s, t)
∣∣∣∣ ds

(that is, we just differentiate under the integral sign.)

Proof. Note that
∣∣∂h
∂s
(s, 0)

∣∣ = 1 since α is parametrized by arc length. Now, since [0, l] is
compact, there exists a δ > 0 with δ ≤ ϵ such that

|t| ≤ δ ⇒
∣∣∣∣∂h∂s (s, t)

∣∣∣∣ ̸= 0

for s ∈ [0, l]. The absolute value of a nonzero differentiable function is differentiable, so∣∣∂h
∂s
(s, t)

∣∣ is differentiable for t ∈ (−δ, δ). Then by the Leibniz integral rule, we may differen-
tiate under the integral sign:

L′(t) =

∫ l

0

∂

∂t

∣∣∣∣∂h∂s (s, t)
∣∣∣∣ ds.

■

The following lemmas below will help us compute L′′(0).
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Lemma 3.2. Let w(t) be a differential vector field along α. Let f : [a, b] → R be a differen-
tiable function. Then

D

∂t
f(t)w(t) = f(t)

D

∂t
w +

df

dt
w(t)

Proof. Let ( )T denote the tangential component of ( ).

D

∂t
f(t)w(t) =

(
df

dt
w + f

dw

dt

)
T

=
df

dt
w + f

D

∂t
w.

■

Lemma 3.3. Let v(t) and w(t) be differentiable vector fields along α. Then

d

dt
⟨v(t), w(t)⟩ =

〈
D

∂t
v, w

〉
+

〈
v,

D

∂t
w

〉
Proof. Let ( )T and ( )N denote the tangential and normal components of ( ), respec-
tively. First of all, we have

d

dt
⟨v, w⟩ =

〈
dv

dt
, w

〉
+

〈
v,

dw

dt

〉
.

Note that 〈
dv

dt
, w

〉
=

〈(
dv

dt

)
T

, w

〉
+

〈(
dv

dt

)
N

, w

〉
=

〈
D

∂t
v, w

〉
where

〈(
dv
dt

)
N
, w

〉
= 0 since

(
dv
dt

)
N

is normal to S and w is tangent to S by definition.

Similarly
〈
v, dw

dt

〉
=

〈
v, D

∂t
w
〉
. Thus

d

dt
⟨v, w⟩ =

〈
D

∂t
v, w

〉
+

〈
v,

D

∂t
w

〉
.

■

Lemma 3.4. Let h : [0, l]× (−ϵ, ϵ) ⊂ R2 → S be a differentiable mapping. Then

D

ds

∂h

∂t
(s, t) =

D

dt

∂h

∂s
(s, t).

Proof. Let σ(u, v) : U → S be a a surface patch of S containing h(s, t), and suppose that
h(s, t) = σ(h1(s, t), h2(s, t)) in this patch. At s = s0, we know that ∂h

∂s
(s0, t0) is tangent to

the curve h(s, t0), so

∂h

∂s
(s0, t0) =

∂h1

∂s
(s0, t0)σu +

∂h2

∂s
(s0, t0)σv.

Since our choice of (s0, t0) was arbitrary, we get that

∂h

∂s
=

∂h1

∂s
σu +

∂h2

∂s
σv.

Similarly,

∂h

∂t
=

∂h1

∂t
σu +

∂h2

∂t
σv.
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We can now use the formula for the covariant derivative in terms of the Christoffel symbols
and σu, σv to verify that both sides have the same coefficients of σu and σv, so they are equal.

■

Now, we derive a formula for L′(t) and show that L′(0) = 0.

Proposition 3.5. For t ∈ (−δ, δ),

L′(0) = −
∫ l

0

⟨A(s), V (s)⟩ ds

where A(s) = D
∂s

∂h
∂s
(s, 0).

Proof. We first rewrite L(t) =
∫ l

0

∣∣∂h
∂s

∣∣ ds as

L′(t) =

∫ l

0

d

dt

〈
∂h

∂s
,
∂h

∂s

〉1/2

ds.

Applying Lemma 3.3 and Lemma 3.4 to compute the integrand, we get

L′(t) =

∫ l

0

1

2

〈
∂h

∂s
,
∂h

∂s

〉−1/2

· 2
〈
D

∂t

∂h

∂s
,
∂h

∂s

〉
ds

=

∫ l

0

〈
D
∂t

∂h
∂s
, ∂h
∂s

〉∣∣∂h
∂s

∣∣ ds

=

∫ l

0

〈
D
∂s

∂h
∂t
, ∂h
∂s

〉∣∣∂h
∂s

∣∣ ds.

We know that
∣∣∂h
∂s
(s, 0)

∣∣ = 1 since h(s, 0) = α(s) is parametrized by arc-length, so this
simplifies to

L′(0) =

∫ l

0

〈
D

∂s

∂h

∂t
,
∂h

∂s

〉
ds.

From Lemma 3.3, we know that

∂

∂s

〈
∂h

∂s
,
∂h

∂t

〉
=

〈
D

∂s

∂h

∂s
,
∂h

∂t

〉
+

〈
∂h

∂s
,
D

∂s

∂h

∂t

〉
so we have

L′(0) =

∫ l

0

∂

∂s

〈
∂h

∂s
,
∂h

∂t

〉
ds−

∫ l

0

〈
D

∂s

∂h

∂s
,
∂h

∂t

〉
ds.

The first term on the RHS is 0 since h is proper and thus ∂h
∂t
(0, 0) = ∂h

∂t
(l, 0) = 0. We

conclude that

L′(0) = −
∫ l

0

〈
D

∂s

∂h

∂s
,
∂h

∂t

〉
ds

= −
∫ l

0

⟨A(s), V (s)⟩ ds.

■

We can use the above proposition to prove the interesting fact that α is a geodesic iff
L′(0) = 0.
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Proposition 3.6. A regular parametrized curve α(s) parametrized by arc-length is a geodesic
iff for every proper variation h, L′(0) = 0.

Proof. The “only if” direction of the proof is simple. We know that the acceleration vector,
D
∂s

∂α
∂s
, of a geodesic is zero since geodesics are constant speed. Hence, L′(0) = 0.

We now prove the other direction. Suppose L′(0) = 0 for every h. Define a vector field
V (s) = f(s)A(s) where f : [0, l] → R is a real differentiable function with f(0) = f(l) = 0
and f(s) > 0 for s ∈ (0, l). Let h be a proper variation with variational vector field V (s).
Then we compute

L′(0) = −
∫ l

0

⟨f(s)A(s), A(s)⟩ ds

= −
∫ l

0

f(s)|A(s)|2 ds

= 0.

Since f is nonnegative, we have f(s)|A(s)|2 ≥ 0. Thus

f(s)|A(s)|2 = 0

identically. This shows that A(s) must be 0. If |A(s0)| ≠ 0 for some s0, then in particular
|A(s1)| ≠ 0 for each s1 ∈ (s0 − ϵ, s0 + ϵ) for some ϵ ∈ 0. Choosing s1 ∈ (0, l), we have
f(s1) ̸= 0, so now f(s0)|A(s0)|2 ̸= 0, contradiction. Ergo, A(s) = 0 when s ∈ (0, l) and by
continuity, we get that A(0) = A(l) = 0. Since A(s) is identically zero, α is a geodesic. ■

From now on, we only consider proper, orthogonal variations of geodesics γ : [0, l] → S
to make our calculations easier. (An orthogonal variation satisfies ⟨V (s), γ′(s)⟩ = 0.) We
require two more lemmas before for the computation of L′′(0). The proofs to these lemmas
are omitted, as they are quite computational, but the interested reader can find proofs in
[1].

Lemma 3.7. Let x(u, v) : U → S be a parametrization at point p ∈ S of a regular surface
S and let K be the Gaussian curvature. Then,

D

∂v

D

∂u
xu − D

∂u

D

∂v
xu = K(xu ∧ xv) ∧ xu.

The preceding lemma is required to prove the next one.

Lemma 3.8.

D

∂t

D

∂s
V − D

∂s

D

∂t
V = K(s, t)

(
∂h

∂s
∧ ∂h

∂t

)
∧ V

where K(s, t) is the curvature at point h(s, t).

We now have all the lemmas needed to make lemmanade (and write a formula for L′′(0)).

Proposition 3.9. For t ∈ (−δ, δ) we have

L′′(0) =

∫ l

0

∣∣∣∣ D∂sV (s)

∣∣∣∣2 −K(s)|V (s)|2 ds.
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Proof. From Proposition 3.5, we have

L′(t) =

∫ l

0

〈
D
∂s

∂h
∂t
, ∂h
∂s

〉〈
∂h
∂s
, ∂h
∂s

〉1/2 ds
for t ∈ (−δ, δ), as defined earlier. Differentiating gives

L′′(t) =

∫ l

0

d
dt

〈
D
∂s

∂h
∂t
, ∂h
∂s

〉 〈
∂h
∂s
, ∂h
∂s

〉1/2〈
∂h
∂s
, ∂h
∂s

〉 −
∫ l

0

(〈
D
∂s

∂h
∂t
, ∂h
∂s

〉)2∣∣∂h
∂s

∣∣3/2 .

For t = 0, we have |∂h
∂s
(s, 0)| = 1. Furthermore,

d

ds

〈
∂h

∂s
,
∂h

∂t

〉
=

〈
D

∂s

∂h

∂s
,
∂h

∂t

〉
+

〈
∂h

∂s
,
D

∂s

∂h

∂t

〉
.

Since γ is a geodesic, the acceleration vector (D
∂s

∂h
∂s
) is 0, and since we’re only dealing with

orthogonal variations,
〈
∂h
∂s
, ∂h
∂s

〉
= 0 at t = 0. So, we can write L′′(0) as

L′′(0) =

∫ l

0

d

dt

〈
D

∂s

∂h

∂t
,
∂h

∂s

〉
(s, 0) ds.

We rewrite the integrand for convenience

d

dt

〈
D

∂s

∂h

∂t
,
∂h

∂s

〉
=

〈
D

∂t

D

∂s

∂h

∂t
,
∂h

∂s

〉
+

〈
D

∂s

∂h

∂t
,
D

∂t

∂h

∂s

〉
=

〈
D

∂t

D

∂s

∂h

∂t
,
∂h

∂s

〉
−
〈
D

∂s

D

∂t

∂h

∂t
,
∂h

∂s

〉
+

〈
D

∂s

D

∂t

∂h

∂t
,
∂h

∂s

〉
+

〈
D

∂s

∂h

∂t
,
D

∂t

∂h

∂s

〉
.

We know (using Lemma 3.3) that for t = 0,

d

dt

〈
D

∂s

∂h

∂t
,
∂h

∂s

〉
=

〈
D

∂s

D

∂t

∂h

∂t
,
∂h

∂s

〉
+

〈
D

∂s

∂h

∂t
,
D

∂s

∂h

∂s

〉
=

〈
D

∂s

D

∂t

∂h

∂t
,
∂h

∂s

〉
,

noting that D
∂s

∂h
∂s

= 0 since h(s, 0) = γ(s) is a geodesic. We use Lemma 3.10 and the
properties of orthogonal variation to further simplify our integrand:

〈
D

∂t

D

∂s

∂h

∂t
,
∂h

∂s

〉
−

〈
D

∂s

D

∂t

∂h

∂t
,
∂h

∂s

〉
= K(s)

〈(
∂h

∂s
∧ ∂h

∂t

)
∧ ∂h

∂t
,
∂h

∂s

〉
= −K

〈
|V (s)|2∂h

∂s
,
∂h

∂s

〉
= −K|V (s)|2.

So, we rewrite the integrand to get
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L′′(0) = −
∫ l

0

K|V (s)|2 +
〈
D

∂s

∂h

∂t
,
D

∂t

∂h

∂s

〉
ds

=

∫ l

0

−K|V (s)|2 +
∣∣∣∣ D∂sV (s)

∣∣∣∣2 ds

=

∫ l

0

∣∣∣∣ D∂sV (s)

∣∣∣∣2 −K|V (s)|2 ds

and we’re done. ■

There is one final ingredient we need for the proof, the Hopf-Rinow Theorem (in a different
form than what we used earlier).

Theorem 3.10 (Hopf-Rinow Theorem). Let S be a complete surface. For any two points
p,q ∈ S, there exists a geodesic of minimal length connecting p and q.

4. The Bonnet-Myers Theorem

We now have enough to prove the Bonnet-Myers Theorem. Given a geodesic γ of minimal
length connecting two points of S, we will choose a suitable V (s), compute L′′(0), and show
that L′′(0) ≥ 0 implies the desired bound on the length of γ.

Theorem 4.1 (Bonnet-Myers). Let S be a complete surface with K ≥ δ > 0. Then S is
compact. In particular, the diameter of S is at most π√

δ
.

Proof. Let p,q ∈ S. By the Hopf-Rinow Theorem, there exists a geodesic γ of minimal
length connecting p and q. Let l be the length of γ, and suppose that γ is arclength
parametrized, so that γ is a function from [0, 1] to S. We now construct a variation of γ. Let
w(0) ∈ Tγ(0)S be a unit vector with w(0) · γ̇(0) = 0. For s ∈ (0, l], let w(s) be the parallel
transport of w(0) along γ to γ(s). We note now that |w(s)| = 1 and w(s) · γ̇(s) = 0 for all
s ∈ [0, l]. Now define the variational vector field

V (s) = sin
(π
l
s
)
w(s)

and note that we can choose a proper variation h of γ with variational vector field V (s).
With this h, we compute

L′′(0) =

∫ l

0

∣∣∣∣ D∂sV (s)

∣∣∣∣2 −K(s)|V (s)|2 ds

=

∫ l

0

(π
l
cos

(π
l
s
))2

−K(s) sin2
(π
l
s
)
ds

=

∫ l

0

π2

l2
cos2

(π
l
s
)
−K(s) sin2

(π
l
s
)
ds.

Here we computed that D
∂s
V (s) =

(
D
∂s

sin
(
π
l
s
))

w(s) + sin
(
π
l
s
) (

D
∂s
w(s)

)
= π

l
cos

(
π
l
s
)
w(s),

since D
∂s
w(s) = 0 by the definition of parallel transport. Now note that if we replace K with

π2

l2
, this integral just becomes 0, since

∫ l

0
cos2

(
π
l
s
)
− sin2

(
π
l
s
)
ds = 0. We use this trick to
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simplify:

L′′(0) =

∫ l

0

(
π2

l2
cos2

(π
l
s
)
− π2

l2
sin2

(π
l
s
))

ds+

∫ l

0

(
π2

l2
−K(s)

)
sin2

(π
l
s
)
ds

=
π2

l2

∫ l

0

cos

(
2π

l
s

)
ds+

∫ l

0

(
π2

l2
−K(s)

)
sin2

(π
l
s
)
ds

=

∫ l

0

(
π2

l2
−K(s)

)
sin2

(π
l
s
)
ds.

Since γ is length-minimizing, L′′(0) ≥ 0. Thus π2

l2
− δ ≥ π2

l2
− K(s) ≥ 0, so l ≤ π√

δ
as

desired. ■
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