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1 Introduction

Mathematics has a curious tendency: as soon as one language for describing a phenomenon is mastered,

another emerges—offering a radically different viewpoint, yet somehow speaking about the same thing.

In geometry and topology, one such shift occurs when we move from the local differential properties of

objects to global invariants that persist under continuous deformations. This is the transition from the

world of smooth functions, curvature formulas, and differential equations to the world of homology and

cohomology theories.

Up to this point in one’s study, it is easy to become immersed in geodesics, curvature tensors, and

integrations over manifolds, extracting precise geometric information from the smooth structure. The

Gauss–Bonnet theorem, for instance, offers a tantalizing glimpse of something deeper: integrating curvature

over a closed surface yields an integer, the Euler characteristic, which remains unchanged by bending

or stretching the surface. A purely analytic quantity (the integral of curvature) mysteriously encodes a

purely topological number.

This is not an isolated miracle. It belongs to a vast network of ideas whose central question is:

How can we translate questions about shape and connectivity into algebraic language, so that

they can be computed, compared, and understood in new ways?

The modern answer begins with the theory of homology and extends, in elegant and far-reaching ways, to

cohomology.

1.1 A Historical Detour: From Shapes to Algebra

To appreciate why cohomology was ever conceived, we must step back and examine the intellectual landscape

of the 18th through early 20th centuries. During this period, geometry underwent a transformation: it

ceased to be merely the study of lines and figures drawn on paper and became the study of space itself.

The seeds of this transformation can be traced to the work of Leonhard Euler in the mid-18th century.

In his analysis of polyhedra, Euler noticed a remarkable invariant: for any convex polyhedron, the quantity

V − E + F

(where V is the number of vertices, E the number of edges, and F the number of faces) is always 2.

This number, now recognized as the Euler characteristic, was one of the first examples of a topological
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invariant—unchanged under continuous deformation, so long as the polyhedron was not torn or glued.

The 19th century saw an acceleration in the study of such invariants. Johann Benedict Listing coined

the term “Topologie” in 1847, marking a conceptual break from traditional geometry. August Möbius and

Camille Jordan developed early methods to describe and classify surfaces beyond their metric properties.

Yet these developments were often ad hoc—ingenious, but lacking a unified framework. A Möbius strip

could be described, a Klein bottle imagined, but there was no general theory for cataloging such spaces by

their essential features.

The unifying vision came from Henri Poincaré in the 1890s. In his monumental series of papers, Analysis

Situs, Poincaré introduced a systematic way to detect and classify the “holes” in a space. He defined

numbers—later called Betti numbers in honor of Enrico Betti—that, in rough terms, count the number of

independent cycles: closed loops, closed surfaces, and their higher-dimensional analogues that cannot be

shrunk to a point. Poincaré’s insight was revolutionary: one could now assign to each space a sequence of

algebraic invariants that faithfully recorded its large-scale structure.

By the early 20th century, Poincaré’s program was placed on a rigorous algebraic footing, largely through

the work of Emmy Noether and her contemporaries. Intuitive surfaces and loops were replaced by formal

chains, boundaries, and quotient groups, giving birth to modern homology theory. Homology provided a

universal framework for distinguishing spaces: a sphere and a torus, though locally indistinguishable to a

differential geometer, now had entirely different algebraic signatures.

1.2 From Counting Holes to Algebraic Invariants

The genius of homology lies in its shift from local to global. Locally, a sphere and a torus each resemble

the Euclidean plane; any sufficiently small patch can be flattened without distortion. Yet globally, their

structures are profoundly different. A sphere has no 1-dimensional holes, while a torus has one in each

independent direction of its loop.

Topology asks: what properties of a shape survive stretching and bending, but not tearing or gluing?

Algebraic topology answers by associating to each space algebraic objects—numbers, groups, rings—that

remain unchanged under homeomorphisms. Homology was the first grand embodiment of this philosophy,

systematically cataloging the “holes” in every dimension.
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1.3 Why Cohomology?

Homology, powerful as it is, tells only half the story. Very soon after its introduction, mathematicians

realized that there is a natural dual point of view: instead of examining the chains that make up a space,

one could examine the algebraic data—functions, differential forms, or more general cochains—defined on

those chains.

This gave rise to cohomology. Initially introduced as the algebraic dual of homology, cohomology quickly

revealed itself to be richer. Cohomology groups naturally form a ring via the cup product, encoding not

only which cycles exist but how they interact with one another. This algebraic structure gave cohomology

a unifying role in fields as diverse as algebraic geometry, number theory, and physics.

1.4 Enter de Rham Cohomology

The bridge between cohomology and differential geometry was built in the 1930s by Georges de Rham.

His guiding question was simple to state: given a closed differential form on a smooth manifold, when is it

exact—that is, the exterior derivative of another form? If it is not exact, what topological feature of the

manifold obstructs it?

De Rham’s answer was the creation of de Rham cohomology, whose groups measure precisely these

obstructions. His theorem—now a cornerstone of modern geometry—states that for a smooth manifold,

the de Rham cohomology groups (defined analytically) are isomorphic to the singular cohomology groups

with real coefficients (defined topologically). In one stroke, de Rham linked the analytic world of smooth

forms with the algebraic world of topological invariants.

1.5 From Gauss–Bonnet to a General Principle

The Gauss–Bonnet theorem becomes almost inevitable from this perspective. The Gaussian curvature K

is not merely a geometric measure; it defines a closed 2-form on the manifold. Integrating this form over

the entire surface yields the Euler characteristic, a purely topological number. This is a special case of a

far more general principle:

Integrals of certain closed differential forms compute topological invariants.

De Rham cohomology is the natural framework for understanding and generalizing such results.
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1.6 The Plan of This Exposition

In what follows, we will:

1. Motivate and define homology through geometric intuition and illustrative examples, introducing

cycles, boundaries, and the construction of homology groups.

2. Shift to cohomology, first in the abstract algebraic setting, then concretely via differential forms, the

exterior derivative, and the generalized Stokes’ theorem.

3. Develop de Rham cohomology in detail, proving key results and computing examples on familiar

manifolds such as spheres and tori.

4. Situate these concepts within the broader mathematical landscape, emphasizing their unifying role

in geometry, topology, and analysis.

By the end, we will see that cohomology—and de Rham cohomology in particular—is not merely a

rephrasing of topology in analytic language, but a profound framework in which classical results like

Gauss–Bonnet find their natural home, and from which new insights continually emerge.
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2 Review of Prerequisites

Before we embark on the study of homology and cohomology, it is essential to recall certain foundational

concepts from differential geometry, multivariable calculus, and manifold theory.

2.1 Smooth Manifolds and Tangent Spaces

We begin by recalling the notion of a smooth manifold. A smooth manifold M of dimension n is, informally,

a space that locally resembles Rn and has a globally consistent system of smooth coordinate charts. This

means that for every point p ∈M , there exists a neighborhood U ⊂M and a homeomorphism (called a

chart)

φ : U → φ(U) ⊂ Rn

such that transition maps between overlapping charts are smooth functions.

The tangent space TpM at a point p can be introduced in several equivalent ways: as equivalence

classes of curves through p, as derivations acting on smooth functions, or as the span of coordinate partial

derivatives. Intuitively, TpM contains all possible velocity vectors of curves in M passing through p. For

surfaces embedded in R3, one may visualize TpM as the plane that just touches the surface at p without

intersecting it locally.

2.2 Orientation

An orientation on a manifold is, loosely speaking, a consistent choice of “direction” for volume measurement

throughout the manifold. In Rn, the standard orientation is given by the ordered basis (e1, . . . , en). For a

surface S ⊂ R3, an orientation can be induced by a smooth choice of unit normal vector field n satisfying

certain compatibility conditions with the parametrization of S.

This notion becomes crucial when formulating integral theorems: the sign of an integral over an oriented

manifold depends on the chosen orientation, and changing orientation generally changes the sign of the

result.

2.3 Line and Surface Integrals in R3

In the classical setting of vector calculus, we frequently integrate vector fields along curves or across

surfaces.
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Line integrals: Let F : U ⊂ R3 → R3 be a vector field and let C be a smooth curve parametrized by

r(t), a ≤ t ≤ b. The line integral of F along C is

∫
C
F · dr =

∫ b

a
F(r(t)) · r′(t) dt.

Physically, this can represent the work done by the force field F in moving a particle along C.

Surface integrals: Let S be a smooth oriented surface parametrized by r(u, v), (u, v) ∈ D ⊂ R2, with

unit normal vector n consistent with the given orientation. The surface integral of F over S is given by

∫∫
S
F · dS =

∫∫
D
F(r(u, v)) ·

(
∂r

∂u
× ∂r

∂v

)
du dv.

Here dS = n dS denotes the oriented surface element.

2.4 The Classical Stokes’ Theorem

The classical version of Stokes’ theorem relates a surface integral of the curl of a vector field to a line

integral of the field around the boundary of the surface.

Theorem 2.1 (Classical Stokes’ Theorem). Let S be an oriented smooth surface in R3 with a smooth,

simple, closed, positively oriented boundary curve ∂S. Let F : U → R3 be a smooth vector field

defined on an open set U containing S. Then

∫∫
S
(∇× F) · dS =

∮
∂S

F · dr.

This theorem is a unifying statement: the classical fundamental theorem of calculus, Green’s theorem in

the plane, and the divergence theorem can all be seen as special cases of Stokes’ theorem under suitable

choices of S and F.

In intuitive terms, Stokes’ theorem tells us that the total “circulation” of a vector field through a

surface can be measured equally well by examining the behavior of the field along the surface’s boundary.

This principle reflects the deep interplay between local differential properties (curl) and global integral

properties (line integrals).

We assume familiarity with these results and focus on recalling them only as needed for our generalization.
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3 Homology Theory

3.1 Simplices and Simplicial Complexes

When faced with a complicated geometric object—such as a manifold—one natural strategy is to replace

it by a simpler object that retains enough of its essential structure for our purposes. This is a recurring

theme in mathematics: we trade the full complexity of an object for a tractable approximation that is

easier to analyse. In topology, one particularly effective approach is to build such approximations out of

the simplest possible building blocks.

Let us begin in low dimensions. In 0 dimensions, the simplest geometric object is just a point. In 1

dimension, the simplest object is a line segment, determined entirely by its two endpoints. In 2 dimensions,

the simplest object is a filled-in triangle: once we fix its three vertices, its shape is completely determined.

In 3 dimensions, the corresponding object is the solid tetrahedron determined by four vertices. Observing

this pattern, we may ask:

Is there a single notion of “simplest possible shape” that makes sense in every dimension?

Indeed, such an object exists, and it is called a simplex.

Definition 3.1. An n-simplex ∆n is the convex hull of a set of n+1 affinely independent points in Rn.

Equivalently, it is the simplest possible n-dimensional geometric figure determined by n+ 1 vertices.

Topologically, ∆n is homeomorphic to the n-dimensional closed ball Dn.

For example:

• ∆0 is a point.

• ∆1 is a closed line segment.

• ∆2 is a filled-in triangle.

Note that the n-simplex is topologically equivalent to Dn, the n-ball. Observe that every simplex contains

lower-dimensional simplices on its boundary.

Definition 3.2. An m-face of an n-simplex (m ≤ n) is the convex hull of any subset of m+ 1 vertices

of the simplex. Faces with dimension strictly less than n are called proper faces.

Two simplices are said to be properly situated if their intersection is either empty or a face of both

simplices (i.e., a simplex itself).
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At this point, it is natural to imagine combining these building blocks. If two triangles share an entire

edge, they fit together neatly along that edge; if two tetrahedra share an entire triangular face, they join

seamlessly along that face. This leads to the idea of a complex built from simplices, with the rule that

they should only meet in shared faces.

Definition 3.3. A simplicial complex K is a finite collection of simplices satisfying:

1. Every face of a simplex in K is also a simplex in K.

2. The intersection of any two simplices in K is either empty or a face of both, i.e, if A,B ∈ K,

then A and B are both properly situated.

The dimension of K is the maximum of the dimensions of its simplices.

There is a deep reason simplicial complexes are important: every reasonable topological space (in

particular, every compact smooth manifold) can be represented as the geometric realization of some

simplicial complex.

Theorem 3.1 (Triangulation Theorem). Every compact smooth manifold admits a triangulation; that

is, it is homeomorphic to the geometric realization of a simplicial complex.

While we omit the proof, the idea is that even the most intricate surface can be “tiled” with sufficiently

small simplices, just as a curved line can be approximated by short straight segments.

One can also consider this in a more abstract way.

Definition 3.4. An abstract simplicial complex is a finite set of vertices {v0, . . . , vk} together with

a collection of finite subsets, called abstract simplices, such that if σ is an abstract simplex in the

collection, then every subset of σ is also an abstract simplex.

This definition is entirely combinatorial: it does not tell us where the vertices lie in space or even

whether they do so at all. It simply tells us which sets of vertices are allowed to form simplices. From this

combinatorial data, we can obtain a genuine geometric object by realizing the complex.
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Definition 3.5. A geometric realization of an abstract simplicial complex R is obtained by mapping

each vertex vi to a distinct point in some Euclidean space Rn and interpreting each abstract simplex

{vi0 , . . . , vim} as the convex hull of its images in Rn.

A particularly natural choice is the standard realization: if R has k + 1 vertices, we may take n = k + 1

and assign

v0 7→ e1, v1 7→ e2, . . . , vk 7→ ek+1,

where {e1, . . . , ek+1} are the standard basis vectors of Rk+1. Each simplex then becomes a standard

coordinate simplex.

Of course, we are free to place the vertices in different positions in Rn, obtaining geometrically different-

looking realizations. However, the combinatorial structure ensures that all realizations of the same abstract

simplicial complex are topologically equivalent.

Theorem 3.2. If R is an abstract simplicial complex, any two geometric realizations of R are

homeomorphic.

The intuition here is that the abstract complex encodes exactly the connectivity and incidence relations

between simplices, and these are precisely the features that a homeomorphism preserves.

With this notion in hand, we can now think of shapes both as purely combinatorial objects and as

embedded geometric ones. This dual viewpoint will be crucial: when defining homology, we will want

to pass from the geometry of a space to an algebraic object that depends only on its combinatorial

structure. Before doing so, we will need to introduce a few more definitions that let us manipulate simplices

algebraically, keeping track of orientation and boundaries in a way that will let us detect and measure

”holes.”

3.2 Homology Groups

Up to this point, we have discussed simplices and simplicial complexes as the combinatorial scaffolding on

which we can approximate and study topological spaces. Our goal in homology theory is to extract algebraic

invariants from these structures—quantities that remain unchanged under continuous deformations and

thus reveal intrinsic features of the space.
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Figure 1: An oriented 2-simplex

To do so, we will need to be precise about how simplices are assembled, and in particular, how their

orientations interact when forming boundaries. This leads us naturally to the notion of oriented simplices.

Definition 3.6. Let S be the set of vertices of a simplex. An orientation of the simplex is obtained

by choosing an ordering of the vertices in S. If two such orderings differ by an even permutation, they

are said to represent the same orientation; if they differ by an odd permutation, they represent the

opposite orientation. Thus, any simplex admits exactly two possible orientations.

Intuitively, the orientation specifies a “direction” or “handedness” for traversing the vertices of the

simplex. In the case of a 1-simplex (an edge), orientation corresponds to choosing a starting vertex and an

ending vertex. For a 2-simplex (a triangle), it is equivalent to deciding whether we traverse its vertices

clockwise or counterclockwise.

The choice of orientation on an n-simplex determines orientations on each of its (n− 1)-dimensional

faces in a systematic way. This is essential for defining boundaries consistently across a simplicial complex:

the induced orientations on shared faces must cancel appropriately when forming chains.

Example 3.1. Consider the 2-simplex in Figure 1 with vertices (v0, v1, v2), oriented in that order.

The orientation induced on its edges (1-faces) is given by:

e2 = (v0, v1), e0 = (v1, v2), e1 = (v2, v0).

Each edge inherits its direction from the omission of one vertex of the triangle, with a sign determined

by the position of the omitted vertex.
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Definition 3.7. Let An = (v0, v1, . . . , vn) be an oriented n-simplex. The orientation of its (n − 1)-

dimensional face obtained by removing the i-th vertex, i.e. the face with vertex set

{v0, . . . , vi−1, vi+1, . . . , vn},

is given by:

Fi = (−1)i(v0, . . . , vi−1, vi+1, . . . , vn).

Here, the factor (−1)i accounts for whether the removal of vi from the ordering results in an even or

odd permutation relative to the induced ordering of the face. This sign convention ensures that when

we later define boundary operators, the boundaries of boundaries will cancel, a property essential for the

consistency of homology.

Up to this point, our attention has been on individual simplices and their orientations. However, in a

simplicial complex we rarely care about a single simplex in isolation. Shapes in topology are built from

many simplices glued together, and we often want to describe entire collections of them at once.

How can we record such a collection in a way that remembers not only which simplices are present, but

also how many times each appears and with which orientation? One natural idea is to take a “formal sum”

of oriented simplices, allowing positive coefficients to indicate agreement with the chosen orientation and

negative coefficients to indicate reversal. This leads us to the notion of an n-chain, an algebraic object

that encodes both the combinatorial structure and the orientation data of a simplicial complex.

Definition 3.8. Given a set An1 , . . . , A
n
k of arbitrarily oriented n-simplices in a complex K and an

abelian group G, we define an n-chain with coefficients in G as a formal sum

x = g1A
n
1 + g2A

n
2 + · · ·+ gkA

n
k ,

where gi ∈ G.

Up to this point, we have been talking about individual oriented simplices. But what if we want to treat

several simplices together — perhaps even repeat them or take certain ones with a “negative” orientation?

To do this rigorously, we attach a coefficient from G to each simplex and add them as a formal sum. These

objects are called n-chains.
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From now on, we will take G = Z. This means every oriented simplex is assigned an integer coefficient

— positive, negative, or zero.

The set of all n-chains forms an abelian group under addition: if

x =
k∑
i=1

giA
n
i and y =

k∑
i=1

hiA
n
i ,

then

x+ y =

k∑
i=1

(gi + hi)A
n
i .

We denote this group by Ln.

Before we can talk about how chains interact, we need a way to capture the intuitive idea of the

boundary of a simplex. Take a triangle as an example: it is completely determined by its three oriented

edges. Similarly, a tetrahedron is determined by its four oriented triangular faces. In each case, the

lower-dimensional simplices that “frame” the original simplex form what we naturally think of as its

boundary.

From a combinatorial viewpoint, this boundary should be a sum of all those faces, each with an

orientation induced from the simplex itself. The signs here are crucial: they ensure that when two simplices

share a face, those shared faces appear with opposite orientations in the two boundaries and hence cancel

when we sum over a complex — just as one would expect for a well-behaved boundary operator.

Thus, the boundary of an oriented n-simplex should be an (n− 1)-chain consisting of all its (n− 1)-faces,

each taken with the correct induced orientation. We now formalize this notion:

Definition 3.9. Let An be an oriented n-simplex in a complex K. The boundary of An is the

(n− 1)-chain of K over Z given by

∂(An) = An−1
0 +An−1

1 + · · ·+An−1
n ,

where An−1
i is the ith oriented (n− 1)-face of An. If n = 0, we define ∂(∆0) = 0.

Here we are extending the geometric idea of a boundary into algebraic form. Each oriented simplex has

faces, and the orientations of these faces are not arbitrary — they are determined by the orientation of

the original simplex. The boundary operator ∂ records these faces, preserving their induced orientations.

We can apply ∂ not just to a single simplex but to any chain, by extending it linearly:
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∂

(
k∑
i=1

giA
n
i

)
=

k∑
i=1

gi ∂(A
n
i ).

That is, ∂ : Ln → Ln−1 is a group homomorphism. The definition of the boundary operator naturally

raises a question: what happens if we take the boundary twice? Geometrically, the boundary of a boundary

should be empty — after all, if you start with a triangle, its boundary is a loop of edges, and each edge’s

boundary consists of its two vertices, which always cancel out in pairs. Let us verify this idea explicitly for

a 2-simplex.
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Example 3.2. Let us compute ∂(∂(∆2)), where ∆2 is the oriented 2-simplex shown in Figure 1. The

boundary of ∆2 is the sum of its three oriented edges:

∂(∆2) = e1 + e2 + e3

where e1 = (v0, v1), e2 = (v1, v2), and e3 = (v2, v0).

Applying ∂ again, we use the definition of the boundary for 1-simplices:

∂(∂(∆2)) = ∂(v0, v1) + ∂(v1, v2) + ∂(v2, v0)

= [(v1)− (v0)] + [(v2)− (v1)] + [(v0)− (v2)].

Now, because L0 (the group of 0-chains) is abelian, the terms cancel: (v1) appears once positively

and once negatively, the same for (v0) and (v2). No vertex survives in the sum, and we obtain:

∂(∂(∆2)) = 0.

This computation is not a coincidence: it is a concrete example of the general principle ∂ ◦ ∂ = 0,

which says that the boundary of a boundary is always empty. The cancellation here is exactly the

algebraic manifestation of the geometric fact that once you have taken the full boundary of a simplex,

there is nothing left to “border” those boundary pieces.

As one can observe, taking the boundary twice does indeed give 0. This is no accident. The same

argument works in higher dimensions: since ∂ is linear and every oriented simplex has faces that cancel in

the next boundary, we conclude

∂2(x) = 0 for all x ∈ Ln.

Definition 3.10. An n-chain is called a cycle if its boundary is zero. The set of all n-cycles of K over

Z is denoted Zn, and we have

Zn = Ker(∂) ⊆ Ln.

From our example, every boundary is a cycle — in fact, this is exactly the content of the property

∂2 = 0. This principle will be central in defining homology groups, where we compare cycles to those that
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Figure 2: Boundaries?

arise as boundaries.

Up to this point, we have seen that the group Zn consists of all n-chains whose boundary is zero—these

are our n-cycles. Such cycles are “closed” in the sense that they have no edges left open, but they do not

all carry the same topological significance. Some cycles are genuinely interesting because they encircle a

hole in the space, while others are topologically trivial: they bound a higher-dimensional region entirely

contained within the complex.

To make this idea concrete, imagine walking around the perimeter of a filled triangle in a simplicial

complex. The three edges form a 1-cycle, but if we include the filled interior of the triangle (a 2-simplex),

this boundary can be “shrunk” to a point without leaving the space. In this case, the cycle tells us nothing

about the presence of a hole—it merely outlines something that is already filled in.

This motivates a refinement of our classification of cycles: we wish to declare cycles that arise as

boundaries of higher-dimensional chains as equivalent to zero in homology, because they do not detect any

new topological feature.

Definition 3.11. We say that an n-cycle x of a k-complex K is homologous to zero if it is the boundary

of an (n+ 1)-chain of K, for n = 0, 1, . . . , k − 1. A boundary is then any cycle that is homologous to

zero. We denote this relation by x ∼ 0, and the subgroup of Zn consisting of boundaries is written

Bn. By the definition of the boundary operator, we have

Bn = Im(∂).

Less formally, a cycle belongs to Bn if it bounds an (n+ 1)-dimensional portion of the complex. For

example, in Figure 2, the chain b+ c+ e encloses a collection of 2-simplices and is therefore a boundary,

while a+ d+ e does not bound any filled-in region and so is not.
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The relation x ∼ 0 immediately yields an equivalence relation: for two cycles x and y,

(x− y) ∼ 0 =⇒ x ∼ y,

and in this case we say that x and y are homologous. Two homologous cycles differ only by something

that “bounds” and hence represent the same topological feature.

Since Bn is a subgroup of Zn, we can form the quotient group that measures the “essential” cycles.

Definition 3.12. The n-dimensional homology group of the complex K over Z is

Hn = Zn/Bn.

Equivalently, using the chain complex formulation,

Hn = Ker(∂) / Im(∂).

This quotient group is the key object in homology theory.

Remark 3.1. It is important to interpret what the expression Hn = Zn/Bn is telling us. We start

with all n–cycles in Zn. Inside this group sit the boundaries Bn, which are cycles that arise as the

boundary of some (n + 1)–chain. When we form the quotient Zn/Bn, we are declaring that two

cycles should be regarded as the same if their difference is a boundary. In particular, every boundary

is identified with 0 in Hn. From this point of view, Hn consists of those cycle classes that survive

after all boundaries have been collapsed — these are exactly the “non–bounding” cycles, and so Hn

measures the n–dimensional holes in the space.

There is a very concrete way to package the boundary maps we have just defined. Pick an ordering of all

n–simplices {σ1, . . . , σNn} (this is a basis of Ln) and an ordering of all (n− 1)–simplices {τ1, . . . , τNn−1}

(a basis of Ln−1). For each σj , write its boundary in the (n− 1)–simplex basis:

∂n(σj) =

Nn−1∑
i=1

εij τi, εij ∈ {−1, 0,+1}.

By definition, εij = +1 if τi is a face of σj with the induced orientation, εij = −1 if it is a face with

the opposite orientation, and εij = 0 otherwise. Placing the coefficient lists (ε1j , . . . , εNn−1,j) as the j-th
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column gives an integer matrix

[∂n] ∈MNn−1×Nn(Z)

that is the map ∂n in coordinates. An n–chain x = a1σ1 + · · ·+ aNnσNn corresponds to the column vector

x = (a1, . . . , aNn)
⊤, and

∂n(x) = 0 ⇐⇒ [∂n]x = 0, x ∈ im ∂n+1 ⇐⇒ x = [∂n+1] y for some y.

So

Zn = Ker∂n = Ker([∂n]), Bn = im ∂n+1 = im([∂n+1]).

This is nothing new conceptually—it is the same boundary map we defined geometrically—but it turns

“find all cycles” into “solve a homogeneous integer linear system,” and “find all boundaries” into “describe

the image of a linear map.”

Remark 3.2. Two ideas to keep in mind:

1. changing the ordering (or flipping orientations of basis simplices) multiplies [∂n] on the left or

right by an invertible integer matrix with determinant ±1; kernels and images change by a

change of basis, so the homology groups do not depend on these choices, only their coordinate

descriptions do;

2. we are working over Z here, so solutions are integer vectors (linear Diophantine systems). For

the examples we meet next (like S1 and the tetrahedral S2), this causes no extra subtlety; later,

if torsion appears, one can use Smith normal form to read off the free and torsion parts directly

from these matrices.
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Let us do the check in a tiny case to see everything explicitly.

Example 3.3. Take S1 triangulated by three vertices v0, v1, v2 and three oriented edges

e0 = (v0, v1), e1 = (v1, v2), e2 = (v2, v0).

Use the edge basis (e0, e1, e2) for L1
∼= Z3 and the vertex basis (v0, v1, v2) for L0

∼= Z3. By the

definition of ∂1 on an oriented edge (a, b), we have ∂1(a, b) = b− a, so

∂1(e0) = v1 − v0, ∂1(e1) = v2 − v1, ∂1(e2) = v0 − v2.

In coordinates relative to (v0, v1, v2) these are the column vectors

(−1, 1, 0)⊤, (0,−1, 1)⊤, (1, 0,−1)⊤,

hence

[∂1] =


−1 0 1

1 −1 0

0 1 −1

 .

Now solve the kernel over the integers. Write a general 1–chain as x = a e0 + b e1 + c e2; the cycle

condition [∂1] (a, b, c)
⊤ = 0 gives the three equations

−a+ c = 0, a− b = 0, b− c = 0.

From a− b = 0 and b− c = 0 we get a = b = c, and then −a+ c = 0 is automatic. Thus every integer

solution is (a, b, c) = k(1, 1, 1) with k ∈ Z. In other words

Z1 = Ker∂1 = Z · (e0 + e1 + e2).

Since this S1 triangulation has no 2–simplices, B1 = im ∂2 = 0, so

H1(S
1) = Z1/B1

∼= Z.
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(Exactly the whole loop class you expect.)

It is also instructive to see H0 in this language. The image im ∂1 ⊆ L0
∼= Z3 is generated by the

columns of [∂1], i.e.

v1 − v0, v2 − v1, v0 − v2.

Every vector (x0, x1, x2) ∈ im ∂1 has coordinate sum x0 + x1 + x2 = 0 (each column sums to 0), so

im ∂1 lies in the subgroup {(x0, x1, x2) ∈ Z3 : x0 + x1 + x2 = 0}. Conversely, the three displayed

generators span that subgroup over Z (indeed, (1,−1, 0), (0, 1,−1), and (−1, 0, 1) generate all triples

with sum 0). Hence im ∂1 is exactly the “sum–zero” subgroup, and the quotient

H0(S
1) = L0/im ∂1 ∼= Z

is detected by the “total sum” map (x0, x1, x2) 7→ x0 + x1 + x2. This matches the geometric intuition:

H0 counts connected components (here, one).

The same procedure scales to higher dimensions without any new ideas: choose orientations and an

ordering of the n– and (n− 1)–simplices, fill the integer matrix [∂n] by the {−1, 0,+1} incidence numbers,

compute Ker([∂n]) and im([∂n+1]), and form the quotient Hn = Zn/Bn. Soon, when we pass from homology

to cohomology, this coordinate picture becomes even more valuable: the coboundary maps will be given by

the transposes of these same matrices, so the familiar “kernel/image” computations carry over verbatim to

the cochain side; and later, in de Rham cohomology, the exterior derivative plays the role of this matrix in

an infinite–dimensional setting.

Before we proceed further, it will be helpful to recall a few structural notions that will appear repeatedly

when studying complexes.

Definition 3.13. A subcomplex of a simplicial complex K is a subset S of the simplices of K such

that S is itself a simplicial complex.

Example 3.4. The n-skeleton of a simplicial complex K is the set of all simplices in K of dimension

at most n. From the definition of a subcomplex, it follows that the n-skeleton is itself a subcomplex.

We also need a way to talk about how the pieces of a complex “hold together”:
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Definition 3.14. A simplicial complex K is said to be connected if it cannot be represented as the

disjoint union of two or more non-empty subcomplexes. A geometric complex is path-connected if

there exists a path made entirely of 1-simplices from any vertex to any other vertex.

These two notions are, in fact, equivalent for simplicial complexes:

Proposition 3.1. A simplicial complex is path-connected if and only if it is connected.

Proof. ( =⇒ ) Suppose K is not connected. Then K can be expressed as the disjoint union K = L ∪M of

two non-empty subcomplexes L and M . Assume, for contradiction, that there exists a path between some

vertex l0 ∈ L and m0 ∈ M . Let li be the last vertex in the path that lies in L. The next vertex in the

path must lie in M , so the 1-simplex joining li to it lies in both L and M , contradicting the assumption

that L ∩M = ∅.

( ⇐= ) Suppose there exist vertices l0 and m0 in K with no path between them. Let L be the path-

connected subcomplex of K containing l0, and M the path-connected subcomplex containing m0. If

v0 ∈ L ∩M ̸= ∅, then there would exist a path from l0 to v0 within L, and a path from v0 to m0 within

M . Concatenating these paths yields a path from l0 to m0, a contradiction. Therefore L ∩M = ∅, so K

is disconnected. ■

So far, we have only computed Hn for a single connected space, the circle S1. But it is not hard to

imagine what would happen if our space had more than one disconnected piece. For instance, if we took

two disjoint copies of S1, it feels natural that the H1 group should have one Z summand for each circle,

and the H0 group should have one Z summand for each connected component.

This is no coincidence. In fact, the same principle holds in any dimension n: the homology of a complex

is just the homology of each connected component, placed side–by–side in a direct sum.

Why should this be true? Think about chains: an n–chain in the whole space is simply a sum of chains,

one from each component, and the boundary map never mixes them — the boundary of a chain in one

component stays inside that component. As a result, cycles and boundaries also decompose componentwise,

and the quotient Zn/Bn inherits the same splitting. Once you see this, the statement of the theorem below

is not surprising.

Note that the symbol “⊕” denotes a direct sum: putting groups side by side and keeping track of each

piece separately. For example, if A and B are groups, then A⊕B consists of all ordered pairs (a, b) with
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a ∈ A and b ∈ B, with addition done componentwise:

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2).

So H1
n⊕ · · · ⊕H

p
n just means we have one copy of H i

n for each component Ki, and an element of the whole

group is a tuple of elements, one from each copy.

Theorem 3.3. Let K1, . . . ,Kp be the connected components of a simplicial complex K, and let Hn

and H i
n denote the n–th homology groups of K and Ki, respectively. Then

Hn(K) ∼= H1
n ⊕ · · · ⊕ Hp

n.

Proof. Let Ln be the group of n–chains of K, and Lin the group of n–chains of Ki. Each L
i
n is a subgroup

of Ln, and any n–chain in K can be written uniquely as a sum of chains from the different components:

Ln = L1
n ⊕ · · · ⊕ Lpn.

The boundary map ∂n respects this decomposition, because the boundary of a chain in Ki lies entirely in

Ki.

For the boundaries, define

Bi
n := ∂n(L

i
n+1) ⊆ Lin.

If x ∈ Ln+1 is written as x = x1 + · · ·+ xp with xi ∈ Lin+1, then

∂n(x) = ∂n(x1) + · · ·+ ∂n(xp),

where each ∂n(xi) ∈ Bi
n. Thus

Bn = B1
n ⊕ · · · ⊕ Bp

n.

For the cycles, define

Zin := Ker(∂n) ∩ Lin.

If x ∈ Zn is written as x = x1 + · · ·+ xp with xi ∈ Lin, then ∂n(x) = 0 means

∂n(x1) + · · ·+ ∂n(xp) = 0.
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But since each ∂n(xi) lies in a different summand Lin−1, this sum can be 0 only if each ∂n(xi) = 0. Thus

each xi ∈ Zin, and

Zn = Z1
n ⊕ · · · ⊕ Zpn.

Since both Zn and Bn decompose componentwise, so does their quotient:

Hn(K) =
Zn
Bn
∼=

Z1
n

B1
n

⊕ · · · ⊕ Zpn
Bp
n

= H1
n ⊕ · · · ⊕ Hp

n.

■

The theorem above explains how Hn behaves when a space has multiple connected components. It is

worth pausing to understand in detail what H0 looks like for a connected space, since this is the simplest

case of the theorem and it admits a very concrete description.

Recall that H0 is the quotient Z0/B0: 0–cycles modulo 0–boundaries. A 0–chain is just an integer

combination of vertices, and the boundary map ∂1 sends an oriented edge (a, b) to b − a. This means

that 0–boundaries are precisely the combinations of vertices whose coefficients sum to zero along each

connected piece.

This “sum of coefficients” is important enough to name:

Definition 3.15. If x =
∑k

i=1 giA
0
i is a 0–chain (where A0

i are vertices), its index is defined as

I(x) :=
k∑
i=1

gi.

The index simply adds up the integer coefficients of all the vertices in the chain. Because the boundary

of an edge (a, b) is b− a, every boundary has index zero: I(b− a) = 1− 1 = 0. This already suggests that

boundaries lie inside the kernel of I. The following proposition makes the relationship precise.

Proposition 3.2. If K is a connected complex, then for a 0–chain x,

I(x) = 0 ⇐⇒ x ∼ 0,

and therefore H0(K) ∼= Z.
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Proof. First, suppose x ∼ 0, so x = ∂1(y) for some 1–chain y. Write y =
∑m

j=1 gj A
1
j , where A

1
j = (aj , bj)

are oriented edges. Then

∂1(A
1
j ) = bj − aj ,

so

I(∂1(A
1
j )) = I(bj − aj) = 1− 1 = 0.

By linearity of I, we have I(∂1(y)) = 0, hence I(x) = 0.

Conversely, suppose I(x) = 0. Let v and w be any two vertices of K. Since K is connected, there is a

path

(a0, a1), (a1, a2), . . . , (aq−1, aq),

with a0 = v and aq = w. Consider the 1–chain

y = g (a0, a1) + g (a1, a2) + · · ·+ g (aq−1, aq).

Its boundary is

∂1(y) = g(a1 − a0) + g(a2 − a1) + · · ·+ g(aq − aq−1) = g w − g v.

Thus g w ∼ g v in H0. By moving along paths, any vertex is homologous to any other. In particular, any

0–chain x is homologous to a multiple of a single vertex, say v, and that multiple is exactly I(x). So if

I(x) = 0, we get x ∼ 0.

We have shown that B0 = Ker(I). Since I(Z0) = Z (take g v as a cycle of index g), the First Isomorphism

Theorem gives

H0(K) = Z0/B0
∼= Z.

■

Before stating the general result, it helps to picture what happens to 0–chains when the complex

splits into several disconnected pieces. On each connected component we can measure the “total mass”

of a 0–chain by summing the integer coefficients of the vertices that lie in that component. These

component–wise sums are the only invariants that survive after we mod out by boundaries, and that is

exactly why the number of connected components shows up in H0.
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Theorem 3.4. Let K1, . . . ,Kp be the connected components of a simplicial complex K. Then the

zero–dimensional homology group of K with integer coefficients is

H0(K;Z) ∼= Z⊕ · · · ⊕ Z︸ ︷︷ ︸
p copies

= Zp.

Proof. Label the components K1, . . . ,Kp. Every vertex of K lies in exactly one component, so any 0–chain

x =
∑

v vertex

gv v

can be split uniquely as a sum x = x1 + · · ·+ xp where xi is the part of x supported on the vertices of Ki.

For each component Ki define the component–index map

Ii : Z0(K) −→ Z, Ii

(∑
v

gv v

)
:=

∑
v∈Ki

gv,

that is, Ii(x) adds the coefficients of the vertices lying in Ki. Putting these together gives a homomorphism

I = (I1, . . . , Ip) : Z0(K) −→ Zp.

First note that every boundary has zero component–index. Indeed, for an oriented edge (a, b) lying in

some component, ∂1(a, b) = b− a has index 1− 1 = 0 on that component and 0 on every other component.

Hence B0 ⊆ KerI.

Conversely, suppose x ∈ Z0(K) satisfies I(x) = (0, . . . , 0). Using connectivity of each Ki exactly as in

Proposition 2.12, each part xi (the restriction of x to Ki) is homologous in Ki to an integer multiple of

any fixed vertex vi ∈ Ki, and that multiple is precisely Ii(x) = 0. Thus each xi is a boundary in Ki, so

x = x1 + · · ·+ xp is a boundary in K. Therefore KerI ⊆ B0, and we conclude KerI = B0.

Finally, I is surjective: given any tuple (n1, . . . , np) ∈ Zp, pick for each i a vertex vi ∈ Ki and send

(n1, . . . , np) to the 0–chain
∑

i nivi, which is a cycle whose image under I is exactly (n1, . . . , np). By the

First Isomorphism Theorem for groups,

H0(K) = Z0(K)/B0
∼= Z0(K)/KerI ∼= im I = Zp.
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Figure 3: A simplicial structure on the circle

This completes the proof. ■

Consider another example with S1.

Example 3.5. Take a simplicial model of the circle made of four vertices a, b, c, d and four oriented

edges as in Figure 3

e1 = (a, b), e2 = (b, c), e3 = (c, d), e4 = (d, a).

A general 0–chain is

x = g1a+ g2b+ g3c+ g4d, gi ∈ Z.

Recall that the boundary of an oriented edge (u, v) is ∂(u, v) = v − u. We will use boundaries to

move coefficients from one vertex to another, thereby showing that every 0–chain is homologous to a

single integer multiple of one chosen vertex.

For example, eliminate the d-coefficient by using the boundary of the edge (d, a):

∂(d, a) = a− d =⇒ ∂
(
g4 (d, a)

)
= g4a− g4d.

Subtracting this boundary from x gives

x− ∂
(
g4(d, a)

)
= (g1 + g4) a+ g2b+ g3c+ 0 · d.

Next, eliminate the b-coefficient by using the boundary of (a, b) (note ∂(a, b) = b− a):

∂
(
g2(a, b)

)
= g2b− g2a,
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so subtracting ∂(g2(a, b)) yields

(
x− ∂(g4(d, a))

)
− ∂(g2(a, b)) = (g1 + g4 − g2) a+ 0 · b+ g3c.

Finally, move the c-coefficient to a along the path c⇝ d⇝ a (or directly via (b, c) then (a, b)); after

two boundary subtractions we obtain a chain supported only at a:

x ∼
(
g1 + g2 + g3 + g4

)
a.

(The intermediate algebra depends on the path/orientations chosen, but the final integer coefficient at

a is always the sum g1 + g2 + g3 + g4.)

Thus every 0–cycle is homologous to a single multiple of the vertex a. The integer that appears is

precisely the index I(x) =
∑

i gi discussed above, so different 0–cycles are distinguished in homology

only by this total sum. Therefore

H0(S
1) ∼= Z,

with generator represented by a single vertex (or, equivalently, the class of any vertex).

3.2.1 Computations of some General Homology Groups

We now calculate some more general homology groups.

Example 3.6. Compute Hn(S
n) using the boundary of an (n+ 1)-simplex. This triangulation is the

smallest natural simplicial model of Sn and makes the argument purely combinatorial.

Let ∆n+1 be an (n+ 1)-simplex with vertex set {v0, v1, . . . , vn+1}. Its boundary ∂∆n+1 is homeo-

morphic to Sn and consists of the n+ 2 oriented n-simplices obtained by omitting one vertex:

σi = (v0, . . . , v̂i, . . . , vn+1), i = 0, . . . , n+ 1.

Write a general n-chain as

x =
n+1∑
i=0

gi σi, gi ∈ Z.

We ask: when is ∂n(x) = 0, i.e. when is x an n-cycle?

Fix any (n − 1)-face τ of the boundary. By construction τ is a face of exactly two of the σ’s;
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say τ sits in σk and σℓ. The induced orientations of τ coming from σk and σℓ are opposite, so the

contribution of x to the coefficient of τ in ∂n(x) is (up to the global sign convention)

gk − gℓ.

Thus the vanishing ∂n(x) = 0 forces gk = gℓ for every pair (k, ℓ) of indices corresponding to two

n-simplices sharing an (n− 1)-face.

Now observe that the adjacency graph of the σi’s (vertices = the σi’s, edges = shared (n− 1)-faces)

is connected: any two n-simplices can be joined by a chain of face-adjacent simplices. The equalities

gk = gℓ therefore propagate along such chains, and we deduce

g0 = g1 = · · · = gn+1 =: g.

Hence every n-cycle has the form

x = g

n+1∑
i=0

σi = gΣ, Σ :=

n+1∑
i=0

σi,

so Zn(∂∆
n+1) ∼= Z · Σ.

Finally, ∂∆n+1 contains no (n+ 1)-simplices, so Im ∂n+1 = Bn = 0. Therefore

Hn(S
n) = Zn/Bn ∼= Z,

generated by the class [Σ], the top-dimensional (fundamental) homology class of the sphere.

Example 3.7. Compute Hn(D
n). Equip the n-disk Dn with the simplest simplicial model: a single

n-simplex ∆n. This is the most economical triangulation and makes the computation immediate.

With this model the only n-simplex is ∆n, so every n-chain has the form

x = g∆n, g ∈ Z,

and the group Ln ∼= Z is generated by ∆n. There are no (n + 1)-simplices in the complex, hence
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Im ∂n+1 = Bn = 0. Therefore

Hn(D
n) = Zn/Bn = Zn.

It remains to determine which multiples g∆n are cycles. Applying the boundary map gives

∂n(g∆
n) = g ∂n(∆

n),

and ∂n(∆
n) is the nonzero sum of the oriented (n− 1)-faces of ∆n. In particular ∂n(∆

n) ̸= 0 as an

(n− 1)-chain, so ∂n(g∆
n) = 0 forces g = 0. Hence Zn = 0, and therefore

Hn(D
n) = 0.

Geometrically this matches the expectation: the disk is contractible and has no n-dimensional

“hole,” so its top-dimensional homology vanishes.

3.3 Singular Homology

Up to now, all our homology computations have lived in the clean, discrete world of simplicial complexes.

We chop our space into vertices, edges, triangles, and higher-dimensional simplices, write down the

boundary maps, and let the algebra tell us about the topology.

This has been working beautifully for the examples we’ve seen, but notice something: so far we’ve always

had a fixed triangulation in hand. If we re–triangulate the same space in a completely different way, the

chain groups change. So here’s a question that ought to make you pause:

If two spaces are “really” the same topologically (say, they are homeomorphic), do they have the same

homology groups? And how would we prove it?

Our geometric intuition screams “yes.” A square loop and a round circle are homeomorphic, so of course

their H1 should match — after all, both have exactly one “loop hole.” But proving this from the simplicial

definition is not so obvious. Why? Because simplicial homology is tied to a particular triangulation:

different triangulations give you different chain groups Ln, and it is not immediate how to compare them

directly.

We need a definition of homology that is intrinsic to the space itself, not to how we chop it up. That

way, a homeomorphism between two spaces will give a direct correspondence between their chains, and

the rest will follow automatically.
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How might we do that?

Well, in simplicial homology, an n-simplex (v0, . . . , vn) is just an abstract copy of the standard n-simplex

∆n (the set of points (t0, . . . , tn) with ti ≥ 0 and
∑
ti = 1), together with a map telling us where in our

space X the vertices go. But nothing in the definition of “simplex” requires it to be perfectly straight —

what really matters is which points of ∆n land where in X.

So why not take this to the extreme: let a simplex in X be any continuous map from ∆n into X? It

might be wildly bent or stretched, but that doesn’t matter; topology doesn’t care about straightness.

This is the key idea of singular homology.

Definition 3.16. A singular n-simplex in a topological space X is a continuous map

σ : ∆n −→ X.

Now we make chains exactly as before:

Definition 3.17. Let Cn(X) be the free abelian group on the set of all singular n-simplices in X. An

element of Cn(X) is a singular n-chain, a finite sum
∑

i gi σi with gi ∈ Z.

And the boundary? We already know how to take the boundary of a simplex: restrict it to each of its

faces and alternate the signs.

Definition 3.18. The boundary operator ∂n : Cn(X)→ Cn−1(X) is

∂n(σ) =

n∑
i=0

(−1)i σ|[ν0, . . . , ν̂i, . . . , νn],

where νi is the i-th vertex map ∆0 → X of σ, and ν̂i means that vertex is omitted.

Because this formula is exactly the same as in the simplicial case, the familiar property ∂n−1 ◦ ∂n = 0

still holds. So we again get cycles and boundaries, and we define:

Definition 3.19. The singular homology group of X is

Hn(X) := Ker(∂n)
/
im(∂n+1).
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From now on we will write H∆
n for the simplicial homology groups to distinguish them from the singular

ones Hn.

Now here’s the beauty of this new approach: If f : X → Y is a homeomorphism, then given any singular

simplex σ : ∆n → X, we can simply compose with f to get a singular simplex f ◦ σ : ∆n → Y . This

extends linearly to a map Cn(X)→ Cn(Y ) that commutes with the boundary maps, and hence induces a

map Hn(X)→ Hn(Y ). Doing the same with f−1 shows this map is an isomorphism. So homeomorphic

spaces automatically have isomorphic singular homology groups. No triangulation-comparison needed.

One last concern: these definitions look suspiciously parallel to those for simplicial homology, so shouldn’t

Hn(X) and H∆
n (X) agree when X is a nice simplicial complex? Our intuition says yes — they are both

trying to measure the same “holes” — but at first glance, the chain groups are very different: Cn(X) has

one generator for every continuous map ∆n → X, which is usually uncountable, while the simplicial chain

group Ln has only finitely many generators for a finite complex. That these give the same result is not

obvious at all.

And yet, for spaces that can be triangulated, it is true:

Hn(X) ∼= H∆
n (X).

The proof of this equivalence is beyond the scope of this paper. For now, think of singular homology as a

more flexible version of our old theory: it agrees with simplicial homology when both make sense, but it

applies to any topological space and plays nicely with homeomorphisms right out of the box.

Before we move on, let’s sanity–check our new singular theory against the simplicial results we already

know. We said earlier that singular homology should match simplicial homology when both are defined, so

the most basic theorems ought to carry over without change. Let’s test that.

Think back to the combinatorial case: if a simplicial complex split into several connected components,

the homology groups simply split into one copy of each component’s group. That worked because the

boundary of a chain in one component could never “jump” into another. The same logic should work here,

right?

Indeed, there’s an even stronger restriction now: a singular simplex is a continuous map from a standard

simplex ∆n into X, and the image of ∆n is always path–connected. So a single singular simplex can only

ever live inside one path–connected component of X.
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Proposition 3.3. Let X be a topological space with path–connected components X1, . . . , Xp. Then

Hn(X) ∼= Hn(X1) ⊕ · · · ⊕ Hn(Xp).

Proof. Since each singular simplex lies entirely in a single Xi, the chain group Cn(X) splits as a direct sum

Cn(X) = Cn(X1) ⊕ · · · ⊕ Cn(Xp).

The boundary map ∂n is defined simplex–by–simplex, so it preserves this splitting. Thus both Ker(∂n)

(the n–cycles) and im(∂n+1) (the n–boundaries) also split in the same way. Taking the quotient Ker/ im

gives the same direct–sum decomposition for Hn(X). ■

In particular, we can revisit the H0 story from simplicial homology. There, H0 was just one copy of Z

for each connected component. Here the word “connected” gets replaced by “path–connected” (which for

nice spaces is the same), but otherwise nothing changes.

Proposition 3.4. The zero–dimensional singular homology group of a space X is

H0(X) ∼= Z ⊕ · · · ⊕ Z︸ ︷︷ ︸
one for each path–component of X

.

Proof. It suffices to handle the case where X is path–connected, because the general case follows from the

direct–sum proposition above.

If x is a singular 0–simplex (a continuous map ∆0 → X), its boundary vanishes automatically, so every

0–simplex is a cycle. Thus

H0(X) = C0(X)
/
im(∂1).

We recall the “index” map from the simplicial setting:

I : C0(X) −→ Z, I

(∑
i

giσi

)
=
∑
i

gi.

In the simplicial case, we proved that Ker(I) = im(∂1), so that H0(X) ∼= Z. The exact same argument

works here: the only change is that the 0–simplices σi are now singular 0–simplices rather than vertices of

a triangulation. Thus, for a path–connected X, H0(X) ∼= Z. ■
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So our new theory passes these basic tests: it still breaks apart over path–components, and H0 still

counts them, just as before.

3.4 Chain Complexes, Exact Sequences, and Relative Homology Groups

Up to this point, our computations of homology have followed a concrete recipe: start with the building

blocks of a space (vertices, edges, faces, etc.), form chains in each dimension, apply the boundary map,

and then pass to the quotient Zn/Bn. At each stage, we were really doing the same kind of thing — only

the geometric ingredients changed. If we now take a step back, we notice that a very general algebraic

pattern has been hiding in plain sight.

In every example, we have:

• an abelian group Cn consisting of all formal sums of n-dimensional pieces,

• a boundary operator ∂n : Cn → Cn−1 lowering dimension by one,

• and the property ∂n ◦ ∂n+1 = 0, meaning: the boundary of a boundary is empty.

Moreover, these groups are connected together in an infinite sequence:

· · · −→ Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1
∂n−1−−−→ · · · ∂1−→ C0 −→ 0.

Each arrow tells you “how to pass from an object in one dimension to its boundary in the next lower

dimension.” The final 0 at the end is the trivial group — there is nothing below dimension 0.

It is worth giving this common structure its own name.

Definition 3.20. A chain complex is a sequence of abelian groups

· · · −→ Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 −→ · · ·

such that ∂n ◦ ∂n+1 = 0 for all n. The maps ∂n are called boundary operators.

From this abstract point of view, a chain complex is a machine that:

1. holds a group of objects in each dimension,

2. has a process for lowering dimension,
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3. and the property that the composition of two consecutive boundary maps is the zero map:

∂n ◦ ∂n+1 = 0 for all n.

In other words, if you start with any (n+ 1)-chain, take its boundary to get an n-chain, and then

take the boundary again, you always obtain the zero element of Cn−1.

Our familiar singular chain groups (Cn(X), ∂n) form such a complex:

· · · −→ Cn+1(X)
∂n+1−−−→ Cn(X)

∂n−→ Cn−1(X) −→ · · · −→ C0(X) −→ 0.

The homology groups are then just:

Hn(C∗) = Ker(∂n)
/
im(∂n+1),

exactly as before — only now, the definition applies to any chain complex, not just those coming from

geometry.

Why is this abstraction useful? Because it lets us compare completely different constructions of homology.

For example, if one may wish to compare simplicial homology H∆
n and singular homology Hn. Even

though their chain groups look nothing alike, both form chain complexes, and we can ask whether there is

a map of chain complexes between them.

Definition 3.21. Let (A∗, ∂A) and (B∗, ∂B) be chain complexes. A chain map f : A∗ → B∗ is a

sequence of homomorphisms

fn : An −→ Bn for each n,

such that for all n,

∂B ◦ fn = fn−1 ◦ ∂A.

The condition ∂Bfn = fn−1∂A says that the two possible paths

“first apply f , then take the boundary” and “first take the boundary, then apply f”
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always give the same result. In diagram form:

· · · → An+1
∂A−−→ An → · · ·

↓ fn+1 ↓ fn

· · · → Bn+1
∂B−−→ Bn → · · ·

Why insist on this commutativity? Because it guarantees that f sends cycles to cycles and boundaries

to boundaries — precisely the ingredients that define homology.

Theorem 3.5. A chain map f : A∗ → B∗ induces well-defined homomorphisms

f∗ : Hn(A∗) −→ Hn(B∗)

for all n.

Proof. If x ∈ An is a cycle (∂Ax = 0), then

∂Bfn(x) = fn−1∂A(x) = fn−1(0) = 0,

so fn(x) is a cycle in Bn. If x is a boundary, x = ∂Ay, then

fn(x) = fn(∂Ay) = ∂Bfn+1(y),

so fn(x) is a boundary in Bn. Thus fn sends cycles to cycles and boundaries to boundaries, and therefore

descends to a homomorphism

f∗ : Hn(A∗)→ Hn(B∗).

■

We now return to the case of singular homology, and apply Theorem 3.5 to actual topological spaces.

Let X and Y be topological spaces, and let f : X → Y be any continuous map. Our goal is to understand

how f gives rise to a map between their singular chain complexes.

Recall that an n-chain in Cn(X) is a finite Z-linear combination of singular n-simplices σ : ∆n → X.
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Given such a simplex, there is a natural way to make it “live” in Y : simply follow σ with f to obtain

fa(σ) := f ◦ σ : ∆n −→ Y.

In words: map the standard simplex into X, and then use f to send it on to Y .

We extend this rule linearly to all of Cn(X):

fa

(∑
i

gi σi

)
:=

∑
i

gi (f ◦ σi).

This defines a homomorphism fa : Cn(X)→ Cn(Y ) in each dimension n.

Why does this matter? Because the family (fa)n forms a chain map. Indeed, if we take the boundary of

a simplex in X and then apply f , we get the same result as applying f first and then taking the boundary

in Y . This is simply the statement:

∂ fa = fa ∂

in every degree, which follows directly from the definition of the boundary operator.

In diagram form:

· · · → Cn+1(X)
∂−→ Cn(X)

∂−→ Cn−1(X) → · · ·

↓ fa ↓ fa ↓ fa

· · · → Cn+1(Y )
∂−→ Cn(Y )

∂−→ Cn−1(Y ) → · · ·

By Theorem 3.5, any such chain map induces homomorphisms on homology:

f∗ : Hn(X) −→ Hn(Y ) for all n.

Intuitively, f∗ is the “shadow” that f casts on the homology level — it tells us how f transforms cycles

and boundaries when we view them up to homology.

A particularly simple case occurs when f is a homeomorphism. Then f has a continuous inverse, which

also induces maps between the chain complexes in each direction. These two induced maps are inverses of

each other on homology, so f∗ is an isomorphism. Thus, homeomorphic spaces have isomorphic singular

homology groups — a fact that aligns perfectly with our geometric intuition that homeomorphic spaces

are “the same” from the viewpoint of topology. Before moving on, it is worth introducing a slightly richer
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notion than a chain complex, one that will later become indispensable for connecting different homology

theories: the exact sequence.

Recall that in a chain complex, the key property was that the image of one map lies inside the kernel of

the next. An exact sequence is simply the case where this containment is as tight as possible — in fact,

the image equals the kernel at every step.

Definition 3.22. A sequence of abelian groups and homomorphisms

· · · αn+1−−−→ An
αn−−→ An−1

αn−1−−−→ · · ·

is called exact if

Ker(αn) = Im(αn+1) for all n.

This condition means two things at once:

1. Because Im(αn+1) ⊂ Ker(αn) always holds for any sequence of maps, exactness forces the inclusion

to be an equality. Thus, exact sequences are automatically chain complexes with the strongest

possible relation between consecutive terms: every element that dies under αn must have come from

the previous group.

2. If the sequence is exact, then the homology groups Ker(αn)/Im(αn+1) vanish everywhere, because

the numerator and denominator are the same. In other words, exactness means “no homology

survives” — nothing is a cycle without already being a boundary.

Exactness can encode familiar algebraic properties:

• 0→ A
a−→ B is exact ⇐⇒ a is injective (its kernel is zero).

• A
a−→ B → 0 is exact ⇐⇒ a is surjective (its image is all of B).

• 0→ A
a−→ B → 0 is exact ⇐⇒ a is an isomorphism.

A particularly important case is the short exact sequence:

0 −→ A
a−→ B

b−→ C −→ 0,
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which is exact if and only if a is injective, b is surjective, and Ker(b) = Im(a). In this case we can think of

C as the quotient B/A.

Why introduce this now? Because exact sequences are the natural language for relating the homology of

different spaces — especially when one space sits inside another.

3.4.1 Relative Homology

Suppose A ⊂ X. Chains in Cn(A) can be thought of as chains in X that “live entirely inside” A. We

define the relative chain group

Cn(X,A) := Cn(X)/Cn(A),

where we identify all chains in A with the zero element. Geometrically, we are treating A as if it has been

“shrunk to a point” inside X when measuring chains.

The boundary map ∂ : Cn(X)→ Cn−1(X) passes naturally to the quotient, giving us

∂ : Cn(X,A)→ Cn−1(X,A),

with the same property ∂ ◦ ∂ = 0 as before. Thus, (Cn(X,A), ∂) is itself a chain complex, and we can

define its homology groups:

Hn(X,A) := Ker(∂n)/Im(∂n+1),

called the relative homology groups of the pair (X,A).

These groups capture cycles in X up to chains in A: two cycles in X represent the same relative homology

class if their difference bounds a chain in X whose boundary lies entirely in A.

We now want to understand how the relative homology groups Hn(X,A) are related to the absolute

homology groups Hn(X) and Hn(A). Intuitively, Hn(X,A) measures n–dimensional cycles in X that are

allowed to intersect A, but where anything lying entirely inside A is regarded as trivial. If a cycle lives

completely in A, it should be detected by Hn(A) and disappear in the relative group. If it does not, it

should represent something genuinely new in Hn(X,A). From this perspective, it is natural to expect that

there is some systematic way to pass between:

Hn(A), Hn(X), and Hn(X,A)
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in all dimensions. The remarkable fact is that this can be done in one elegant construction: the long exact

sequence of a pair. It packages these three kinds of homology groups into a single chain of maps where the

image of one map is exactly the kernel of the next.

To see where this comes from, we begin at the chain level. There is a natural short exact sequence

0 −→ Cn(A)
i−→ Cn(X)

j−→ Cn(X,A) −→ 0,

where i is the inclusion map (chains in A are chains in X) and j is the quotient map (we collapse all chains

in A to zero). Because i and j commute with the boundary operator ∂, each of these groups fits into a

diagram where the rows are chain complexes and the columns are exact:

...
...

...

· · · ∂−→ Cn+1(A)
i−→ Cn+1(X)

j−→ Cn+1(X,A)
∂−→ · · ·

↓ ∂ ↓ ∂ ↓ ∂

· · · ∂−→ Cn(A)
i−→ Cn(X)

j−→ Cn(X,A)
∂−→ · · ·

↓ ∂ ↓ ∂ ↓ ∂

· · · ∂−→ Cn−1(A)
i−→ Cn−1(X)

j−→ Cn−1(X,A)
∂−→ · · ·

...
...

...

The vertical sequences are short exact, the rows are chain complexes, and everything commutes.

From this purely algebraic setup, there is a standard way to extract a connecting homomorphism on

homology, and the result is the long exact sequence:

· · · −→ Hn(A)
i∗−→ Hn(X)

j∗−→ Hn(X,A)
δ−→ Hn−1(A) −→ · · · −→ H0(X,A) −→ 0.

The meaning of each map is straightforward when you think in terms of cycles and boundaries. The map

i∗ simply regards a cycle in A as a cycle in X. The map j∗ takes a cycle in X and views it in the relative

group, killing any part of it that lies entirely in A. The connecting homomorphism δ takes a relative cycle

in Hn(X,A)—which by definition has its boundary inside A—and sends it to the class of that boundary

in Hn−1(A).

Exactness means that at each stage, the cycles that become trivial in the next group are exactly the ones

that come from the previous group. For example, a cycle in X maps to zero in Hn(X,A) precisely when it
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can be represented by a cycle lying entirely in A, i.e. when it comes from Hn(A). Similarly, a relative

cycle maps to zero in Hn−1(A) exactly when it is the image under j∗ of some absolute class in Hn(X).

In this way, the long exact sequence of the pair (X,A) acts as a bridge, allowing us to move between the

homology of A, the homology of X, and the relative homology that measures what is in X but not in A.

Up to this point, we have introduced the long exact sequence in homology for a pair (X,A), and we

have defined the connecting homomorphism

δ : Hn(C) −→ Hn−1(A)

by tracing how a cycle in C can be “lifted” back into B and then measuring its boundary inside A.

Before we proceed to the long exact sequence itself, it is worth checking that this map really behaves well

algebraically.

Intuitively, we expect δ to be a group homomorphism: adding two homology classes in Hn(C) should

produce a class whose connecting image in Hn−1(A) is just the sum of the images of the two original

classes. The construction of δ is quite geometric — it takes a cycle in C, picks a preimage in B, then takes

its boundary, which (by exactness of the short sequence) lands in A. Since all these steps are linear at the

chain level, the map should be additive. Let us record this formally.

Proposition 3.5. The map δ : Hn(C)→ Hn−1(A) is a homomorphism.

Proof. Take two classes [c1], [c2] ∈ Hn(C). By definition of the connecting homomorphism δ, we choose

b1, b2 ∈ Bn with j(bi) = ci, and then we set

δ[ci] = [ai] where i(ai) = ∂bi.

Now [c1] + [c2] is represented by j(b1 + b2). Applying δ gives [a1 + a2] because

i(a1 + a2) = ∂b1 + ∂b2 = ∂(b1 + b2).

Thus δ([c1] + [c2]) = δ[c1] + δ[c2], and hence δ is a homomorphism.

■

Having established that δ is a homomorphism, we are now ready to bring together the maps i∗, j∗, and

δ into a single structure — the long exact sequence in homology. Our goal is to verify the exactness at
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every stage. This will require showing, for example, that Im(i∗) = ker(j∗), that Im(j∗) = ker(δ), and so on.

The idea is that each piece of information about cycles and boundaries in A, B, and C fits perfectly with

the short exact sequence of chain complexes we started with.

Proposition 3.6. The sequence

· · · i∗−→ Hn(B)
j∗−→ Hn(C)

δ−→ Hn−1(A)
i∗−→ Hn−1(B)

j∗−→ · · ·

is exact.

Proof. We proceed one step at a time, checking the definition of exactness at each position.

1. Im(i∗) ⊂ ker(j∗): If [a] ∈ Hn(A), then i∗[a] is represented by i(a) ∈ Bn. Since i(a) comes entirely

from A, it vanishes in C when we apply j, so j∗i∗[a] = 0.

2. ker(j∗) ⊂ Im(i∗): If [b] ∈ Hn(B) with j∗[b] = 0, then j(b) is a boundary in C, say j(b) = ∂c for some

c ∈ Cn+1. Surjectivity of j at the chain level gives c = j(b′) for some b′ ∈ Bn+1. Then b− ∂b′ lies in Im(i),

say b− ∂b′ = i(a) with a a cycle. Thus [b] = i∗[a].

3. Im(j∗) ⊂ ker(δ): If [c] = j∗[b] with b a cycle, then δ[c] is defined by i(a) = ∂b. But ∂b = 0 because b

is a cycle, so a represents the zero class in Hn−1(A).

4. ker(δ) ⊂ Im(j∗): If δ[c] = 0, then c has a preimage b in B whose boundary ∂b lies in A and is a

boundary there. We can adjust b by subtracting something from i(A) to make it a cycle, showing [c] comes

from j∗[b].

5. Im(δ) ⊂ ker(i∗): If [a] = δ[c], then i∗[a] is represented by i(a) = ∂b for some b ∈ Bn, hence is trivial

in Hn−1(B).

6. ker(i∗) ⊂ Im(δ): If i∗[a] = 0, then i(a) = ∂b for some b ∈ Bn. Then j(b) is a cycle in C whose

connecting image under δ is exactly [a].

All inclusions match up, and the sequence is exact.

■

Finally, we apply this to the case we care about: the pair (X,A). Here B = X, C becomes the relative

complex X/A, and the same reasoning gives the standard long exact sequence in relative homology.
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Proposition 3.7. For any pair (X,A) of topological spaces, there is a long exact sequence in singular

homology

· · · i∗−→ Hn(X)
j∗−→ Hn(X,A)

δ−→ Hn−1(A)
i∗−→ Hn−1(X)→ · · · → H0(X,A)→ 0.

Proof. This is the previous proposition with the identifications B = X and C = X/A, together with the

definition of relative homology as the homology of the quotient chain complex C∗(X,A) = C∗(X)/C∗(A).

All the exactness arguments carry over unchanged. ■

At this point, we have assembled most of the major tools for working with homology: the simplicial and

singular theories, the way homology behaves on disconnected spaces, the relationship between absolute

and relative homology, and the long exact sequence that ties these ideas together. Before we leave the

subject, it is worth recording one final, extremely useful result. It describes a situation in which we can

“cut out” a portion of our space without affecting the homology of the pair we are studying.

Theorem 3.6 (Excision). Let Y ⊂ A ⊂ X be spaces such that the closure of Y is contained in the

interior of A. Then the inclusion of pairs

(X − Y, A− Y ) ↪→ (X, A)

induces isomorphisms

Hn(X − Y, A− Y )
∼=−−→ Hn(X, A)

for all n.

The statement itself is appealingly simple: if a subset Y sits “deep inside” A, we can remove Y from both

X and A without altering the relative homology. Intuitively, this makes sense — from the perspective of

relative cycles and boundaries, the interior portion Y is invisible once A is being quotiented out. However,

turning this intuition into a rigorous proof is far from trivial; it requires delicate manipulations of chain

complexes and subdivision arguments. Because of its technical nature, we will not attempt the proof here,

but will instead take it as a powerful tool that can be applied in later contexts.

Note that the homologies discussed are equivalent.
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Theorem 3.7. For all n, the homomorphisms H∆
n (X) −→ Hn(X) are isomorphisms. Thus the singular

and simplicial homology groups are equivalent.

The proof is out of scope for this paper.

3.5 Relation to Homotopy

Up to this point, our study of homology has been purely in terms of cycles and boundaries: chains of

simplices, their boundaries, and the resulting groups Hn(X). However, there is another classical invariant

of a topological space, introduced long before homology: the fundamental group.

Let us begin informally. Fix a point x0 in a space X. A path from x0 to another point x1 is just a

continuous map

γ : [0, 1] −→ X

such that γ(0) = x0 and γ(1) = x1. If x1 = x0, we call γ a loop based at x0. Two loops γ and γ′ are said

to be homotopic (as based loops) if there is a continuous family of loops deforming γ into γ′, while keeping

the basepoint fixed at all times. We write [γ] for the homotopy class of γ.

The set of all based loop classes at x0 can be given a natural group structure: we can concatenate two

loops γ1 and γ2 by first traversing γ1 and then γ2. The inverse of a loop is the same path traversed in

the opposite direction. With these operations, the set of based loop classes becomes a group, denoted

π1(X,x0) and called the fundamental group of X at x0.

It is important to note that π1(X,x0) need not be abelian: the order in which we traverse loops can

matter. This is already visible in spaces where loops can “link” in a nontrivial way, such as in a figure-eight

space.

Now recall what we have learned about H1(X): it measures 1–dimensional holes by taking 1–cycles

(formal sums of edges whose boundaries vanish) and identifying those that differ by a boundary. A loop in

X is certainly a 1–cycle when we regard it as a singular 1–simplex (or a sum of such simplices) with no

boundary. It is then natural to ask:

Can every element of H1(X) be represented by a loop? And how does the group structure in π1(X,x0)

compare with the abelian group H1(X)?

Let us make the connection precise. Given a based loop γ : S1 → X, we can triangulate S1 with a finite

number of edges and regard γ as a singular 1–cycle in X. If γ and γ′ are based–homotopic, the homotopy
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between them can be seen as a singular 2–chain whose boundary is γ − γ′. Thus, homotopic loops define

the same homology class in H1(X). In other words, we have a well–defined map

h : π1(X,x0) −→ H1(X;Z),

called the Hurewicz map in dimension 1.

One immediate observation is that any commutator loop

γ1 · γ2 · γ−1
1 · γ

−1
2

bounds a 2–chain: we can picture a square whose horizontal edges trace γ1 and vertical edges trace γ2.

The boundary of this square is exactly the commutator loop. Since boundaries vanish in homology, h

sends every commutator to 0. This means h factors through the abelianization of π1(X,x0):

π1(X,x0)
ab := π1(X,x0)

/
[π1(X,x0), π1(X,x0)],

where [π1, π1] denotes the subgroup generated by commutators.

We are thus led to the following important fact:

Proposition 3.8. If X is path–connected, the first homology group is the abelianization of the

fundamental group:

H1(X;Z) ∼= π1(X,x0)
ab.

Proof. We have already argued that h factors through π1(X,x0)
ab, so it suffices to show that the induced

map

h̄ : π1(X,x0)
ab −→ H1(X)

is an isomorphism.

Surjectivity: Let [z] ∈ H1(X) be represented by a singular 1–cycle z =
∑

i giσi, where σi : ∆
1 → X.

Since X is path–connected, we can choose paths from x0 to each σi(0) and from each σi(1) back to x0. By

attaching these “whiskers” to σi, we obtain based loops γi whose homology classes agree with those of the

σi. The sum
∑

i gi[γi] in π1(X)ab maps to [z] under h̄.

Injectivity: Suppose a loop γ maps to 0 in H1(X). Then the 1–cycle corresponding to γ is a boundary,
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say ∂c for some 2–chain c. We can realize c as a formal sum of 2–simplices in X, and by tracking their

edges, one sees that γ is homotopic (as a based loop) to a product of commutators. Thus its class in the

abelianization is trivial. ■

This tells us that H1 is, in a very literal sense, “the abelian part” of the fundamental group: it records

how loops interact up to deformation, but ignores any non–abelian ordering information.

The idea of relating homotopy groups to homology groups extends beyond π1. In higher dimensions, we

can consider the set πn(X,x0) of based maps from the n–sphere Sn into X, up to based homotopy. Just

as before, such a map can be interpreted as an n–cycle, giving a Hurewicz homomorphism

h : πn(X,x0) −→ Hn(X).

In general, h need not be an isomorphism, but if X is k–connected (i.e., all πi(X) = 0 for 1 ≤ i ≤ k), then

h is an isomorphism in degree k + 1 and a surjection in degree k + 2. Thus for simply connected spaces,

the first nontrivial homotopy group is detected exactly by homology.

Theorem 3.8 (Whitehead, simple form). Let f : X → Y be a map between simply connected simplicial

complexes. If f∗ : Hn(X)→ Hn(Y ) is an isomorphism for all n, then f is a homotopy equivalence.

Heuristic: When π1 vanishes, the higher homotopy groups behave “linearly” enough that they can be

reconstructed from homology. If f induces isomorphisms on all homology groups, one can build a homotopy

inverse step–by–step over the skeleta of X and Y , with no obstructions arising.

Remark 3.3. Two simply connected spaces with isomorphic homology groups need not be homotopy

equivalent — the theorem requires an actual map inducing those isomorphisms.

With this, we conclude our exploration of homology. We began with the concrete picture of simplicial

chains, generalized to singular homology to handle arbitrary spaces, and then examined how these groups

behave under maps, decompositions, and relative constructions and finally related it to homotopy classes.

Along the way, we have developed enough machinery to compute homology in many settings and to

understand its structural properties. The stage is now set for us to turn to cohomology and its differential

form incarnation, de Rham cohomology.
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4 Cohomology Theory

In our study of homology, we have always worked with chains: formal sums of simplices which we could

“walk along” in our space, measure their boundaries, and detect holes. This viewpoint is geometric and

concrete — a chain is something you can draw. But there is another, equally important perspective:

instead of building objects in the space, we can assign numbers to them.

More precisely, imagine we want to attach an integer (or some other coefficient) to each chain in a

consistent, linear way. If two chains are added together, the numbers we assign should add as well. Such

an assignment is called a cochain, and it is in many ways the “dual” of a chain. Where a chain is an actual

geometric object in the space, a cochain is a measurement of it.

This dual viewpoint turns out to be more than just a curiosity. Cohomology carries additional algebraic

structure — we will later see a multiplication (the cup product) which allows us to combine classes in

ways homology cannot. Cohomology also interacts more naturally with maps between spaces: while

homology pushes chains forward along maps (covariance), cohomology pulls back measurements along

maps (contravariance). In practice, this means cohomology often fits better with constructions from

analysis and geometry.

Perhaps most intriguingly, cohomology will provide the natural setting for differential forms and the

generalised Stokes theorem. The abstract coboundary operator we will define shortly will, in that context,

become the familiar exterior derivative d from calculus, and evaluating a cohomology class on a homology

class will become the act of integrating a differential form over a cycle.

Thus, cohomology can be viewed as the algebraic language which prepares the ground for the de Rham

theory to come. In the remainder of this section, we will first define cochains, then construct the coboundary

operator, and finally build the cohomology groups themselves, paralleling the constructions for homology.

4.1 Cochains, Cocycles and Coboundaries

We now make the dual picture precise, working in the setting of singular cohomology. As before, let X be

a topological space, and let Cn(X) denote the free abelian group generated by all singular n–simplices

σ : ∆n → X. Recall that an element of Cn(X) is a finite formal sum

c =
k∑
i=1

gi σi,
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with coefficients gi ∈ Z.

From the cohomological point of view, instead of building such chains, we wish to measure them. That

is, we want to assign an integer to each n–chain, in a way that is compatible with addition.

Definition 4.1. A singular n–cochain on X is a group homomorphism

φ : Cn(X) −→ Z.

The set of all singular n–cochains is denoted

Cn(X) := HomZ
(
Cn(X), Z

)
,

and is called the n–th cochain group of X (with integer coefficients).

This definition may look abstract at first, but the idea is simple: since Cn(X) is generated by singular

simplices σ : ∆n → X, a cochain is completely determined by its values on these simplices. For example, a

0–cochain assigns an integer to each vertex of a singular 0–simplex, and a 1–cochain assigns an integer to

each singular 1–simplex (edge), in a way that extends linearly to all 1–chains.

Example 4.1. If X is a graph, then:

• A 0–cochain assigns an integer to each vertex.

• A 1–cochain assigns an integer to each oriented edge (with sign reversed when the edge is

reversed).

In both cases, the value of the cochain on a sum of simplices is the sum of its values.

We now need a way to differentiate cochains, just as we took boundaries of chains. Given that a cochain

is a function on chains, the natural way to do this is to pre-compose with the boundary operator on chains.

Definition 4.2. The coboundary operator is the homomorphism

δ : Cn(X) −→ Cn+1(X)
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defined by

(δφ)(c) := φ
(
∂c
)
,

for every φ ∈ Cn(X) and c ∈ Cn+1(X).

In words: to evaluate δφ on an (n+ 1)–chain c, we first take the boundary ∂c (which is an n–chain),

and then apply φ to it. This is exactly the dual construction to the boundary in homology.

Remark 4.1. The notation δ here is traditional for the cohomological coboundary. It plays the same

algebraic role as ∂ in homology, but “points” in the opposite direction:

· · · δ−→ Cn−1(X)
δ−→ Cn(X)

δ−→ Cn+1(X)
δ−→ · · ·

We immediately have the cohomological analogue of the fundamental fact ∂2 = 0:

Proposition 4.1. For every n, we have δ ◦ δ = 0.

Proof. Let φ ∈ Cn(X) and c ∈ Cn+2(X). Then

(δδφ)(c) = (δφ)(∂c) = φ(∂∂c) = φ(0) = 0,

since ∂ ◦ ∂ = 0 in the chain complex C•(X). Thus δ2 = 0. ■

This allows us to define the cohomological analogues of cycles and boundaries.

Definition 4.3. An n–cochain φ is called:

• a cocycle if δφ = 0 (it lies in ker δ),

• a coboundary if there exists ψ ∈ Cn−1(X) such that φ = δψ (it lies in im δ).

The group of n–cocycles is denoted Zn(X) := ker
(
δ : Cn → Cn+1

)
, and the group of n–coboundaries

is denoted Bn(X) := im
(
δ : Cn−1 → Cn

)
.

Just as in homology, Bn(X) ⊂ Zn(X), thanks to δ2 = 0. This inclusion lets us form the quotient:
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Definition 4.4. The n–th singular cohomology group of X (with integer coefficients) is

Hn(X) :=
Zn(X)

Bn(X)
=

ker
(
δ : Cn → Cn+1

)
im
(
δ : Cn−1 → Cn

) .
Intuitively:

• Cocycles are “measurements” on n–chains that vanish on all boundaries.

• Coboundaries are measurements that come from measuring (n− 1)–chains and extending via δ.

• Cohomology measures the cocycles modulo those that are “trivial” in the sense of being coboundaries.

Example 4.2. Let us examine H1(S1). Recall that C1(S
1) is the free abelian group generated by all

singular 1–simplices σ : ∆1 → S1. A 1–cochain φ ∈ C1(S1) assigns an integer to each such σ, and is

determined entirely by these values (linearly extended to sums).

The condition for φ to be a cocycle is that δφ = 0. Unwinding the definition, this means:

(δφ)(τ) = φ(∂τ) = 0

for every 2–simplex τ : ∆2 → S1. Geometrically, this says: the sum of the values of φ around the

oriented edges of any singular triangle in S1 must be zero. This is the cohomological analogue of “the

sum of oriented edge lengths around a triangle is zero”.

But here is the key observation: S1 has no non-degenerate singular 2–simplices that “wrap” in a

nontrivial way. Any continuous map from a 2–simplex into the circle must collapse its interior to

a 1-dimensional subset. Thus ∂τ is always degenerate, and the cocycle condition becomes vacuous.

Therefore:

Z1(S1) = C1(S1),

meaning every 1–cochain is automatically a cocycle.

Next, let us identify the coboundaries. By definition, a 1–coboundary is something of the form δf for

some 0–cochain f ∈ C0(S1). A 0–cochain assigns an integer to each singular 0–simplex σ : ∆0 → S1,

which is the same as assigning an integer to each point of S1. Given such an f , the 1–cochain δf is
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defined by:

(δf)(σ) = f(∂σ),

where σ is now a singular 1–simplex (an oriented edge). The boundary ∂σ is the formal difference of

its two endpoints:

∂σ = σ(v1)− σ(v0),

so

(δf)(σ) = f
(
σ(v1)

)
− f

(
σ(v0)

)
.

Thus coboundaries are exactly those 1–cochains that measure the difference of a function f along

each edge.

From this perspective, B1(S1) consists of “gradient-like” 1–cochains: they record how a vertex–value

function changes from start to end of an edge. If you imagine walking around the circle and summing

such differences, the total will always be zero: there is no net “accumulation” over a closed loop.

The quotient H1(S1) = Z1(S1)/B1(S1) therefore measures which 1–cochains are not gradients of

0–cochains. On S1, there is exactly one independent way to fail to be a gradient: assign a constant

nonzero value to every positively oriented edge around the loop. Such a 1–cochain cannot be written as

differences of vertex–values without creating a “jump” somewhere, which is impossible for a continuous

assignment on S1.

Algebraically, this “loop–measuring” cochain represents the generator of H1(S1) ∼= Z. Its integer

value counts how many times you wind around the circle, much like the winding number in complex

analysis.

Remark 4.2. This example foreshadows the deep connection between H1(S1) and the fundamental

group π1(S
1). The generator of H1 detects the essential 1–dimensional hole in the circle, in perfect

agreement with the fact that π1(S
1) ∼= Z.

4.2 Functoriality

Up to now, we have thought of cochains as “measurement rules” for our space: given a singular simplex,

a cochain assigns an integer (or other coefficient) to it, and this assignment is linear in the same way
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homology chains were. But so far, all our cochains have lived on a fixed space.

What if we have two spaces X and Y and a continuous map f : X → Y ? In homology, we already know

the answer: the geometry of a simplex in X can be pushed forward along f to produce a simplex in Y ,

and from there we can compute its boundary or its homology class. This was the “covariant” nature of

homology: maps between spaces induce maps in the same direction between homology groups.

Cohomology, however, lives on the “dual” side of the picture. Our objects are not geometric simplices,

but rules for measuring them. If we have a cochain ψ on Y , it already knows how to evaluate any singular

simplex in Y . But suppose we want to use ψ to measure a simplex σ in X. The only way to do this

sensibly is to first transport σ to Y via f , and then let ψ measure it. In other words, the measurement

rule stays fixed while the object being measured is moved. This is the opposite direction from homology:

cohomology is contravariant.

This simple observation is enough to guess the definition:

Definition 4.5. Let f : X → Y be continuous. For each n, the pullback on cochains

f∗ : Cn(Y ) −→ Cn(X)

is the group homomorphism defined on a singular n–simplex σ : ∆n → X by

(
f∗ψ

)
(σ) := ψ

(
f ◦ σ

)
, ψ ∈ Cn(Y ),

and extended linearly to all of Cn(X).

Two immediate features are worth noticing.

(1) Linearity. Because everything is defined simplexwise and then extended linearly, f∗ is a group

homomorphism: f∗(ψ + ϕ) = f∗ψ + f∗ϕ and f∗(aψ) = a f∗ψ.

(2) Reversal of arrows. Chains move with f (covariantly), but cochains move against f (contravariantly):

f# : Cn(X)→ Cn(Y ) whereas f∗ : Cn(Y )→ Cn(X).

This simply encodes the idea that a measurement must follow the object it measures.

The pullback interacts perfectly with the coboundary. The key identity is nothing more than “boundary
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commutes with composition” at the level of simplices.

Lemma 4.0.1 (Naturality of the coboundary). For any continuous f : X → Y and any ψ ∈ Cn(Y ),

δ
(
f∗ψ

)
= f∗

(
δψ
)
∈ Cn+1(X).

Proof. Evaluate both sides on an (n+ 1)–simplex σ : ∆n+1 → X:

(
δf∗ψ

)
(σ) = f∗ψ(∂σ) = ψ

(
f ◦ ∂σ

)
= ψ

(
∂(f ◦ σ)

)
= (δψ)(f ◦ σ) =

(
f∗δψ

)
(σ).

We used ∂(f ◦ σ) = f ◦ (∂σ) and the definition of δ on cochains. ■

This one-line computation has two important consequences.

Proposition 4.2 (Induced maps on cohomology). If f : X → Y is continuous, then for each n the map

f∗ : Cn(Y )→ Cn(X) sends cocycles to cocycles and coboundaries to coboundaries. Hence it descends

to a well-defined homomorphism on cohomology

f∗ : Hn(Y ) −→ Hn(X), f∗[ψ] := [f∗ψ].

Proof. If ψ ∈ Zn(Y ) = ker δ, then δ(f∗ψ) = f∗(δψ) = f∗(0) = 0, so f∗ψ ∈ Zn(X). If ψ = δθ ∈ Bn(Y ),

then f∗ψ = f∗(δθ) = δ(f∗θ) ∈ Bn(X). Thus f∗ preserves the subgroups Zn and Bn and induces a

homomorphism on the quotient Hn = Zn/Bn. ■

Just as importantly, pullback behaves functorially with respect to composition and identities.

Proposition 4.3 (Functoriality). For continuous maps X
f−→ Y

g−→ Z and any n,

(idX)
∗ = idHn(X) and (g ◦ f)∗ = f∗ ◦ g∗ : Hn(Z) −→ Hn(X).

Proof. On cochains, (idX)
∗ψ(σ) = ψ(idX ◦ σ) = ψ(σ). For composition, (g ◦ f)∗ψ(σ) = ψ(g ◦ f ◦ σ) =

g∗ψ(f ◦ σ) = (f∗g∗ψ)(σ). Passing to cohomology uses the previous proposition. ■

It helps to see all this happen in concrete cases.
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Example 4.3 (Restriction along an inclusion). Let i : U ↪→ X be the inclusion of a subspace. For

a cochain ψ ∈ Cn(X), the pullback i∗ψ ∈ Cn(U) is just ψ evaluated on simplices that land in U :

(i∗ψ)(σ) = ψ(i ◦ σ) = ψ(σ) for σ : ∆n → U . Thus i∗ : Hn(X) → Hn(U) is the familiar restriction

map in cohomology.

Example 4.4 (Degree k map on the circle). Let fk : S1 → S1 be the map fk(e
2πit) = e2πikt with

k ∈ Z. We know H1(S1) ∼= Z. A convenient generator [ω] ∈ H1(S1) can be described intuitively as

the class that measures the winding number of loops in S1: when a loop goes once counterclockwise,

[ω] evaluates to 1. Now pull back this measurement along fk. Given any loop γ : ∆1 → S1 in the

domain,

(f∗kω)(γ) = ω(fk ◦ γ).

But fk ◦ γ winds around the target circle exactly k times as often as γ does. Hence the pulled-back

class detects k-times the winding: f∗k [ω] = k [ω] in H1(S1). In particular, on H1(S1) ∼= Z, the induced

map is multiplication by k.

Example 4.5 (A quick vanishing). If c : X → Y is a constant map into a path component of

Y , then for every n ≥ 1, c∗ : Hn(Y ) → Hn(X) is the zero map. Indeed, any singular n–simplex

σ : ∆n → X composes with c to the degenerate simplex c ◦ σ : ∆n → Y with image a point, on

which (n ≥ 1)–cochains evaluate trivially in cohomology. (One may view this as the cohomological

counterpart of the fact that higher homology vanishes on a point.)

All of the above can be remembered as a single principle: cohomology is a contravariant measurement

theory. A map f : X → Y sends objects in X forward to Y ; to keep measuring those objects by the same

rule, we must pull the rule back along f . The algebra (definitions, naturality, and functoriality) is nothing

more than a precise encoding of this idea.

4.3 Relative Cohomology

Up to now, our cochains have been defined on all singular simplices in a space X. But what if part of the

space is “uninteresting” to us — say, a subspace A ⊂ X on which we do not want our cochains to register

anything at all? Perhaps A is already well understood, and we wish to study only the new behaviour that

arises in X beyond A. This leads naturally to the notion of relative cochains.
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The idea is simple: a relative cochain is just a cochain on X that vanishes on every simplex lying entirely

inside A. In other words, it measures chains in X while ignoring those supported in A.

Definition 4.6. Let A ⊂ X be a subspace. The group of n–dimensional relative cochains on (X,A) is

Cn(X,A) := {φ ∈ Cn(X) | φ(σ) = 0 for all σ ∈ Cn(A)}.

Equivalently, Cn(X,A) is the kernel of the restriction map j : Cn(X)→ Cn(A).

From this point of view, Cn(X,A) consists of all cochains that are “blind” to A. Since the coboundary

of a cochain that vanishes on A still vanishes on A, the coboundary map δ : Cn(X)→ Cn+1(X) restricts

to a well-defined map δ : Cn(X,A)→ Cn+1(X,A). Thus the relative cochains form a cochain complex in

their own right:

· · · δ−→ Cn−1(X,A)
δ−→ Cn(X,A)

δ−→ Cn+1(X,A)
δ−→ · · ·

Definition 4.7. The n–th relative cohomology group of the pair (X,A) is

Hn(X,A) :=
ker
(
δ : Cn(X,A)→ Cn+1(X,A)

)
im
(
δ : Cn−1(X,A)→ Cn(X,A)

) .
This group measures precisely the obstruction to making a relative cocycle (i.e. a measurement on

X that ignores A and is consistent on boundaries) into a relative coboundary (i.e. the coboundary of a

cochain on X that vanishes on A).

To relate Hn(X,A) to the absolute cohomology of X and A, we note that there is a natural restriction

map

j : Cn(X) −→ Cn(A), j(φ) := φ|Cn(A).

Its kernel is exactly Cn(X,A). The inclusion i : Cn(X,A) ↪→ Cn(X) is also natural, and together they

form a short exact sequence of cochain groups:

0 −→ C•(X,A)
i−→ C•(X)

j−→ C•(A) −→ 0.

Exactness here simply says: every cochain on X that vanishes on A is a relative cochain; every cochain

on X restricts to a cochain on A; and every cochain on A is the restriction of some cochain on X.
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The important point is that this is a short exact sequence of cochain complexes. Applying the general

homological algebra machinery (which we have already seen in the chain complex setting), we obtain a

long exact sequence in cohomology :

Theorem 4.1 (Long exact sequence of a pair). For any subspace A ⊂ X, there is a natural long exact

sequence

· · · −→ Hn−1(A)
δ−→ Hn(X,A)

i∗−→ Hn(X)
j∗−→ Hn(A)

δ−→ Hn+1(X,A) −→ · · ·

where i∗ is induced by the inclusion C•(X,A) ↪→ C•(X), j∗ is induced by restriction to A, and δ is

the connecting homomorphism.

A striking feature here is the reversal of direction compared to the homology long exact sequence: this

is a direct consequence of cohomology being contravariant.

Example 4.6. Consider the pair (D2, S1), where D2 is the closed disk and S1 its boundary. One can

check that

Hn(D2) ∼=


Z, n = 0,

0, n > 0,

and Hn(S1) ∼=


Z, n = 0,

Z, n = 1,

0, n > 1.

The long exact sequence for the pair in low degrees reads

0 −→ H1(D2, S1)
i∗−→ H1(D2)

j∗−→ H1(S1)
δ−→ H2(D2, S1)

i∗−→ H2(D2) = 0.

Here H1(D2) = 0, so exactness forces i∗ : H1(D2, S1)→ 0 to be trivial and j∗ : 0→ H1(S1) ∼= Z to

be the zero map. Thus δ : H1(S1)→ H2(D2, S1) is injective. But H1(S1) ∼= Z, so we find

H2(D2, S1) ∼= Z.

Geometrically, this generator corresponds to the “fundamental class” of the disk, viewed relative to

its boundary.

In practice, the long exact sequence of a pair is one of the most powerful tools for computing cohomology.

It links together the absolute cohomology of X and A with the relative cohomology of the pair, and it does
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so in a way that reflects the precise algebraic relationship between measurements on X, measurements

on A, and measurements that ignore A entirely.

4.4 Mayer–Vietoris Sequence

Up to this point, our definitions and tools for cohomology have been quite general, but when it comes

to actual computations, we need techniques that allow us to break a space into simpler pieces and then

reassemble the results. If X is complicated, it is often much easier to cover it with open sets U and V

whose individual cohomology groups are well-understood, together with their overlap U ∩ V . The natural

question is:

Given H∗(U), H∗(V ), and H∗(U ∩ V ), can we recover H∗(X)?

It turns out that the answer is yes — at least in a way that is both precise and computationally effective.

The key tool is the Mayer–Vietoris sequence, which relates the cohomology of X to that of U , V , and

U ∩ V through a long exact sequence.

To understand where such a sequence might come from, we start from the level of cochains. Given a

cochain φ on X, we can restrict it to U and to V . This gives a natural map

r : Cn(X) −→ Cn(U)⊕ Cn(V ), r(φ) = (φ|U , φ|V ).

Here Cn(X) denotes the group of singular n–cochains on X, and the restriction φ|U means “evaluate only

on singular simplices lying in U”. This restriction is clearly compatible with addition of cochains and with

scalar multiplication, so r is a homomorphism of abelian groups.

Now suppose we have a pair (α, β) ∈ Cn(U)⊕ Cn(V ) coming from the restriction of a single φ on X.

On U ∩ V , the two restrictions α and β must agree: for every singular n–simplex σ with image in U ∩ V ,

we have α(σ) = β(σ). This suggests defining the “difference on the overlap” map

d : Cn(U)⊕ Cn(V ) −→ Cn(U ∩ V ), d(α, β) = α|U∩V − β|U∩V .

If (α, β) comes from a global φ on X, then d(α, β) = 0. Conversely, if d(α, β) = 0, then the two agree on

the overlap and can be glued together to form a cochain on all of X.

Note that a singular simplex σ : ∆n → X need not lie entirely inside U or V ; it may cross between them.

Consequently, the injectivity of r in (∗) fails on the nose: a cochain on X can vanish on all simplices
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contained in U and in V , yet be nonzero on simplices that straddle U ∪ V . The standard remedy is to

subdivide simplices until each little simplex lies entirely in U or entirely in V .

Concretely, there is a natural chain map

sd: C•(X) −→ C•(X)

(barycentric subdivision) with the properties: (i) sd is chain homotopic to the identity; hence it induces

the identity on cohomology, and (ii) for any open cover U of X, some iterate sdN subdivides every singular

simplex as a chain supported in the cover, i.e. each summand simplex is entirely contained in some U ∈ U .

Precomposing cochains with sdN does not change cohomology, but it ensures that values of cochains on

X are determined by their values on simplices lying in U or in V .

With this understood, the following becomes true and (importantly) sufficient for Mayer–Vietoris.

Proposition 4.4 (Short exact sequence after subdivision). Let X = U ∪ V with U, V open. For N ≫ 0,

the maps

rN (φ) := (φ ◦ sdN )|U , (φ ◦ sdN )|V , d(α, β) := α|U∩V − β|U∩V

assemble (degreewise) into a short exact sequence of cochain complexes

0 −→ C•(X)
rN−−→ C•(U)⊕ C•(V )

d−→ C•(U ∩ V ) −→ 0.

Moreover, rN is a cochain homotopy equivalence to r0 (the naive restriction), so passing to cohomology

does not depend on N .

Proof. Since sdN is a chain map, precomposition preserves coboundaries, so rN is a cochain map. Exactness

at the middle term means ker(d) = im(rN ). If (α, β) ∈ ker(d), then α and β agree on U ∩ V . Because

every n–simplex of sdN (σ) lies entirely in U or entirely in V , we can define φ on a generator σ by summing

the contributions of those little simplices: use α on the ones in U and β on the ones in V . Linearity

then gives a well-defined φ ∈ Cn(X) with rN (φ) = (α, β). Thus ker(d) ⊂ im(rN ); the reverse inclusion

d ◦ rN = 0 is immediate.

Surjectivity of d is easy: given γ ∈ Cn(U ∩ V ), extend it to U by defining a cochain that agrees with γ

on simplices in U ∩ V and is 0 on simplices in U \ V ; take β := 0 on V . Then d(α, 0) = γ.

Injectivity of rN follows from the support property: if rN (φ) = (0, 0), then φ evaluates to 0 on every
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subdivided simplex lying in U or in V , hence on every summand of sdN (σ) for every σ, so φ ◦ sdN = 0.

Since sdN is chain homotopic to the identity, this forces φ = 0 on cohomology (and, degreewise, is enough

for exactness of complexes after choosing N uniformly). ■

Remark 4.3. If one prefers to avoid subdivision in the proof, an equivalent and classical route is to

derive Mayer–Vietoris from the long exact sequence of a pair together with excision: apply excision

to the pair (X,V ) with the excised set X \ U ; combine the long exact sequences for (X,V ) and

(U,U ∩ V ) and chase the diagram. We keep the concrete subdivision picture here because it matches

the computational intuition: after enough subdivision, each simplex “sits entirely inside” one piece.

With Proposition 4.4 in hand, we can invoke the general homological algebra fact that a short exact

sequence of cochain complexes induces a long exact sequence in cohomology.

Theorem 4.2 (Mayer–Vietoris sequence for singular cohomology). If X = U ∪ V with U, V open, there

is a natural long exact sequence

· · · −→ Hn−1(U∩V )
δ−−→ Hn(X)

(i∗U , i
∗
V )

−−−−−−→ Hn(U)⊕Hn(V )
j∗U−j∗V−−−−−→ Hn(U∩V )

δ−−→ Hn+1(X) −→ · · ·

where the maps are induced by the inclusions of the corresponding spaces, and δ is the connecting

homomorphism.

Proof. We sketch the standard zig–zag construction, which mirrors the one for relative cohomology.

Connecting map. Let [γ] ∈ Hn−1(U ∩ V ) be represented by a cocycle γ ∈ Cn−1(U ∩ V ). By surjectivity

of d in Proposition 4.4, choose (α, β) ∈ Cn−1(U)⊕Cn−1(V ) with d(α, β) = γ; that is, α|U∩V − β|U∩V = γ.

Apply the coboundary: δα and δβ agree on U ∩ V (since δγ = 0), so by exactness at the middle term,

they glue to a global cocycle Φ ∈ Cn(X) with rN (Φ) = (δα, δβ). Define δ[γ] := [Φ] ∈ Hn(X).

One checks that different choices of (α, β) change Φ by a coboundary, so δ is well defined on cohomology

classes.

Exactness. We verify kernels equal images at the three relevant spots.

(i) im(δ) = ker(i∗U , i
∗
V ): If [Φ] = δ[γ] as above, then by construction rN (Φ) = (δα, δβ), hence both

restrictions are coboundaries and (i∗U , i
∗
V )([Φ]) = (0, 0). Conversely, if [Φ] ∈ Hn(X) restricts trivially to

both Hn(U) and Hn(V ), pick cochains α, β with δα = Φ|U and δβ = Φ|V ; then α|U∩V −β|U∩V is a cocycle

in Cn−1(U ∩ V ), and the construction above shows δ[α| − β|] = [Φ].
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(ii) im(i∗U , i
∗
V ) = ker(j∗U − j∗V ): If [Φ] ∈ Hn(X), then (i∗U , i

∗
V )([Φ]) = ([Φ|U ], [Φ|V ]), whose difference

restricts to zero on U ∩ V by functoriality of restriction. Conversely, if ([α], [β]) have equal restrictions on

Hn(U ∩ V ), choose cocycles α, β representing them with α|U∩V = β|U∩V . Exactness of Proposition 4.4

glues them to a global cocycle Φ with rN (Φ) = (α, β), so ([α], [β]) is in the image of Hn(X).

(iii) im(j∗U − j∗V ) = ker(δ): If [γ] = (j∗U − j∗V )([α], [β]) with α, β cocycles, the construction of δ uses (α, β)

to produce Φ cohomologous to 0 (since δα and δβ glue to a coboundary), so δ[γ] = 0. Conversely, if

δ[γ] = 0, unraveling the definition shows γ is the difference of restrictions of classes from U and V . ■

Example 4.7 (A first computation: H∗(S1)). Cover the circle by two open arcs U and V whose

intersection is the disjoint union of two open arcs. Each arc is contractible, so

H0(U) ∼= Z, Hk(U) = 0 (k > 0), H0(V ) ∼= Z, Hk(V ) = 0 (k > 0).

The intersection has two components, so H0(U ∩ V ) ∼= Z ⊕ Z and Hk(U ∩ V ) = 0 for k > 0. The

relevant segment of the Mayer–Vietoris sequence is

0 −→ H0(S1)
(i∗U ,i

∗
V )

−−−−→ Z⊕ Z
j∗U−j∗V−−−−→ Z⊕ Z δ−→ H1(S1) −→ 0.

The first map is the diagonal z 7→ (z, z). One checks that j∗U − j∗V has image a rank-1 subgroup

(differences of values on the two components), so its cokernel is Z. Exactness then gives

H0(S1) ∼= Z, H1(S1) ∼= Z.

Remark 4.4 (Homology version). There is a completely analogous Mayer–Vietoris sequence for homology.

Because homology is covariant (chains are pushed forward), the arrows run in the opposite direction:

· · · −→ Hn(U ∩ V ) −→ Hn(U)⊕Hn(V ) −→ Hn(X)
∂−→ Hn−1(U ∩ V ) −→ · · ·

The same subdivision/excision ideas underlie its proof; only the variance changes.
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4.5 The Ring Structure

Up to now, our cohomology groups Hn(X) have been sitting side by side, one for each n, like a shelf of

separate books. Each group measures something about X, but they have not yet interacted with each

other.

There is, however, a remarkable and entirely natural way to combine cohomology classes of different

degrees into new ones. This is not some extra decoration we decide to add; it is forced upon us once we

take seriously the idea that a cochain is a measurement on simplices.

Think about it this way: suppose φ is a p–cochain, and ψ is a q–cochain. Given a (p+ q)–simplex σ, φ

knows how to measure p–dimensional simplices, and ψ knows how to measure q–dimensional simplices.

The (p+ q)–simplex naturally splits into two pieces: a front p–face and a back q–face. We can simply let

φ measure the front, let ψ measure the back, and multiply the two readings. That multiplication gives us

a perfectly good (p+ q)–cochain.

If you draw a triangle and imagine p = 1 and q = 1, the front face is the first edge, the back face is the

second edge. Measuring each edge separately and multiplying the results produces a number for the whole

triangle. This is the geometric seed of the construction.

Definition 4.8 (Cup product on singular cochains). Let X be a topological space. Take φ ∈ Cp(X) and

ψ ∈ Cq(X). For a singular (p+ q)–simplex σ : ∆p+q → X, write

σ|[v0, . . . , vp] and σ|[vp, . . . , vp+q]

for its front p–face and back q–face. We define a (p+ q)–cochain φ ⌣ ψ ∈ Cp+q(X) by

(φ ⌣ ψ)(σ) := φ
(
σ|[v0, . . . , vp]

)
· ψ
(
σ|[vp, . . . , vp+q]

)
,

and extend this definition bilinearly to all (p+ q)–chains.

So the picture is:

front face
φ−→ number, back face

ψ−→ number, multiply to get the measurement of the whole.

At this point you might ask: does this multiplication behave well with respect to the coboundary δ?

This is an essential question, because if it does not, then multiplying representatives of cohomology classes
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might give something that does not represent the product of the classes.

The answer turns out to be yes, in the following precise way.

Proposition 4.5 (Leibniz rule for the cup product). For φ ∈ Cp(X) and ψ ∈ Cq(X),

δ(φ ⌣ ψ) = δφ ⌣ ψ + (−1)p φ ⌣ δψ

as (p+ q + 1)–cochains.

The significance of this identity is immediate: if either φ or ψ is a cocycle, then so is φ ⌣ ψ. Thus the

product descends to cohomology classes.

Corollary 4.1. If [φ] ∈ Hp(X) and [ψ] ∈ Hq(X) are represented by cocycles, then φ ⌣ ψ is also a

cocycle, and the cohomology class [φ ⌣ ψ] depends only on [φ] and [ψ]. Hence there is a well-defined

product

⌣: Hp(X)×Hq(X) −→ Hp+q(X), [φ]⌣ [ψ] := [φ ⌣ ψ].

From the definition, several algebraic properties follow almost at once.

Proposition 4.6 (Bilinearity, unit, and naturality). The following are true:

1. Bilinearity: ⌣ is linear in each variable.

2. Unit: The constant 0–cochain 1 (value 1 on each vertex) represents a class 1 ∈ H0(X) which

acts as a multiplicative unit: 1⌣ α = α = α ⌣ 1.

3. Naturality: If f : X → Y is continuous, then for α ∈ Hp(Y ) and β ∈ Hq(Y ),

f∗(α ⌣ β) = f∗α ⌣ f∗β.

One of the most elegant properties is graded commutativity : swapping two factors introduces a predictable

sign.
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Theorem 4.3 (Graded commutativity). If α ∈ Hp(X) and β ∈ Hq(X), then

α ⌣ β = (−1)pqβ ⌣ α.

Geometric heuristic. On a (p+ q)–simplex, swapping the roles of a p–cochain and a q–cochain amounts to

moving p front vertices past q back vertices. Each swap of two vertices introduces a sign −1, and there are

pq swaps, giving the factor (−1)pq. The full combinatorial proof shows the difference between the two

orders is actually a coboundary, so they agree in cohomology. ■

Example 4.8 (H∗(Sn) as a ring). For n ≥ 1, H0(Sn) ∼= Z, Hn(Sn) ∼= Z, and all other groups vanish.

The only nontrivial products involve the unit in degree 0; if u generates Hn(Sn), then u ⌣ u lies in

H2n(Sn) = 0. Thus

H∗(Sn) ∼= Z⊕ Z⟨u⟩, u2 = 0, |u| = n.

Example 4.9 (The torus T 2). Let T 2 = S1 × S1 with projections π1, π2. If a ∈ H1(S1) is the

generator, define x := π∗1a and y := π∗2a in H1(T 2). These detect winding in each circle factor.

Graded commutativity forces x ⌣ x = 0 = y ⌣ y and x ⌣ y = − y ⌣ x. One finds x ⌣ y generates

H2(T 2) ∼= Z, so

H∗(T 2) ∼= ΛZ(x, y),

the exterior algebra on two degree–1 generators.

Remark 4.5. Cohomology groups alone tell you how many holes of each dimension exist; the cup

product tells you how those holes interact. In de Rham cohomology, this product will be realised

concretely as the wedge product of differential forms.

4.6 Relation to Homotopy

Up to this point we have related homology to homotopy (via the Hurewicz map), and we have learned

to think of cohomology as linear “measurements” on homology classes. It is natural, then, to ask how

cohomology reflects homotopy. A good first guess is: if homology in degree n records the n–dimensional

“shapes” in X, then cohomology in degree n should record all linear functionals on those shapes. This

intuition leads directly to the universal coefficient theorem.



De Rham Cohomology 64

To make the guess precise, remember what a class [φ] ∈ Hn(X) does : pick a singular n–cycle z (a closed

“shape”); evaluate any cocycle representative φ on z to get an integer; if you change z by a boundary or

change φ by a coboundary, that integer does not change. In other words, [φ] is a well-defined, additive

assignment of integers to Hn(X)—at least when no hidden torsion effects interfere. The theorem below

says that this picture is essentially complete.

Theorem 4.4 (Universal Coefficient Theorem for Cohomology). For any topological space X, abelian

group G, and any n ≥ 0, there is a natural short exact sequence

0 −→ Ext
(
Hn−1(X), G

)
−→ Hn(X;G) −→ Hom

(
Hn(X), G

)
−→ 0,

which always splits (not canonically). In particular, if Hn(X) is free abelian, then

Hn(X;G) ∼= Hom
(
Hn(X), G

)
.

Pause and unpack this. The group Hom(Hn(X), G) is exactly the space of all additive measurements of

n–dimensional homology classes with values in G—this matches our intuition for cocycles. The extra term

Ext(Hn−1(X), G) is the correction that appears when there is torsion in Hn−1(X): it contributes “hidden”

cohomology classes that cannot be seen just by evaluating on Hn(X). Over G = Z this term picks up

torsion in Hn−1(X) (for example, Ext(Z/m,Z) ∼= Z/m).

A first, extremely useful consequence is the clean identification in the torsion–free case.

Corollary 4.2. If Hn(X) is free abelian (e.g. Hn(X) ∼= Zr), then

Hn(X) ∼= Hom
(
Hn(X),Z

)
.

Concretely, a cohomology class is determined by the integers it assigns to a basis of Hn(X), and any

such assignment extends uniquely and linearly.

Now bring homotopy back into the picture. You have already met the Hurewicz map

h : πn(X) −→ Hn(X),

which sends a based map Sn → X to the n–dimensional homology class it represents. When X is
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(n− 1)–connected (no homotopy in lower degrees), the Hurewicz theorem tells us that h is an isomorphism.

Combining this with the universal coefficient theorem gives the promised bridge.

Corollary 4.3 (Cohomology reads homotopy in the highly connected range). If X is (n− 1)–connected

and Hn(X) is free abelian (as happens, for instance, for X = Sn), then

Hn(X) ∼= Hom
(
Hn(X),Z

) ∼= Hom
(
πn(X),Z

)
.

Thus degree-n cohomology classes are exactly the integer-valued homomorphisms on πn(X).

This is a satisfying stopping point for the big picture: in good connectivity, cohomology literally

“linearises” homotopy. Let us test the statement on familiar spaces.

Example 4.10. For the n–sphere Sn, we know πn(S
n) ∼= Z by basic homotopy theory. Since Sn is

(n− 1)–connected, the Hurewicz theorem gives Hn(S
n) ∼= Z, and the universal coefficient theorem

identifies Hn(Sn) ∼= Hom(Z,Z) ∼= Z. The generator of Hn(Sn) can be thought of as the “degree” map

measuring how many times a map wraps Sn around itself.

Remark 4.6. This point of view also makes it clear why cohomology, in general, cannot distinguish all

homotopy types. It captures only the “abelianised” part of the homotopy information: once πn(X)

is replaced by its abelianisation via the Hurewicz map, cohomology records linear maps out of it.

Nonetheless, in many important cases — especially for simply connected spaces — this is enough to

recover significant geometric information.

In summary, one should keep in mind:

Cohomology = linear functionals on homology + a torsion correction,

and, where Hurewicz applies, these linear functionals can be read directly from the corresponding homotopy

group. This is exactly the bridge we will cross again in deRham theory, where the “functionals” are

realised as integration of differential forms over cycles.

With this, we bring our exploration of cohomology to a close. We began by reversing our homological

viewpoint: instead of building geometric chains, we learned to measure them via cochains, built the
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coboundary operator, and constructed cohomology groups as a dual theory to homology. Along the way,

we uncovered the structural richness of cohomology — its functorial behaviour, its role in long exact

sequences and Mayer–Vietoris decompositions, and most strikingly, its graded ring structure through the

cup product. We have even seen how cohomology reflects certain homotopy-theoretic properties of spaces,

and how the universal coefficient theorem links it back to homology.

Yet, cohomology is more than an abstract algebraic formalism. In many cases of interest — especially in

geometry and analysis — cohomology classes can be represented concretely by differential forms. Here the

abstract coboundary δ will reveal itself as the familiar exterior derivative d, and the pairing of cohomology

with homology will appear as the act of integrating a form over a cycle. In this guise, cohomology becomes

a bridge between topology and calculus, culminating in the generalised Stokes theorem.

It is to this concrete, geometric incarnation — the world of differential forms and de Rham cohomology

— that we now turn.



De Rham Cohomology 67

5 Differential Forms and the Generalised Stokes’ Theorem

We have now completed our study of cohomology in its algebraic form. Starting from the dual picture of

cochains as “measurements” on chains, we developed the coboundary operator, constructed cohomology

groups, and explored their algebraic structures, functoriality, and long exact sequences. In many ways, this

theory mirrors the homology we began with, but it also carries richer structure, such as the cup product,

which reveals how different pieces of a space interact.

However, our discussion so far has been entirely abstract : our cochains were arbitrary functions from

chains to coefficients, subject only to linearity and the cocycle condition. Nothing in the definition required

our space to be smooth, or even to have a geometry at all. As a result, we have not yet made use of the

powerful tools of calculus and differential geometry.

When the space is a smooth manifold, we can do better. In this setting, there is a particularly elegant

and geometric incarnation of cohomology, built not from arbitrary cochains but from differential forms:

smooth, multilinear, alternating objects that can be integrated over chains. These forms interact beautifully

with the manifold’s smooth structure: they can be differentiated (via the exterior derivative), multiplied

(via the wedge product), and pulled back along smooth maps in a way that respects these operations.

Most strikingly, there is a single, unifying statement — the generalised Stokes theorem — which contains

as special cases the fundamental theorems of calculus, Green’s theorem, the divergence theorem, and

classical Stokes’ theorem from vector calculus. This theorem is, in the smooth setting, the exact analogue

of the algebraic relation that δ2 = 0 in cohomology, and it leads naturally to the definition of de Rham

cohomology.

Our goal in this section is to first introduce differential forms and their basic operations, then explore

how to integrate them over smooth chains, and finally state and interpret the generalised Stokes theorem.

This will set the stage for the de Rham cohomology groups, which bridge the gap between the algebraic

topology we have developed and the analysis and geometry of smooth manifolds.

5.1 Differential Forms

In our study of singular cochains, we treated them as abstract assignments of numbers to chains, with

the only requirements being linearity and the compatibility enforced by the coboundary operator. This

generality was powerful, but also completely unconstrained: a cochain could behave in any strange way so

long as it respected linearity. If our space X had extra structure — say, if X were a smooth manifold —
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then we would expect our cochains to reflect this smoothness.

To see what this means, recall how things work in ordinary calculus. A smooth function f : Rn → R

assigns to each point p a real number f(p), varying smoothly from point to point. From f we can extract

its differential df , which at each point is a linear functional on the tangent space TpRn. Given a vector

v based at p, dfp(v) tells us the instantaneous rate of change of f in the direction of v. In coordinates

(x1, . . . , xn) we write

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+ ∂f

∂xn
dxn,

where each dxi is the basic “coordinate differential” which extracts the i–th component of a vector.

This familiar object df is our first clue: it is not itself a function, but rather something that eats a

vector and produces a number. Such objects are called 1–forms, and they are the simplest examples of

differential forms beyond functions.

Definition 5.1. A 0–form on a smooth manifold M is a smooth function

f :M −→ R.

A 0–form assigns a single real number to each point of M , with no directional component. It is

“dimensionless” in the sense that it measures nothing along any curve, surface, or higher–dimensional piece

of M — it just evaluates the point itself. Nevertheless, 0–forms are the starting point of our hierarchy: as

soon as we take their differential, they give rise to 1–forms.

Definition 5.2. A 1–form ω on M assigns to each point p ∈M a linear functional

ωp : TpM −→ R

that varies smoothly with p.

That is, for each p, ωp takes in a tangent vector v ∈ TpM and returns a real number, in a way that is

linear in v. The smoothness condition says that if p moves slightly, the coefficients of ω in any coordinate

chart also change smoothly.

In coordinates (x1, . . . , xn) on Rn, a 1–form can always be written as

ω = a1(x) dx
1 + a2(x) dx

2 + · · ·+ an(x) dx
n,
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where each ai : Rn → R is a smooth function. The dxi here are the basic coordinate 1–forms: at a point p,

dxip is the functional which sends a tangent vector v = (v1, . . . , vn) to its i–th component vi.

Example 5.1. On R2, define

ω = y dx− x dy.

At a point (x, y), a tangent vector (vx, vy) is measured by

ω(vx, vy) = y · vx − x · vy.

If (vx, vy) is tangent to the circle x2 + y2 = r2, this expression is proportional to the angular speed

around the origin. Thus ω measures rotation rather than translation.

From 1–forms it is a natural step to consider objects that take several tangent vectors at once. Just as a

1–form can be thought of as a tool for measuring oriented lengths, a 2–form will measure oriented areas, a

3–form will measure oriented volumes, and so on.

The correct algebraic way to capture this is to require multilinearity (linear in each vector separately)

and antisymmetry (swapping two vectors reverses the sign).

Definition 5.3. A k–form ω on a smooth manifold M assigns to each point p ∈ M an alternating

k–linear map

ωp : TpM × · · · × TpM −→ R

that is linear in each argument and changes sign when any two arguments are exchanged. The

assignment p 7→ ωp is smooth in the sense that, in local coordinates, the coefficient functions vary

smoothly.

The antisymmetry ensures that a k–form vanishes whenever two of its input vectors are the same or

linearly dependent. Geometrically, this matches our intuition: a k–dimensional volume should be zero if

the k vectors fail to span a k–dimensional parallelepiped.

In coordinates (x1, . . . , xn), every k–form can be expressed as

ω =
∑

1≤i1<···<ik≤n
ai1···ik(x) dx

i1 ∧ · · · ∧ dxik ,
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where the ai1···ik are smooth functions. The symbols dxi1 ∧· · ·∧dxik , whose properties we will soon explore,

represent the basic infinitesimal k–dimensional volume elements in the indicated coordinate directions.

Example 5.2. On R3, the 2–form

η = x dy ∧ dz

evaluated at a point (x, y, z) takes two tangent vectors u, v and returns x times the signed area of

their projection onto the yz–plane. If x = 0 this measurement vanishes, showing that η is sensitive to

position as well as direction.

We have now laid out the basic cast of characters: 0–forms are smooth functions, 1–forms measure

lengths in given directions, and k–forms in general measure oriented k–dimensional volumes in the tangent

space. In the next step, we will see how to combine these forms using the wedge product, which allows us

to build higher–degree measurements from lower–degree ones.

5.2 The wedge product

Up to now we have learned to measure directions with 1–forms and to measure oriented k–dimensional

parallelepipeds with k–forms. A natural question is: can we combine simple measurements to make more

complicated ones? If one 1–form reads the “amount of motion” in the x–direction and another does so in

the y–direction, there ought to be a canonical way to produce from them a 2–form that reads off oriented

area in the xy–plane. The operation that does exactly this is the wedge product.

Definition 5.4 (Wedge of 1–forms at a point). Let V be a real vector space. Given linear functionals

α1, . . . , αk ∈ V ∗, their wedge (or exterior) product

α1 ∧ · · · ∧ αk ∈ Altk(V ∗)

is the alternating k–linear form defined on vectors v1, . . . , vk ∈ V by

(α1 ∧ · · · ∧ αk)(v1, . . . , vk) := det
(
αi(vj)

)
1≤i,j≤k.

This formula encapsulates two key ideas you already know from linear algebra:

• Multilinearity: the determinant is linear in each column, so the wedge is linear in each vector

argument.
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• Alternation: swapping two columns changes the sign of the determinant, hence the wedge vanishes

as soon as two input vectors are equal or linearly dependent.

Because each αi is itself linear, the definition above is also bilinear in each αi. On a smooth manifold

M , we apply this construction pointwise in V = TpM and let the coefficients vary smoothly in p.

Definition 5.5 (Wedge product of differential forms). If ω ∈ Ωp(M) and η ∈ Ωq(M) are differential

forms, their wedge product ω ∧ η ∈ Ωp+q(M) is defined pointwise by

(ω ∧ η)p := Alt
(
(ωp ⊗ ηp)

)
,

that is, for v1, . . . , vp+q ∈ TpM ,

(ω ∧ η)p(v1, . . . , vp+q) =
1

p! q!

∑
σ∈Sp+q

sgn(σ)ωp(vσ(1), . . . , vσ(p)) ηp(vσ(p+1), . . . , vσ(p+q)).

Equivalently, when ω = α1 ∧ · · · ∧ αp and η = β1 ∧ · · · ∧ βq are simple forms (wedges of 1–forms),

ω ∧ η = α1 ∧ · · · ∧ αp ∧ β1 ∧ · · · ∧ βq,

and we extend by bilinearity.

In local coordinates (x1, . . . , xn) this becomes completely concrete. Every form can be written as a linear

combination of the elementary wedges dxi1 ∧ · · · ∧ dxik with i1 < · · · < ik, and the product is determined

by

dxi ∧ dxj = − dxj ∧ dxi, dxi ∧ dxi = 0,

extended bilinearly and associatively. Thus, if

ω =
∑
I

aI(x) dx
i1 ∧ · · · ∧ dxip , η =

∑
J

bJ(x) dx
j1 ∧ · · · ∧ dxjq ,

then

ω ∧ η =
∑
I,J

aI(x) bJ(x) dx
i1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq ,

and you reorder the indices into increasing order, inserting the corresponding sign; any repeated index
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forces the term to vanish.

Example 5.3 (Oriented area in R2). On R2 with coordinates (x, y),

(dx ∧ dy)
(
(vx, vy), (wx, wy)

)
= det

vx wx

vy wy

 = vxwy − vywx.

Thus dx ∧ dy measures the signed area of the parallelogram spanned by two vectors. If you reverse

the order, dy ∧ dx = − dx ∧ dy, the sign (orientation) flips.

Example 5.4 (A quick coordinate computation). On R2, let α = x2 dx+ y dy and β = x dy. Then

α ∧ β = (x2 dx+ y dy) ∧ (x dy) = x3 dx ∧ dy + yx dy ∧ dy = x3 dx ∧ dy,

since dy ∧ dy = 0. The result is a 2–form (an area density) weighted by x3.

The wedge product satisfies the basic algebraic laws you would expect of a multiplication, with a twist

in the commutativity that reflects orientation. However, we must introduce a key lemma.

Lemma 5.1 (Alternation identities on a vector space). Let V be a real vector space and T k(V ∗) the

space of k–tensors on V . Write Altk : T k(V ∗)→ Altk(V ∗) for the alternation (skew–symmetrization)

Altk(τ)(v1, . . . , vk) :=
1

k!

∑
σ∈Sk

sgn(σ) τ(vσ(1), . . . , vσ(k)).

Then:

1. Projection/idempotence: Altk is a projection onto the alternating tensors: Altk ◦Altk = Altk,

and Altk(τ) = τ if τ is alternating.

2. Block alternation: For p, q ≥ 0 and α ∈ T p(V ∗), β ∈ T q(V ∗),

Altp+q
(
Altp(α)⊗ β

)
= Altp+q(α⊗ β) = Altp+q

(
α⊗Altq(β)

)
.

3. Block swap sign: Let τ ∈ Sp+q be the permutation that moves the first p slots behind the
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next q slots (i.e. 1, . . . , p, p+1, . . . , p+q 7→ p+1, . . . , p+q, 1, . . . , p). Then sgn(τ) = (−1)pq and

Altp+q(α⊗ β) = (−1)pq Altp+q(β ⊗ α).

Proof. (1) By definition Altk averages over all signed permutations, so applying it twice just reproduces

the same average: Altk ◦Altk = Altk. If τ is already alternating, permuting arguments only adds signs,

hence Altk(τ) = τ .

(2) In the sum defining Altp+q, the subgroup Sp × Sq ⊂ Sp+q permutes the first p and last q positions

independently. Alternating in the first p slots (or the last q) before alternating in all p+q slots does not

change the final average, hence the equalities.

(3) The permutation τ is the product of pq transpositions (move each of the p entries past q entries), so

sgn(τ) = (−1)pq. Since Altp+q averages over all permutations, precomposing with τ pulls out this sign

and swaps the two blocks, giving the identity. ■

Definition 5.6 (Wedge product via alternation). For ω ∈ Altp(V ∗) and η ∈ Altq(V ∗) set

ω ∧ η := Altp+q(ω ⊗ η) ∈ Altp+q(V ∗).

For a smooth manifold M , define (ω ∧ η)p at each p ∈ M by the above construction on TpM , and

note smoothness from smooth local coefficients.

Proposition 5.1 (Fundamental properties of the wedge). Let ω ∈ Ωp(M), η ∈ Ωq(M), θ ∈ Ωr(M). Then

1. Bilinearity: (aω1 + b ω2) ∧ η = aω1 ∧ η + b ω2 ∧ η, and similarly in the second slot.

2. Degree additivity: ω ∧ η ∈ Ωp+q(M).

3. Associativity: (ω ∧ η) ∧ θ = ω ∧ (η ∧ θ).

4. Graded commutativity: ω ∧ η = (−1)pq η ∧ ω.

5. Naturality under pullback: for a smooth f :M → N , f∗(ω ∧ η) = f∗ω ∧ f∗η.

Proof. All identities are pointwise, so fix p ∈M and work in V = TpM .
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(1) Bilinearity follows because both the tensor product and Alt are linear in each slot:

(aω1+bω2) ∧ η = Alt
(
(aω1+bω2)⊗ η

)
= a Alt(ω1 ⊗ η) + b Alt(ω2 ⊗ η).

(2) By definition ω ∧ η = Altp+q(ω ⊗ η) is alternating of degree p+q, hence lies in Altp+q(V ∗).

(3) Associativity:

(ω ∧ η) ∧ θ = Altp+q+r
(
(ω ∧ η)⊗ θ

)
= Altp+q+r

(
Altp+q(ω ⊗ η)⊗ θ

)
.

By Lemma (2) with the block sizes (p+q, r), Altp+q+r
(
Altp+q(ω⊗η)⊗θ

)
= Altp+q+r(ω⊗η⊗θ). Similarly,

ω ∧ (η ∧ θ) = Altp+q+r
(
ω ⊗Altq+r(η ⊗ θ)

)
= Altp+q+r(ω ⊗ η ⊗ θ).

Thus the two sides agree.

(4) Graded commutativity: Using Lemma (3) for the block swap permutation,

ω ∧ η = Altp+q(ω ⊗ η) = (−1)pq Altp+q(η ⊗ ω) = (−1)pq η ∧ ω.

(5) Naturality: At p ∈M and v1, . . . , vp+q ∈ TpM ,

(
f∗(ω ∧ η)

)
p
(v1, . . . , vp+q) = (ω ∧ η)f(p)

(
dfpv1, . . . , dfpvp+q

)
.

By definition and Lemma (2),

(ω ∧ η)f(p) = Altp+q
(
ωf(p) ⊗ ηf(p)

)
,

so the RHS equals

Altp+q

(
ωf(p) ◦ (dfp)⊗p ⊗ ηf(p) ◦ (dfp)⊗q

)
(v1, . . . , vp+q) =

(
(f∗ω) ∧ (f∗η)

)
p
(v1, . . . , vp+q),

which gives the claimed identity. ■

Two practical coordinate rules are worth recording.



De Rham Cohomology 75

Proposition 5.2 (Coordinate rules). Fix local coordinates (x1, . . . , xn).

1. dxi1 ∧ · · · ∧ dxip = 0 if two indices repeat.

2. If I = (i1 < · · · < ip) and J = (j1 < · · · < jq) have disjoint images, then

dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq = ϵ(I, J) dxk1 ∧ · · · ∧ dxkp+q ,

where (k1 < · · · < kp+q) is the ordered merge of I and J and ϵ(I, J) ∈ {±1} is the sign of the

permutation that reorders the concatenation (I, J) into increasing order.

Example 5.5 (From lengths to areas to volumes). On R3 with coordinates (x, y, z), the 2–form

dx ∧ dy measures oriented area in the xy–plane, dy ∧ dz does so in the yz–plane, and dz ∧ dx in the

zx–plane. The 3–form dx∧ dy ∧ dz measures oriented volume; if you reorder its factors, the sign keeps

track of orientation.

Remark 5.1 (Analogy with the cup product). Earlier we built a product on singular cohomology, the

cup product Hp(X)⌣ Hq(X)→ Hp+q(X), which was bilinear, natural under pullback, and graded

commutative. The wedge product on differential forms has exactly the same formal features. Later,

de Rham’s theorem will identify cohomology classes of closed forms with singular cohomology classes,

and under that identification the wedge corresponds to the cup:

[ω]⌣ [η] ←→ [ω ∧ η].

You can already feel the parallel in the “front part/back part” picture for the cup product and the

“concatenate and alternate” rule for the wedge.

5.3 The Exterior Derivative

At this point, we have built up a new language for talking about smooth geometry: differential forms.

These are objects that can be evaluated on tangent vectors at each point, and which can be combined

using the wedge product to produce higher–degree forms. We have seen how 0–forms (smooth functions)

measure a single vector at a time through their derivative, and how 1–forms can take in a direction
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and output a number describing the rate of change of functions along that direction. We have also seen

that k–forms measure oriented k–dimensional “parallelepipeds” in the tangent space, and that the wedge

product provides a natural way to combine these measurements into higher–dimensional ones.

But up to now, our operations have been purely algebraic: we can multiply forms with ∧, we can add

them, and we can scale them. There is still no way to differentiate a k–form to produce a (k + 1)–form,

generalising the way df turns a function into a 1–form. If such a process exists, it would let us measure

the infinitesimal change of a form across the boundary of a region, just as the derivative of a function

measures its infinitesimal change along a curve.

This idea should feel familiar. In cohomology, we had the coboundary operator δ, which took an n–

cochain (a measurement on n–chains) and produced an (n+1)–cochain that recorded the net measurement

along the boundary. A natural guess is that for smooth forms we can do the same: there should be an

operator

d : Ωk(M)→ Ωk+1(M)

that plays the role of δ, increasing degree by one and somehow encoding “boundary data”.

If this is to work, we must first decide what properties such an operator must satisfy. On 0–forms

(functions), we already know what it must do: df should be the usual differential from multivariable

calculus. Next, since we can multiply forms via ∧, we want d to interact with this product in the same way

δ interacted with the cup product: a graded Leibniz rule, with a sign depending on the degree. Finally,

if d is really a smooth counterpart to δ, then just as δ2 = 0, we must have d2 = 0: the “boundary of a

boundary is zero” principle.

Surprisingly, these simple demands force d to be unique if it exists, and they also tell us exactly how to

compute it in coordinates. Let us write them down clearly.

Definition 5.7 (Exterior derivative). Let M be a smooth manifold. The exterior derivative is a family

of R–linear maps

d : Ωk(M) −→ Ωk+1(M), k ≥ 0,

satisfying:

(i) (Agreement on functions) If f ∈ Ω0(M) = C∞(M), then df is the usual differential:

(df)p(v) = v(f), for p ∈M, v ∈ TpM.
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(ii) (Graded Leibniz rule) If ω ∈ Ωp(M) and η ∈ Ωq(M), then

d(ω ∧ η) = dω ∧ η + (−1)p ω ∧ dη.

(iii) (Nilpotence) d ◦ d = 0 on all forms.

The point of these axioms is that they do not merely describe d — they characterise it completely. We

now prove that such an operator exists, is unique, and has a simple local formula.

Theorem 5.1 (Existence and uniqueness of the exterior derivative). Let M be a smooth manifold. There

exists a unique family of R–linear maps

d : Ωk(M)→ Ωk+1(M) (k ≥ 0)

satisfying (i), (ii), and (iii). In any local coordinate chart (U ;x1, . . . , xn) the action of d is given by

the explicit formula

d

 ∑
I=(i1<···<ik)

ωI(x) dx
i1 ∧ · · · ∧ dxik

 =
∑
I

n∑
j=1

∂ωI
∂xj

(x) dxj ∧ dxi1 ∧ · · · ∧ dxik .

Proof. We proceed in two parts.

Uniqueness on a coordinate patch. Let D : Ω•(U) → Ω•+1(U) satisfy (i)–(iii) on an open set U with

coordinates (x1, . . . , xn). We claim that for every multiindex I = (i1 < · · · < ik) and smooth function f ,

D
(
f dxi1 ∧ · · · ∧ dxik

)
= (Df) ∧ dxi1 ∧ · · · ∧ dxik = df ∧ dxi1 ∧ · · · ∧ dxik . (1)

Indeed, by (i) we have Df = df . Next, observe that dxj = d(xj) by definition of the standard differential

on functions, and therefore

D(dxj) = D(d(xj)) = D2(xj) = 0 by (iii).

Using the graded Leibniz rule (ii) repeatedly, we obtain

D
(
f dxi1 ∧ · · · ∧ dxik

)
= (Df) ∧ dxi1 ∧ · · · ∧ dxik + (−1)0f D(dxi1 ∧ · · · ∧ dxik).
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Expanding the second term again by (ii) and using D(dxis) = 0 for each s shows it vanishes. Thus

(1) holds. Since every k–form on U has a unique expression
∑

I fI dx
i1 ∧ · · · ∧ dxik , linearity yields the

pointwise formula

D

(∑
I

fI dx
i1 ∧ · · · ∧ dxik

)
=
∑
I

dfI ∧ dxi1 ∧ · · · ∧ dxik ,

so D is uniquely determined on U .

Existence on Rn. On an open set U ⊂ Rn with standard coordinates, define an operator d : Ω•(U) →

Ω•+1(U) by the recipe just forced by uniqueness: for a simple monomial f dxi1 ∧ · · · ∧ dxik set

d
(
f dxi1 ∧ · · · ∧ dxik

)
:= df ∧ dxi1 ∧ · · · ∧ dxik ,

and extend R–linearly. We verify (i)–(iii).

(i) Agreement on functions. If k = 0 the rule reads d(f) = df , i.e. the usual differential

df =

n∑
j=1

∂f

∂xj
dxj .

(ii) Graded Leibniz rule. It suffices to check the rule on simple forms and extend by bilinearity. Write

ω = f α, η = g β with f, g ∈ C∞(U) and α, β wedge products of coordinate 1–forms. Then

ω ∧ η = (fg) (α ∧ β),

so by definition

d(ω ∧ η) = d(fg) ∧ α ∧ β = (f dg + g df) ∧ α ∧ β = dω ∧ η + (−1)degω ω ∧ dη,

because dω = df ∧ α and dη = dg ∧ β, and moving df past the degα = degω one–forms in α produces the

sign (−1)degω. (The general case follows by linearity.)

(iii) Nilpotence. Again check on monomials. For ω = f dxi1 ∧ · · · ∧ dxik ,

dω = df ∧ dxi1 ∧ · · · ∧ dxik .
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Then

d2ω = d(df) ∧ dxi1 ∧ · · · ∧ dxik − df ∧ d
(
dxi1 ∧ · · · ∧ dxik

)
,

where the minus sign is (−1)deg df = (−1)1. By our definition d(dxis) = 0, hence d(dxi1 ∧ · · · ∧ dxik) = 0.

Meanwhile

d(df) = d

∑
j

∂f

∂xj
dxj

 =
∑
j,ℓ

∂2f

∂xℓ ∂xj
dxℓ ∧ dxj =

∑
ℓ<j

( ∂2f

∂xℓ ∂xj
− ∂2f

∂xj ∂xℓ

)
dxℓ ∧ dxj = 0,

by equality of mixed partials. Thus d2ω = 0 for monomials, and hence for all forms.

Therefore d satisfies (i)–(iii) on U ⊂ Rn.

Gluing and global uniqueness. Let {(Uα;x1α, . . . , xnα)} be a smooth atlas on M . On each Uα we have just

defined an operator dα with (i)–(iii). We must check that on overlaps Uα ∩ Uβ these definitions agree, so

they glue to a global d.

Fix an overlap W = Uα ∩ Uβ. Both dα and dβ satisfy (i)–(iii) on W , and they agree on functions:

for f ∈ C∞(W ), both give the usual differential df independent of coordinates. By the uniqueness on a

coordinate patch argument (applied now to the open set W ), an operator satisfying (i)–(iii) is uniquely

determined by its action on functions. Hence dα = dβ on W . The family {dα} therefore glues to a globally

defined d : Ω•(M)→ Ω•+1(M) with the stated local formula.

Finally, if D is any other operator on M satisfying (i)–(iii), then for each chart Uα the restrictions D|Uα

and d|Uα both satisfy the axioms and agree on functions; by the uniqueness-on-a-patch argument they

coincide on Uα, hence D = d globally.

This proves existence and uniqueness. ■

Remark 5.2 (What the formula is saying). In coordinates, a k–form is a linear combination of basic

wedges dxi1 ∧ · · · ∧ dxik with smooth coefficients ωI(x). The exterior derivative simply differentiates

the coefficients and wedges in one more dxj in front. The antisymmetry of ∧ ensures signs are handled

correctly, and the symmetry of second derivatives forces d2 = 0.

Example 5.6. On R2 with coordinates (x, y),

d
(
f(x, y) dx

)
=
(
fx dx+ fy dy

)
∧ dx = fy dy ∧ dx = − fy dx ∧ dy,
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and

d
(
x dy

)
= dx ∧ dy, d

(
y dx

)
= − dx ∧ dy.

We now establish the basic calculus of the exterior derivative d : Ωk(M)→ Ωk+1(M). Keep the following

mental picture throughout: d should (i) agree with the ordinary differential on functions, (ii) distribute

over wedges with the graded sign, and (iii) square to zero. The proofs below make these expectations

precise.

Proposition 5.3 (Linearity and degree shift). For each k ≥ 0, the map d : Ωk(M) → Ωk+1(M) is

R-linear and raises degree by one.

Proof. Linearity: for ω, η ∈ Ωk(M) and a, b ∈ R, the defining coordinate formula for d is linear in the

coefficient functions and in partial derivatives, hence d(aω + bη) = a dω + b dη.

Degree: if locally ω =
∑

I ωI dx
i1 ∧ · · · ∧ dxik , then

dω =
∑
I,j

∂ωI
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik ∈ Ωk+1(M).

■

Proposition 5.4 (Behaviour on functions and on 1-forms). Let (U ;x1, . . . , xn) be a coordinate chart.

1. If f ∈ Ω0(M) = C∞(M), then on U , df =
∑n

j=1
∂f
∂xj

dxj .

2. If α =
∑n

j=1 aj dx
j ∈ Ω1(M), then on U ,

dα =
∑

1≤i<j≤n

(∂aj
∂xi
− ∂ai
∂xj

)
dxi ∧ dxj .

In particular, d(dxj) = 0 for each j.

Proof. (1) is the very definition of df .

(2) Using the graded Leibniz rule (with p = 0 for functions) and bilinearity,

dα =
∑
j

d(aj dx
j) =

∑
j

daj ∧ dxj =
∑
j,i

∂aj
∂xi

dxi ∧ dxj .
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Split the sum into i < j and i > j, and use dxi ∧ dxj = −dxj ∧ dxi to obtain

∑
i<j

(
∂aj
∂xi
− ∂ai
∂xj

)
dxi ∧ dxj .

Finally, d(dxj) = d(d(xj)) = 0 by nilpotence (proved below) applied to the function xj . ■

Proposition 5.5 (Coordinate expansion for general forms). On a chart (U ;x1, . . . , xn), every ω ∈ Ωk(U)

can be written uniquely as ω =
∑
I

ωI dx
i1∧· · ·∧dxik , where I = (i1 < · · · < ik) ranges over increasing

k-multiindices and ωI ∈ C∞(U). Then

dω =
∑
I

n∑
j=1

∂ωI
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik .

Proof. Write ω as stated. Using linearity and that d(dxim) = 0 for each m,

dω =
∑
I

dωI ∧ dxi1 ∧ · · · ∧ dxik =
∑
I,j

∂ωI
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik .

This is already in increasing-order form in the first wedge factor; if desired one can reorder to the canonical

increasing multiindex with the appropriate sign, but the displayed expression is valid as it stands and

transforms correctly on overlaps (see the next proposition). ■

Proposition 5.6 (Compatibility with restriction and coordinate changes). If V ⊂ U ⊂M are open, then

for all ω ∈ Ω•(U),

(dω)
∣∣
V

= d
(
ω
∣∣
V

)
.

Equivalently, for an inclusion ι : V ↪→ U , ι∗(dω) = d(ι∗ω). Consequently the local coordinate formula

for d above defines a global form, independent of chart.

Proof. Both (dω)|V and d(ω|V ) are computed in any chart on V from the same coefficient functions ωI |V

by the same expression; hence they agree on V . For independence of chart, note that on chart overlaps

both coordinate computations produce the same smooth (k + 1)-form (they agree after restriction), so

they glue to a global form. ■
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Proposition 5.7 (Naturality under pullback). Let f :M → N be smooth. Then for every ω ∈ Ω•(N),

f∗(dω) = d(f∗ω).

Proof. Work locally on a chart (V ; y1, . . . , ym) of N . Any ω ∈ Ωk(V ) can be written as ω =
∑
J

hJ dy
j1 ∧

· · · ∧ dyjk , with hJ ∈ C∞(V ). We first check the identity on the algebra generators h ∈ C∞(V ) and

dyi = d(yi).

For a function h, f∗(dh) = d(h ◦ f) = d(f∗h) by the chain rule (the definition of df). Next, for a

coordinate 1-form,

f∗(dyi) = d(yi ◦ f) = d(f∗yi),

again by the chain rule. Since pullback commutes with wedge and is R-linear, for a simple monomial

h dyj1 ∧ · · · ∧ dyjk we have

f∗
(
d(h dyJ)

)
= f∗

(
dh ∧ dyJ + h d(dyJ)

)
(Leibniz and d(dyi) = 0)

= d(f∗h) ∧ f∗(dyJ)

= d
(
f∗(h dyJ)

)
,

where dyJ = dyj1 ∧ · · · ∧ dyjk . By linearity the equality holds for ω. Since the statement is local on N , the

result globalizes. ■

Proposition 5.8 (Nilpotence). For every ω ∈ Ωk(M), one has d2ω = 0.

Proof. The claim is local. In coordinates (x1, . . . , xn), write ω =
∑
I

ωI dx
i1 ∧ · · · ∧ dxik . Then, by the

coordinate formula,

dω =
∑
I,j

∂ωI
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik .

Applying d again and using bilinearity,

d2ω =
∑
I,j,ℓ

∂2ωI
∂xℓ ∂xj

dxℓ ∧ dxj ∧ dxi1 ∧ · · · ∧ dxik .

Now split the double sum in (j, ℓ) into ordered pairs with j < ℓ and j > ℓ, and use antisymmetry
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dxℓ ∧ dxj = −dxj ∧ dxℓ. Grouping the two contributions for each unordered pair {j, ℓ} gives

1

2

∑
I,j,ℓ

(
∂2ωI
∂xℓ ∂xj

− ∂2ωI
∂xj ∂xℓ

)
dxℓ ∧ dxj ∧ dxi1 ∧ · · · ∧ dxik = 0,

by equality of mixed partials. Hence d2ω = 0 on the chart, and therefore globally. ■

Proposition 5.9 (Product rule with functions). For f ∈ C∞(M) and ω ∈ Ωk(M),

d(f ω) = df ∧ ω + f dω.

Proof. This is the graded Leibniz rule with p = 0, so there is no sign. ■

Example 5.7. Take the following two computations for example

1. On R2, α = (x2 + y) dx+ (xy) dy. Then

dα =
( ∂
∂x

(xy)− ∂

∂y
(x2 + y)

)
dx ∧ dy = (y − 1) dx ∧ dy.

2. On R3, for ω = P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy,

dω =

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx ∧ dy ∧ dz.

These mirror familiar vector–calculus identities under the standard dictionary.

Remark 5.3 (Parallel with cohomology). In singular cohomology, the coboundary δ took an n–cochain

and produced an (n+ 1)–cochain by evaluating it on the boundary of a chain. Here, d takes a k–form

and produces a (k+1)–form by differentiating its coefficients and wedging in an extra dxj — a smooth

analogue of the same idea. The axiom d2 = 0 is the geometric incarnation of δ2 = 0.

5.3.1 Closed and Exact Forms

Up to this point we have studied the exterior derivative d as a geometric differentiation operator, built its

formula, and proved its essential properties: linearity, degree shift, Leibniz rule, nilpotence, and naturality.

But d2 = 0 has a striking algebraic consequence that deserves its own language.
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Observe: if ω = dη for some η, then dω = d(dη) = 0 automatically. Thus, being the derivative of

something forces a form to have vanishing derivative. Forms with zero derivative are often called “curl-free”

or “divergence-free” in vector calculus, depending on their degree. We now promote this into formal

terminology.

Definition 5.8 (Closed and exact forms). Let M be a smooth manifold and k ≥ 0.

• A k–form ω ∈ Ωk(M) is called closed if dω = 0.

• A k–form ω ∈ Ωk(M) is called exact if there exists η ∈ Ωk−1(M) such that ω = dη.

By convention, every 0–form is closed iff it is locally constant, and there are no nonzero exact 0–forms

except the zero function.

The motivation for these names is that closed forms have “no boundary” in the sense that their

d–derivative vanishes, while exact forms are literally the d–derivative of some other form.

The following proposition is the basic relationship between the two notions.

Proposition 5.10 (Exact =⇒ closed). Every exact form is closed: if ω = dη for some η, then dω = 0.

Proof. Immediate from the nilpotence property d2 = 0:

dω = d(dη) = 0.

■

Remark 5.4. The converse (closed =⇒ exact) is not true on general manifolds — the obstruction is

precisely what de Rham cohomology measures. However, in special domains, such as star-shaped

open sets in Rn, the converse does hold; this is Poincaré’s Lemma, which we will prove later.

Before moving further, let us check that the space of closed forms is an algebraic subspace of Ωk(M),

and that exact forms form a subspace of closed forms.
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Proposition 5.11 (Algebra of closed and exact forms). Fix k ≥ 0. Then:

1. The set Zk(M) := {ω ∈ Ωk(M) | dω = 0} of closed k–forms is a vector subspace of Ωk(M).

2. The set Bk(M) := {ω ∈ Ωk(M) | ω = dη for some η ∈ Ωk−1(M)} of exact k–forms is a vector

subspace of Ωk(M).

3. Bk(M) ⊆ Zk(M).

Proof. (1) If ω1, ω2 are closed, d(ω1 + ω2) = dω1 + dω2 = 0 + 0 = 0, and for a ∈ R, d(aω1) = a dω1 = 0.

(2) If ω1 = dη1 and ω2 = dη2 are exact, then for a, b ∈ R,

aω1 + bω2 = a dη1 + b dη2 = d(aη1 + bη2),

so the combination is exact.

(3) Already proved: d(dη) = 0 for any η. ■

It is also important to know how closedness and exactness behave with respect to wedge products.

Proposition 5.12 (Wedge products of closed/exact forms). Let ω ∈ Ωp(M), η ∈ Ωq(M).

1. If ω and η are closed, then ω ∧ η is closed.

2. If ω is exact and η is closed, then ω ∧ η is exact.

Proof. (1) If dω = 0 and dη = 0, then

d(ω ∧ η) = dω ∧ η + (−1)p ω ∧ dη = 0 ∧ η + (−1)p ω ∧ 0 = 0,

so ω ∧ η is closed.

(2) If ω = dα and dη = 0, then

ω ∧ η = (dα) ∧ η = d(α ∧ η)− (−1)p−1 α ∧ dη = d(α ∧ η)− (−1)p−1 α ∧ 0 = d(α ∧ η),

which is exact. ■
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Example 5.8 (Vector calculus analogy in R3). If we identify 1–forms with vector fields via the

Euclidean metric, closed 1–forms correspond to curl-free vector fields, and exact 1–forms correspond

to gradient vector fields. The identity grad ◦ grad = 0 is the same as d2 = 0, and curl(gradf) = 0 is

just “exact =⇒ closed” in disguise.

5.4 Poincaré’s Lemma

Up to now we have seen that d2 = 0 makes “being a derivative” (exact) imply “having zero derivative”

(closed). The natural question is when the converse holds: if a form has zero derivative, must it be a

derivative of something? In vector calculus you have met this as “curl–free ⇒ gradient” on nice domains.

Poincaré’s Lemma is the precise higher–degree statement in the smooth setting. The key geometric idea is

that on a region which can be linearly contracted to a point, you can build a primitive by “integrating

along the contraction.” We now make that idea precise and carry out the full calculation.

Definition 5.9 (Star-shaped set). An open set U ⊂ Rn is star-shaped (with respect to 0) if for every

x ∈ U and every t ∈ [0, 1] the point t x lies in U . Equivalently, the straight line segment from 0 to x

is contained in U .

The straight-line contraction H : [0, 1]× U → U , H(t, x) = t x, is the tool that lets us “accumulate” a

primitive. We will build an explicit linear operator K : Ωk(U)→ Ωk−1(U) (for k ≥ 1) such that

dK +Kd = id on Ωk(U) (k ≥ 1).

When dω = 0, this identity reduces to ω = d(Kω), producing a global primitive. The operator K is the

rigorous version of “integrate along the radial paths from 0 to x.”

Theorem 5.2 (Poincaré’s Lemma on star-shaped domains). Let U ⊂ Rn be star-shaped (with respect to

0). If ω ∈ Ωk(U) is closed and k ≥ 1, then ω is exact. Equivalently, Hk
dR(U) = 0 for all k ≥ 1.

Proof. We give a completely explicit construction. Write the radial vector field R(x) =
∑n

i=1 xi
∂
∂xi

. For

k ≥ 1 define a linear operator K : Ωk(U)→ Ωk−1(U) pointwise by

(Kω)x(v1, . . . , vk−1) :=

∫ 1

0
t k−1 ωtx

(
Rtx, (dHt)xv1, . . . , (dHt)xvk−1

)
dt, (∗)
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where Ht(x) = t x and (dHt)x = t Id. Intuitively: at the point x we evaluate ω along the contracted point

tx, feed it the radial vector Rtx (the velocity of t 7→ tx), and transport the remaining arguments by the

linear map dHt = t Id. The weight tk−1 is precisely the Jacobian factor ensuring the algebra works out.

Step 1: K is well-defined and smooth. For fixed x and vectors v1, . . . , vk−1, the integrand is smooth in t

because ω is smooth and t 7→ tx is smooth; compactness of [0, 1] yields a smooth output in (x; v1, . . . , vk−1).

Multilinearity and alternation are inherited from ω, hence Kω is a (k − 1)–form.

Step 2: The homotopy identity dK +Kd = id on Ωk(U) for k ≥ 1. Fix ω ∈ Ωk(U) with k ≥ 1 and

x ∈ U . Consider the map

F (t) := (Ht)
∗ω ∈ Ωk(U).

We compute its derivative using the chain rule for pullbacks along the flow Ht:

d

dt
F (t) =

d

dt
(Ht)

∗ω = (Ht)
∗(LRω),

where LR denotes differentiation along the vector field R. (Indeed, d
dtHt(x) = RHt(x).) Now invoke the

Cartan identity LRω = d(ιRω) + ιR(dω), valid for all smooth forms and vector fields (it follows directly

from the graded Leibniz rule for d and the definitions of pullback and contraction ιR). We obtain

d

dt
(Ht)

∗ω = (Ht)
∗(d(ιRω)) + (Ht)

∗(ιR(dω)) = d
(
(Ht)

∗ιRω
)

+ (Ht)
∗ιR(dω),

where we used that d commutes with pullback.

Integrate this identity from t = 0 to t = 1:

(H1)
∗ω − (H0)

∗ω =

∫ 1

0
d
(
(Ht)

∗ιRω
)
dt +

∫ 1

0
(Ht)

∗ιR(dω) dt.

Note that H1 = idU , so (H1)
∗ω = ω, while H0 collapses U to 0, hence (H0)

∗ω = 0 for k ≥ 1 (a k–form

pulled back along a constant map is zero). Thus

ω = d

(∫ 1

0
(Ht)

∗ιRω dt

)
+

(∫ 1

0
(Ht)

∗ιR(dω) dt

)
. (†)

Finally, a straightforward comparison of (∗) with the definition of pullback shows that

∫ 1

0
(Ht)

∗ιRω dt = Kω and

∫ 1

0
(Ht)

∗ιR(dω) dt = K(dω).
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Plugging these into (†) yields the homotopy identity

d(Kω) + K(dω) = ω (k ≥ 1).

Step 3: Closed ⇒ exact. If dω = 0, the identity becomes ω = d(Kω), so ω is exact with primitive Kω.

This completes the proof. ■

Remark 5.5 (Coordinate formula for K). If ω =
∑

|I|=k fI(x) dxI with dxI = dxi1 ∧ · · · ∧ dxik , then

(Kω)(x) =
∑
|I|=k

k∑
j=1

(−1)j−1

(∫ 1

0
tk−1 xij fI(tx) dt

)
dxi1 ∧ · · · d̂xij · · · ∧ dxik .

This is exactly the “integrate coefficients along radial segments” recipe, and one can verify dK+Kd = id

directly from this formula by differentiating under the integral sign and using the product rule.

Example 5.9 (The case k = 1 revisited: curl–free ⇒ gradient). Let α =
∑n

i=1 ai(x) dxi be a 1–form

on a star-shaped U with dα = 0, which is the classical symmetry condition ∂ai/∂xj = ∂aj/∂xi. The

operator K produces a potential

f(x) =

∫ 1

0
αtx(x) dt =

∫ 1

0

n∑
i=1

ai(tx)xi dt,

and one checks directly that df = α. Thus a curl–free vector field on a star-shaped domain is a

gradient field, the familiar fact from multivariable calculus.

Corollary 5.1 (Contractible manifolds). If M is a smooth manifold that is contractible (there exists a

smooth homotopy H : [0, 1]×M →M from idM to a constant map), then every closed k–form on M

is exact for k ≥ 1; in particular Hk
dR(M) = 0 for k ≥ 1.

Heuristic. Cover M by star-shaped coordinate neighborhoods; by the lemma, closed forms are locally

exact. A standard partition-of-unity/gluing argument then produces a global primitive on a contractible

M . Alternatively, the proof of Theorem 5.2 adapts verbatim to any smooth contraction H, replacing

Ht(x) = tx and R by the homotopy H and its velocity vector field ∂tH; the same calculation yields

dK +Kd = id. ■
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Corollary 5.2 (Closed ⇒ exact in Rn). Every smooth closed k–form on Rn with k ≥ 1 is exact. In

other words,

Hk
dR(Rn) = 0 for all k ≥ 1.

Proof. Rn is star–shaped with respect to the origin. Applying Poincaré’s Lemma to U = Rn gives the

conclusion directly. ■

Example 5.10. A constant 1–form α = a1 dx1 + · · ·+ an dxn is closed, since all its coefficients have

zero derivatives. By the corollary, α = df for some f . Indeed, one can take

f(x) = a1x1 + · · ·+ anxn.

Similarly, a 2–form with constant coefficients is d of a 1–form whose coefficients are linear functions

of x.

Remark 5.6 (Exact forms are closed: d2 = 0 revisited). From our earlier work we already know that

d ◦ d = 0 on all forms. We also know that every exact form is automatically closed.

Poincaré’s Lemma provides a satisfying converse on contractible sets: there, closed ⇒ exact, so we

have a perfect equivalence between “closed” and “exact” forms. This is precisely the d–analogue of

the fact in singular cohomology that, on a contractible space, every cocycle is a coboundary.

5.5 Generalised Stokes’ Theorem

Up to this point, our story has had two parallel threads.

On the algebraic topology side, we began with chains, boundaries, and homology groups. We then

turned the picture around and looked at cochains, coboundaries, and cohomology. There, the coboundary

operator δ had a simple but profound meaning: it measured how a cochain on a region was determined by

its values on the boundary of that region.

On the smooth side, we have just built the language of differential forms: smoothly varying multilinear

functionals that can be wedged together, pulled back along smooth maps, and differentiated using the

exterior derivative d. Here too, d raises degree by one and satisfies d2 = 0. Already, the parallel is
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impossible to miss:

δ ←→ d.

The generalised Stokes theorem is the moment when these two threads meet: it says, in effect, that

integrating dω over a region is exactly the same as integrating ω over the boundary of that region. In

other words, d is the geometric incarnation of the cohomological coboundary.

Seen from this angle, Stokes’ theorem is not a bolt from the blue, but the inevitable geometric realisation

of the algebraic principles we already know. If ω is a (n− 1)–form on an n–dimensional space, it is the

smooth analogue of an (n− 1)–cochain. Integrating ω over the boundary ∂M is the smooth analogue of

evaluating a cochain on a boundary chain. And integrating dω over M itself is the analogue of evaluating

the coboundary δω on the chain M .

To make this vivid, let us recall some familiar special cases, each of which is a different face of the same

principle.

• The Fundamental Theorem of Calculus states that for a smooth function F on an interval [a, b],

∫ b

a
F ′(x) dx = F (b)− F (a).

This is nothing more than Stokes’ theorem for 0–forms on a 1–dimensional manifold: dF = F ′ dx is

a 1–form, and the boundary of [a, b] is {b} − {a}.

• In R2, Green’s theorem says:

∮
∂R
P dx+Qdy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dx dy.

Here P dx+Qdy is a 1–form, its exterior derivative is d(P dx+Qdy) =
(
∂Q
∂x −

∂P
∂y

)
dx∧ dy, and the

theorem asserts that integrating dω over the region is the same as integrating ω over its boundary.

• In R3, the Divergence theorem says:

∫∫
∂V

F · n dS =

∫∫∫
V
(∇ · F) dV.

If we regard F as a 2–form via the Hodge star, this is again the same pattern.
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Each time, we see the same structure:

∫
∂(region)

ω =

∫
region

dω.

The power of the generalised Stokes theorem is that it works on any oriented smooth manifold, not just

subsets of Euclidean space, and for any degree of form, not just those corresponding to vector fields or

functions.

Remark 5.7. From the cohomological perspective, Stokes’ theorem is the statement that integration

provides a pairing between de Rham cohomology and singular homology that is perfectly compatible

with the coboundary–boundary duality. From the geometric perspective, it says that d computes the

infinitesimal change of a quantity, and integrating over a region “accumulates” this change into a net

flux across the boundary.

Before we can state the theorem in its final form, we must carefully set up:

1. what it means to integrate a differential form over a manifold (possibly with boundary),

2. how to orient boundaries consistently with the interior,

3. and how to interpret the boundary ∂M of a general smooth manifold M .

We turn to these points now.

Definition 5.10 (Manifold with boundary). An n–dimensional smooth manifold with boundary is a

space in which every point has a neighbourhood diffeomorphic to an open set in the closed half-space

Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}.

The boundary ∂M consists of those points mapping to {xn = 0} under some (and hence any) such

chart.

Example 5.11. The closed unit disk D2 ⊂ R2 is a 2–manifold with boundary ∂D2 = S1. The cylinder

S1 × [0, 1] is a 2–manifold with boundary consisting of two disjoint circles S1 × {0} and S1 × {1}.
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Definition 5.11 (Oriented manifold with boundary and boundary orientation). Let M be a smooth

n–manifold with (possibly empty) boundary ∂M . An orientation on M is a choice of orientation

class on each tangent space that varies smoothly. For p ∈ ∂M there is a canonical orientation on ∂M ,

called the boundary orientation: a basis (v1, . . . , vn−1) of Tp(∂M) is positively oriented if and only if

(νp, v1, . . . , vn−1) is a positively oriented basis of TpM , where νp is a chosen outward pointing normal

to ∂M in M at p.

Example 5.12. In the interval [a, b] ⊂ R with the standard orientation, the boundary {a, b} in-

herits the orientation in which b is counted positively and a negatively. In the unit disk D2 with

counterclockwise orientation, the induced orientation on ∂D2 = S1 is the counterclockwise one you

expect.

Definition 5.12 (Integration of top forms and compatibility with pullback). IfM is an oriented n–manifold

(with or without boundary) and ω ∈ Ωn(M) has compact support, define
∫
M ω by choosing an oriented

atlas {(Uα, φα)} with φα : Uα → Vα ⊂ Rn and a partition of unity {ρα} subordinate to {Uα}:∫
M
ω :=

∑
α

∫
Vα

(φ−1
α )∗(ρα ω).

This is independent of choices. If f : N → M is an orientation-preserving diffeomorphism and

η ∈ Ωn(M) has compact support, then

∫
N
f∗η =

∫
M
η.

Remark 5.8. If ω is not of top degree (degω < n), it cannot be integrated over all of M , but it can

be integrated over a k–dimensional oriented submanifold S ⊂M with k = degω. In that case we use

the inclusion map i : S ↪→M and integrate the pullback i∗ω over S.

Example 5.13. Let M = R3 with its standard orientation and let S be the unit circle in the

xy–plane oriented counterclockwise. If ω = x dy is a 1–form on R3, then i∗ω on S is the 1–form

cos t d(sin t) = cos2 t dt in the usual parametrisation t 7→ (cos t, sin t, 0). Integrating over S means

integrating this pullback over t ∈ [0, 2π].

Finally, note the definition of compact support.
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Definition 5.13 (Compact support). Let X be a topological space and f : X → R a continuous function.

We say that f has compact support if the closure of the set

supp(f) := {x ∈ X | f(x) ̸= 0}

is a compact subset of X. Similarly, a differential form ω on a smooth manifold M is said to have

compact support if supp(ω) is compact in M .

Compact support intuitively means that the object “vanishes outside a bounded region” in M and

does so in a way that leaves no stray limit points. This is crucial in integration theory: it ensures the

integral is finite even on non-compact domains and allows localisation arguments to work cleanly without

convergence issues.

We now have all the geometric ingredients to state Stokes’ theorem in full generality. The only input is

a differential form ω of degree n− 1 on an oriented n–manifold M with boundary. On the left-hand side

of the formula will be the integral of dω over the interior, and on the right-hand side the integral of ω over

the boundary with its induced orientation.

Theorem 5.3 (Generalized Stokes’ Theorem). Let M be a compact, oriented smooth n–manifold with

boundary ∂M , and let ω ∈ Ωn−1(M). Then

∫
M
dω =

∫
∂M

ι∗ω,

where ι : ∂M ↪→M is the inclusion and the integral on ∂M uses the boundary orientation.

We prove the theorem by reducing to the elementary case of regions in Rn via a sequence of local

statements. For clarity, we isolate these as lemmas.

Lemma 5.3.1 (Local normal form near the boundary). For every p ∈ ∂M there exists a coordinate chart

φ : U →W ⊂ Hn := {x ∈ Rn : xn ≥ 0} such that φ(U ∩ ∂M) =W ∩ {xn = 0}, φ is an orientation-

preserving diffeomorphism onto its image, and the boundary orientation on U ∩ ∂M corresponds to

the standard orientation on {xn = 0} ∼= Rn−1 (i.e. the one for which (−∂xn , e1, . . . , en−1) is positively

oriented in Rn).
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Proof. This is the standard collar chart construction. Choose any boundary chart sending p to 0 with

image in Hn and such that ∂M goes to {xn = 0}. Precompose with an orientation-preserving linear change

of variables (if necessary) so that the differential at p carries an outward normal to −∂xn . Because the

outward normal at the boundary points into the region xn < 0, the rule from the definition ensures the

induced boundary orientation is the standard one on {xn = 0}. Shrinking the chart if needed yields the

claim. ■

Lemma 5.3.2 (Stokes on a rectangular box in Rn). Let Q =
∏n
i=1[ai, bi] ⊂ Rn with the standard

orientation, and let α ∈ Ωn−1(Q) be smooth. Then

∫
Q
dα =

∫
∂Q
α,

where ∂Q is oriented by the outward normal first convention.

Proof. Write any (n− 1)–form on Q uniquely as

α =

n∑
i=1

(−1)i−1Ai(x) dx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

with smooth coefficient functions Ai : Q→ R. A direct computation gives

dα =
n∑
i=1

∂Ai
∂xi

(x) dx1 ∧ · · · ∧ dxn.

Thus ∫
Q
dα =

n∑
i=1

∫
Q

∂Ai
∂xi

(x) dx =
n∑
i=1

(∫
∏

j ̸=i[aj ,bj ]

∫ bi

ai

∂Ai
∂xi

dxi dxî

)
,

where dx abbreviates dx1 · · · dxn and dxî is the product over j ̸= i. By the Fundamental Theorem of

Calculus,

∫ bi

ai

∂Ai
∂xi

(x) dxi = Ai(x1, . . . , xi−1, bi, xi+1, . . . , xn)−Ai(x1, . . . , xi−1, ai, xi+1, . . . , xn).

Hence ∫
Q
dα =

n∑
i=1

(∫
∏

j ̸=i[aj ,bj ]
Ai(· · · , bi, · · · ) dxî −

∫
∏

j ̸=i[aj ,bj ]
Ai(· · · , ai, · · · ) dxî

)
.
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Now compare with the boundary integral. The face F+
i given by xi = bi inherits orientation so that

(ν, basis of TF+
i ) matches the orientation of Q, with outward normal ν = +∂xi . The induced oriented

volume element on F+
i is dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn, and α|F+

i
restricts to (−1)i−1Ai(· · · , bi, · · · ) dx1 ∧

· · · ∧ d̂xi ∧ · · · ∧ dxn. Thus ∫
F+
i

α =

∫
∏

j ̸=i[aj ,bj ]
Ai(· · · , bi, · · · ) dxî.

Similarly, for the face F−
i given by xi = ai, the outward normal is −∂xi , and the induced orientation

contributes a minus sign: ∫
F−
i

α = −
∫
∏

j ̸=i[aj ,bj ]
Ai(· · · , ai, · · · ) dxî.

Summing over all faces,

∫
∂Q
α =

n∑
i=1

(∫
F+
i

α+

∫
F−
i

α

)
=

n∑
i=1

(∫
∏

j ̸=i[aj ,bj ]
Ai(· · · , bi, · · · ) dxî −

∫
∏

j ̸=i[aj ,bj ]
Ai(· · · , ai, · · · ) dxî

)
,

which matches
∫
Q dα obtained above. This proves the lemma. ■

Lemma 5.3.3 (Change of variables for top forms). Let U, V ⊂ Rn be open, Φ : U → V a diffeomorphism,

and η ∈ Ωn(V ) compactly supported. If Φ is orientation-preserving, then

∫
U
Φ∗η =

∫
V
η.

If Φ is orientation-reversing, the integral acquires a minus sign.

Proof. Write η = f(y) dy1 ∧ · · · ∧ dyn in local coordinates on V with f compactly supported. Then

Φ∗η = (f ◦ Φ) det(DΦ) dx1 ∧ · · · ∧ dxn, and the claim is exactly the classical multidimensional change-of-

variables formula from advanced calculus. The sign is the sign of det(DΦ). ■

Lemma 5.3.4 (Local-to-global via partition of unity). Let M be as in the theorem. Suppose there exists
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an open cover {Uα} of M such that for every α and every ω ∈ Ωn−1(M) with supp(ω) ⊂ Uα we have

∫
M
dω =

∫
∂M

ι∗ω.

Then the equality holds for all ω ∈ Ωn−1(M).

Proof. Choose a smooth partition of unity {ρα} subordinate to {Uα}. Because d is linear and obeys the

Leibniz rule,

d(ρα ω) = dρα ∧ ω + ρα dω.

Summing over α and using
∑

α ρα ≡ 1,

∑
α

d(ρα ω) =
(∑

α

dρα

)
∧ ω +

(∑
α

ρα

)
dω = 0 ∧ ω + dω = dω.

Integrate over M and use linearity:

∫
M
dω =

∑
α

∫
M
d(ρα ω).

By hypothesis each ρα ω is supported in Uα, hence

∫
M
d(ρα ω) =

∫
∂M

ι∗(ρα ω). Summing and using ι∗

linear, ∫
M
dω =

∑
α

∫
∂M

ι∗(ρα ω) =

∫
∂M

ι∗
(∑

α

ρα ω
)
=

∫
∂M

ι∗ω.

■

Lemma 5.3.5 (Straightening a single chart to a half–box). Let (U,φ) be a boundary chart as in

Lemma 5.3.1, with φ : U → W ⊂ Hn. Let K ⊂ U be compact and ω ∈ Ωn−1(M) with supp(ω) ⊂

K ⊂ U . Then there exists a bounded Lipschitz domain D ⊂ Hn with piecewise smooth boundary,

and an orientation-preserving diffeomorphism Ψ :W → D such that

∫
U
dω =

∫
D
d
(
Ψ∗φ∗ω

)
,

∫
∂M∩U

ι∗ω =

∫
∂D∩{xn=0}

ι∗0
(
Ψ∗φ∗ω

)
,

where ι0 : ∂D ∩ {xn = 0} ↪→ D is the inclusion with the induced boundary orientation.

Proof. Since supp(ω) is compact in U , we may choose a compact K ⋐ U such that supp(ω) ⊂ K
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and φ(K) ⊂ W is compact in W . By standard smoothing/straightening (Whitney’s theorem or direct

polygonal approximation), there exists a bounded domain D ⊂ Hn with piecewise smooth boundary and a

diffeomorphism Ψ :W → D that is orientation-preserving and equals the identity on a neighbourhood of

φ(K) (so that supports are unaffected). Then, using Lemma 5.3.3 twice (for φ and Ψ) and the naturality

of pullback, ∫
U
dω =

∫
W
d(φ∗ω) =

∫
D
d(Ψ∗φ∗ω).

Likewise, ∂U is sent to {xn = 0} by φ with boundary orientation matching the standard one (Lemma 5.3.1),

and Ψ preserves orientation, so change of variables on the (n− 1)–dimensional boundary gives

∫
∂M∩U

ι∗ω =

∫
{xn=0}∩W

ι∗0(φ
∗ω) =

∫
{xn=0}∩D

ι∗0(Ψ
∗φ∗ω).

■

Proof of the Theorem. By Lemma 5.3.4 it suffices to prove the identity for (n− 1)–forms whose support is

contained in a single boundary chart or a single interior chart.

Interior support. If supp(ω) ⊂ U where U is a chart mapped diffeomorphically to an open set W ⊂ Rn,

then by change of variables (Lemma 5.3.3)

∫
M
dω =

∫
U
dω =

∫
W
d(φ∗ω).

But ∂M does not meet U , so ι∗ω ≡ 0 on ∂M and the right-hand side is 0. On the other hand, the integral

of d(φ∗ω) over W vanishes by a standard cutoff argument (expand support slightly to a box and use

Stokes on the box together with cancellation on the artificial boundary); alternatively, this is the special

case of Lemma 5.3.2 where the boundary integral is zero because ω vanishes near the (artificial) boundary.

Hence
∫
M dω = 0 =

∫
∂M ι∗ω.

Boundary-supported case. Assume supp(ω) ⊂ U for a boundary chart (U,φ) as in Lemma 5.3.1. By

Lemma 5.3.5 we may replace (U, ω) by a domain D ⊂ Hn and a form ω̃ := Ψ∗φ∗ω supported in D, so that

∫
U
dω =

∫
D
dω̃,

∫
∂M∩U

ι∗ω =

∫
∂D∩{xn=0}

ι∗0ω̃.

Now cover the compact set supp(ω̃) ⊂ D by finitely many closed rectangular boxes lying inside D and

meeting the boundary only along the plane {xn = 0}, with pairwise overlaps of measure zero (a finite grid
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suffices). Apply Lemma 5.3.2 on each box and sum; interior faces cancel in pairs (their orientations are

opposite), leaving only the contributions from the portions of the boundary lying in {xn = 0}. Precisely,

∫
D
dω̃ =

∫
∂D∩{xn>0}

ω̃ +

∫
∂D∩{xn=0}

ω̃.

But our boxes are chosen so that ω̃ has support disjoint from the artificial faces in {xn > 0}, hence their

contribution vanishes and we obtain

∫
D
dω̃ =

∫
∂D∩{xn=0}

ι∗0ω̃.

Finally, undo the straightening via Lemma 5.3.5:

∫
U
dω =

∫
∂M∩U

ι∗ω.

Combining the interior and boundary-supported cases and invoking Lemma 5.3.4 with a partition of

unity {ρα} subordinate to a finite atlas adapted to ∂M , we conclude

∫
M
dω =

∫
∂M

ι∗ω

for every ω ∈ Ωn−1(M), as claimed. ■

Remark 5.9 (On the notation for the boundary term). In the formal statement of the theorem, the term

on the right is written as ∫
∂M

ι∗ω,

where ι : ∂M ↪→M is the inclusion map. This is because ω is defined on M , while the integral is over

∂M , so one must first pull back ω to the boundary before integrating. In many contexts this pullback

is not written explicitly, and the theorem is presented as

∫
M
dω =

∫
∂M

ω,

with the understanding that the form on ∂M is obtained by restricting ω to tangent vectors lying in

the boundary. Both notations express the same content; the formal one simply makes the restriction
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explicit.

The generalized Stokes theorem now stands before us in its full generality. It is worth pausing to take

stock of what we have actually achieved.

At the outset of this section, we motivated the theorem by recalling three classical results: the

Fundamental Theorem of Calculus, Green’s theorem, and the divergence theorem. We now see clearly

that these are not separate facts, but rather special cases of a single, elegant principle: the integral of

a derivative over a region equals the integral of the original object over the region’s boundary. In each

case, the “derivative” and the “object” live in the appropriate space of differential forms, and the Stokes

formula is the bridge between them.

One striking feature is how little the proof depended on the global geometry of M . The argument was

local: we worked in coordinate charts and pieced the result together using a partition of unity. Yet the

conclusion is global, relating an n–dimensional integral over all of M to an (n− 1)–dimensional integral

over its entire boundary. This interplay of local and global is a hallmark of modern geometry and topology.

We should also stress the role of orientation. The formula

∫
M
dω =

∫
∂M

ι∗ω

depends crucially on the convention that the boundary inherits the outward normal first orientation.

Reversing the orientation of M reverses the sign of both integrals, while reversing the boundary orientation

alone negates the right-hand side. Many sign errors in vector calculus stem from neglecting this point.

Another important corollary concerns manifolds with empty boundary. If ∂M = ∅, Stokes’ theorem

immediately gives ∫
M
dω = 0

for every (n − 1)–form ω on M . In other words, exact n–forms always have zero total integral over a

closed manifold. This fact will reappear later in a cohomological guise: integration over a closed manifold

depends only on the cohomology class of the top-degree form.

While we have stated and proved the theorem for compact oriented manifolds with smooth boundary,

the statement extends in various directions. One can allow manifolds with corners, non-compact manifolds

with forms of compact support, and more general domains in Euclidean space. The proof adapts with

minor modifications in each case.

Finally, it is worth foreshadowing where we go from here. The operator d we have been using is, from
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the algebraic point of view, a coboundary map on the complex of differential forms:

0 −→ Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ · · ·

The identity d2 = 0 means we can speak of closed forms and exact forms, and take their quotient to

form cohomology groups. In the next section, we will see that these de Rham cohomology groups are

topological invariants of M , and that Stokes’ theorem is precisely the statement that integration of forms

pairs naturally with the homology of M . This will complete the bridge from our earlier study of singular

cohomology to the analytic language of differential forms.
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6 De Rham Cohomology

Up to now, our story has run along two intertwining threads.

On one side, we have built cohomology from a purely algebraic recipe: start with a graded collection of

objects, apply a coboundary operator δ satisfying δ2 = 0, and take the quotient of things killed by δ (the

cocycles) by those coming from something in a lower degree (the coboundaries). This construction was

entirely combinatorial — our cochains were abstract functions on simplices, their meaning coming only

from the algebraic structure.

On the other side, our detour into smooth manifolds brought us into the realm of differential forms,

objects that live directly on the manifold and know how to measure infinitesimal pieces of geometry. Here

too we encountered a graded collection (Ω•(M),∧) and a distinguished operator, the exterior derivative d,

which — intriguingly — satisfies d2 = 0.

The resemblance is not an accident. In fact, d behaves exactly like a coboundary operator: it takes an

n–form and produces an (n+ 1)–form, and applying it twice always gives zero. The generalized Stokes

theorem already hinted that exact forms (those of the form dη) vanish when integrated over cycles, and

that closed forms (those with dω = 0) are the natural ones to integrate. If you felt a déjà vu when hearing

those terms, you should: this is precisely the closed/coboundary dichotomy from cohomology theory, but

now in the smooth, analytic world.

At this point the mathematician’s instinct is clear: if the algebraic pattern is the same, let us build the

same quotient as before, but with forms instead of cochains. The result will be a new cohomology theory,

one that speaks the language of calculus on manifolds. We call it de Rham cohomology.

Why bother? Because the punchline, proved by de Rham in the 1930s, is astonishing: for smooth

manifolds, this analytic cohomology is isomorphic to singular cohomology with real coefficients. Two

completely different worlds — one discrete and combinatorial, the other smooth and analytic — turn out

to encode exactly the same topological information. This bridge allows us to use theorems from one side

to solve problems on the other, and it will eventually unify the entire theory we’ve been developing.

To set the stage, here is the analogy to keep in mind:
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Singular cohomology de Rham cohomology

Cochains Cn(X) n-forms Ωn(M)

δ : Cn → Cn+1 d : Ωn → Ωn+1

δ2 = 0 d2 = 0

ker δ/ im δ ker d/ im d

The plan is simple: we will define de Rham cohomology in direct parallel to the singular case, then

explore its properties, compute examples, and finally prove its equivalence to singular cohomology — thus

closing one of the most elegant circles in mathematics.

6.1 Definitions

We already have the blueprint from singular cohomology: take our graded collection of objects, apply the

special differential d that satisfies d2 = 0, and look at the kernel modulo the image. The only change is

that now our objects are not abstract cochains but smooth differential forms.

Definition 6.1 (de Rham cohomology). Let M be a smooth manifold. The space of closed n–forms is

ZndR(M) := {ω ∈ Ωn(M) | dω = 0 }.

The space of exact n–forms is

Bn
dR(M) := {ω ∈ Ωn(M) | ω = dη for some η ∈ Ωn−1(M) }.

The nth de Rham cohomology group of M is the quotient

Hn
dR(M) := ZndR(M) / Bn

dR(M).

Exactly as before, two closed n–forms represent the same class if their difference is exact. The group

Hn
dR(M) measures the obstruction to solving dη = ω for a given closed ω.

Remark 6.1 (Parallel with singular cohomology). If you mentally replace Ωn(M) with Cn(X) and d

with δ, this definition is identical to that of singular cohomology with real coefficients. The difference

is that the de Rham version lives entirely in the smooth world: forms can be integrated, multiplied
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by the wedge product, and manipulated with calculus. Later, de Rham’s theorem will tell us that

H•
dR(M) ∼= H•(M ;R).

Before we launch into theorems, let us build intuition through examples.

Example 6.1 (Rn). By Poincaré’s lemma, every closed form on Rn is exact. Therefore

H0
dR(Rn) ∼= R and Hk

dR(Rn) = 0 for k ≥ 1.

Geometrically: Rn has one connected component and no holes of any dimension.

Example 6.2 (S1). A closed 0–form is a locally constant function, hence constant on S1. So

H0
dR(S

1) ∼= R.

For degree 1, consider ω = dθ on the unit circle (here θ is the angular coordinate). It is closed:

dω = d2θ = 0. If ω = df were exact, f would have to be single-valued, but θ itself is not well-defined

globally on S1. Thus ω is not exact, and in fact H1
dR(S

1) ∼= R, generated by the class of dθ. All

higher-degree cohomology vanishes. This matches the familiar picture: S1 has one 1–dimensional hole

and nothing else.

Example 6.3 (The torus T 2 = S1 × S1). Let θ1, θ2 be the angular coordinates on the two S1 factors.

Then dθ1 and dθ2 are closed 1–forms which are not exact. They form a basis for H1
dR(T

2) ∼= R2.

The wedge dθ1 ∧ dθ2 is a closed 2–form, and it generates H2
dR(T

2) ∼= R. Again the cohomology

perfectly reflects the geometry: two independent 1–cycles and one 2–dimensional fundamental class.

Already in these basic cases, the pattern is clear: de Rham cohomology counts the “independent closed

forms modulo those that are d of something smaller,” and the result mirrors the hole-counting intuition

from singular cohomology, but now in a smooth, analytic setting.

The definition ofHn
dR(M) hides a familiar pattern: just as singular cohomology came from the coboundary

operator δ on cochains, de Rham cohomology comes from the exterior derivative d acting on differential

forms. Let us make that structure explicit.
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Definition 6.2 (The de Rham complex). For a smooth manifold M , consider the graded vector space

of differential forms

Ω•(M) :=
⊕
k≥0

Ωk(M),

equipped with the exterior derivative d : Ωk(M) → Ωk+1(M). The de Rham complex of M is the

cochain complex

0 −→ Ω0(M)
d−→ Ω1(M)

d−→ · · · d−→ Ωk(M)
d−→ Ωk+1(M)

d−→ · · · −→ 0.

Proposition 6.1 (d2 = 0 and the cochain condition). For every k ≥ 0 we have d ◦ d = 0 : Ωk(M) →

Ωk+2(M). Hence (Ω•(M), d) is a cochain complex.

Proof. This was established when we constructed d (Leibniz rule, locality, and d2 = 0). Briefly: in a chart,

write a k–form as a linear combination of wedge products of coordinate 1–forms with smooth coefficient

functions. Applying d twice produces only second mixed partials, which cancel by symmetry of mixed

derivatives and antisymmetry of the wedge, giving d2 = 0. ■

Remark 6.2 (Cycles, boundaries, and the cohomology of the complex). With d2 = 0, each inclusion

Im(d : Ωk−1 → Ωk) ⊆ ker(d : Ωk → Ωk+1) holds. Thus the closed and exact forms we defined above

are exactly the k–cocycles and k–coboundaries of this cochain complex, and

Hk
dR(M) =

ker
(
d : Ωk(M)→ Ωk+1(M)

)
Im
(
d : Ωk−1(M)→ Ωk(M)

)
is the cohomology of the de Rham complex in degree k. This perfectly parallels the singular cohomology

quotient Zk/Bk with δ in place of d.

Example 6.4 (Seeing the arrows in low degrees). On R2 with coordinates (x, y), the beginning of

the de Rham complex reads

0→ Ω0(R2)
d−→ Ω1(R2)

d−→ Ω2(R2)→ 0,
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that is,

f
d7−→ fx dx+ fy dy

d7−→ (fxy − fyx) dx ∧ dy = 0.

So every 1–form of the form df is automatically closed, and by Poincaré’s lemma on R2 every closed

1–form is of this form locally (indeed globally on R2).

Example 6.5 (A circle snapshot). For S1 with angular coordinate θ,

0→ Ω0(S1)
d−→ Ω1(S1)

d−→ 0, so f(θ)
d7−→ f ′(θ) dθ

d7−→ 0.

Here dθ is closed but not exact, and it represents a nonzero class in H1
dR(S

1).

6.2 Functoriality

In singular cohomology, functoriality meant that a continuous map f : X → Y gave a pullback on cochains,

f∗ : C•(Y )→ C•(X), which commuted with the coboundary operator δ. The slogan was: “chains push

forward, cochains pull back”. For de Rham cohomology, the slogan is exactly the same — only now the

“cochains” are differential forms, and the coboundary is the exterior derivative d.

Let us recall the basic geometric picture. A differential form on N is a rule that assigns a multilinear,

alternating “measurement” to each point of N , acting on tangent vectors at that point. If f : M → N is

smooth, and ω is a form on N , the only natural way to make a form on M from it is to pull back those

measurements along f : at p ∈M , apply ω not to tangent vectors of M directly, but to their images under

the differential dfp in Tf(p)N .

This leads to the familiar pullback of forms:

Definition 6.3 (Pullback of a differential form). Let f : M → N be smooth and let ω ∈ Ωk(N). The

pullback f∗ω ∈ Ωk(M) is defined pointwise by

(f∗ω)p(v1, . . . , vk) := ωf(p)
(
dfp(v1), . . . , dfp(vk)

)
,

for all p ∈M and v1, . . . , vk ∈ TpM .
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Proposition 6.2 (Basic properties of the pullback). Let f : M → N be smooth, and let ω, η ∈ Ω•(N).

Then:

1. f∗ is degree-preserving: if ω is a k–form, so is f∗ω.

2. f∗ is R–linear: f∗(aω + bη) = a f∗ω + b f∗η.

3. f∗ respects the wedge product: f∗(ω ∧ η) = f∗ω ∧ f∗η.

4. f∗ commutes with the exterior derivative: f∗(dω) = d(f∗ω).

Proof. (1) and (2) follow immediately from the definition: f∗ does not change the number of arguments

the form takes, and linearity is preserved pointwise.

(3) For p ∈M and tangent vectors v1, . . . , vk+ℓ ∈ TpM , by definition of the wedge product we have

(f∗(ω ∧ η))p(v1, . . . , vk+ℓ) = (ω ∧ η)f(p)
(
dfpv1, . . . , dfpvk+ℓ

)
=

1

k! ℓ!

∑
σ∈Sk+ℓ

sgn(σ) ωf(p)(dfpvσ(1), . . . , dfpvσ(k))

· ηf(p)(dfpvσ(k+1), . . . , dfpvσ(k+ℓ))

= (f∗ω ∧ f∗η)p(v1, . . . , vk+ℓ),

since dfp is linear and the same permutation sum appears in both definitions.

(4) For p ∈M and v0, . . . , vk ∈ TpM ,

(f∗(dω))p(v0, . . . , vk) = (dω)f(p)(dfpv0, . . . , dfpvk)

=
k∑
i=0

(−1)i dfpvi
[
ωf(p)(dfpv0, . . . , d̂fpvi, . . . , dfpvk)

]
+

∑
0≤i<j≤k

(−1)i+j ωf(p)
(
[dfpvi, dfpvj ], dfpv0, . . . , d̂fpvi, . . . , d̂fpvj , . . . , dfpvk

)
.

Since dfp is a linear map of tangent spaces and respects the Lie bracket of vector fields (dfp [X,Y ] =

[dfpX, dfpY ]), each term above matches the corresponding term in

(d(f∗ω))p(v0, . . . , vk),
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showing f∗dω = df∗ω. ■

The last property is the crucial one: it says the pullback f∗ is a cochain map from the de Rham complex

of N to that of M :

· · · d−−→ Ωk(N)
d−−→ Ωk+1(N)

d−−→ · · ·

↓ f∗ ↓ f∗

· · · d−−→ Ωk(M)
d−−→ Ωk+1(M)

d−−→ · · ·

Since f∗ sends closed forms to closed forms and exact forms to exact forms, it descends to cohomology:

Corollary 6.1 (Functoriality of de Rham cohomology). A smooth map f : M → N induces a graded

ring homomorphism

f∗ : H•
dR(N) −→ H•

dR(M)

by [ω ] 7→ [ f∗ω ].

Remark 6.3 (Parallel with singular cohomology). In singular cohomology, a continuous map f : X → Y

also induces a pullback on cochains f∗ : C•(Y )→ C•(X) commuting with δ. The exterior derivative

d here plays the role of δ, and Ω•(M) plays the role of C•(M). Thus functoriality of H•
dR is not an

extra miracle but a built-in feature of the cochain-complex viewpoint.

6.3 Mayer-Vietoris Sequence

Up to this point, we have defined de Rham cohomology, explored its functoriality, and hinted at its potential

for computation. But as in singular cohomology, the raw definitions alone are not always computationally

friendly: given a complicated manifold, how can we hope to find its cohomology groups directly from the

definition?

One of the most powerful tools in this situation is the Mayer–Vietoris sequence. In singular cohomology,

it arose from gluing information about two overlapping subspaces. The same philosophy applies here: if

we can cover a manifold by two simpler open sets, then we can compute the cohomology of the whole by

relating it to the cohomologies of the pieces and their intersection.

Let us begin by setting up the scene. Suppose M is a smooth manifold, and let U, V ⊂ M be open

subsets such that M = U ∪ V . We know that Ω∗(M), Ω∗(U), Ω∗(V ), and Ω∗(U ∩ V ) are all differential
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graded algebras under the wedge product and exterior derivative. Moreover, the inclusions

ιU : U ↪→M, ιV : V ↪→M, ιUV : U ∩ V ↪→ U, ιV U : U ∩ V ↪→ V

induce pullbacks of forms

ι∗U : Ω∗(M)→ Ω∗(U), ι∗V : Ω∗(M)→ Ω∗(V ), ι∗UV : Ω∗(U)→ Ω∗(U ∩ V ), ι∗V U : Ω∗(V )→ Ω∗(U ∩ V ).

Definition 6.4 (Mayer–Vietoris cochain complex). Define the map

Φ : Ω∗(M) −→ Ω∗(U)⊕ Ω∗(V ), Φ(ω) = (ω|U , ω|V ),

and the map

Ψ : Ω∗(U)⊕ Ω∗(V ) −→ Ω∗(U ∩ V ), Ψ(α, β) = α|U∩V − β|U∩V .

Intuitively, Φ restricts a global form to the two pieces U and V , while Ψ compares these local forms on

their overlap. The minus sign is not an arbitrary choice: it reflects the alternating nature of Čech-type

constructions and is crucial for exactness.

A key fact — proved exactly as in the singular case, but now in the category of differential forms — is:

Lemma 6.1. The sequence of cochain complexes

0 −→ Ω∗(M)
Φ−−→ Ω∗(U)⊕ Ω∗(V )

Ψ−−→ Ω∗(U ∩ V ) −→ 0

is exact in each degree, and each map is a morphism of cochain complexes, i.e. it commutes with d.

Proof. Exactness is straightforward to check:

• Injectivity of Φ: If ω|U = 0 and ω|V = 0, then ω vanishes on M = U ∪ V , so ω = 0.

• Im(Φ) = ker(Ψ): If ω ∈ Ω∗(M), then its restrictions agree on U ∩ V , so Ψ(Φ(ω)) = 0. Conversely, if

(α, β) satisfies α|U∩V = β|U∩V , then we can glue α and β to obtain a global ω ∈ Ω∗(M) agreeing

with each on its domain, by smooth partition of unity.
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• Surjectivity of Ψ: Given γ ∈ Ω∗(U ∩ V ), choose a smooth partition of unity {ρU , ρV } subordinate to

{U, V } and define

α := ρV γ on U, β := − ρUγ on V.

Then α|U∩V − β|U∩V = γ.

Commutation with d follows from the fact that restriction of forms and d are compatible: d(ω|U ) =

(dω)|U . ■

With this short exact sequence of cochain complexes in hand, the machinery from algebraic topology

tells us that we obtain a long exact sequence in cohomology.

Theorem 6.1 (Mayer–Vietoris sequence for de Rham cohomology). Let M be a smooth manifold,

U, V ⊂M open with M = U ∪ V . Then there is a natural long exact sequence

· · · −→ Hk−1
dR (U ∩ V )

δ−→ Hk
dR(M)

(resU , resV )−−−−−−−−→ Hk
dR(U)⊕Hk

dR(V )
diff−−−→ Hk

dR(U ∩ V ) −→ · · ·

where the maps are induced from Φ and Ψ above, and δ is the connecting homomorphism from the

short exact sequence of complexes.

The proof follows the standard snake-lemma construction: since the short exact sequence of cochain

complexes is natural and commutes with d, passing to cohomology yields the long exact sequence. The

connecting homomorphism δ is constructed exactly as in the singular case, by taking a cohomology class

in Hk−1(U ∩ V ), lifting it to a cochain in Ωk−1(U)⊕ Ωk−1(V ), applying d to get a cocycle in Ωk(M), and

checking well-definedness.

Example 6.6 (A warm-up computation). Let M = S1 and choose U, V to be open arcs covering the

circle, with U ∩ V consisting of two disjoint arcs (homotopy equivalent to two points). We have

H0
dR(U) ∼= R, H0

dR(V ) ∼= R, H0
dR(U ∩ V ) ∼= R⊕ R,

and all higher groups vanish on these contractible opens. The Mayer–Vietoris sequence then reduces

to

0→ H0
dR(S

1)→ R⊕ R diff−−→ R⊕ R δ−→ H1
dR(S

1)→ 0,
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from which one reads off H1
dR(S

1) ∼= R, recovering our earlier computation by a different method.

Remark 6.4 (Comparison with singular cohomology). The Mayer–Vietoris sequence in de Rham coho-

mology is formally identical to that in singular cohomology. The only differences are the underlying

cochain complexes and the fact that we now glue and restrict smooth forms instead of singular

cochains. In particular, the exactness proof at the cochain level is analytic, using partitions of unity,

while the singular case is purely combinatorial.

6.4 Integration Map

So far, de Rham cohomology has been built entirely from the calculus of smooth differential forms:

forms live on manifolds, the exterior derivative relates them, and their cohomology groups record global

obstructions to exactness. But in the back of our minds, we know there is another, older theory — singular

cohomology — which we developed earlier. The two theories look very different: singular cohomology starts

with singular simplices, chains, and cochains, while de Rham cohomology begins from a geometric–analytic

perspective.

The natural question is: can we compare them directly? Even more, can we construct a canonical map

H∗
dR(M) −→ H∗

sing(M ;R)

and hope for it to be an isomorphism? This is the content of the celebrated de Rham theorem — but

before we can prove it, we must define such a map. The most obvious bridge is integration.

Recall that a singular k–simplex in M is a continuous map

σ : ∆k −→M

from the standard k–simplex to M . Given a smooth k–form ω ∈ Ωk(M), it is tempting to measure it on σ

by pulling it back and integrating over ∆k:

ω 7→
∫
∆k

σ∗ω.

This expression is well–defined because σ∗ω is a k–form on ∆k, which is a subset of Rk with its standard

smooth structure, and we know how to integrate such forms from multivariable calculus.
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Definition 6.5 (Integration map on cochains). Let M be a smooth manifold. For each k ≥ 0, define a

map

Ik : Ω
k(M) −→ Cksing(M ;R)

by

(Ikω)(σ) :=

∫
∆k

σ∗ω,

for every singular k–simplex σ : ∆k →M .

In words: a smooth k–form becomes a singular k–cochain by “evaluating” on each simplex via integration.

This fits our earlier picture: cochains in singular cohomology assign numbers to simplices; here we assign

the integral of the pulled–back form.

The next step is to check compatibility with the cochain differentials. On the de Rham side, the

differential is d; on the singular side, it is the coboundary δ. If these are to correspond, we must have

Ik+1(dω) = δ(Ikω).

But this is nothing other than the generalised Stokes theorem! Indeed, for any singular (k + 1)–simplex Σ,

(
δ(Ikω)

)
(Σ) = (Ikω)(∂Σ)

=
k+1∑
i=0

(−1)i(Ikω)(Σi)

=

k+1∑
i=0

(−1)i
∫
∆k

Σ∗
iω (definition of Ik)

=

∫
∂∆k+1

(Σ|∂∆k+1)∗ω

=

∫
∆k+1

Σ∗(dω) (generalised Stokes theorem)

= (Ik+1(dω))(Σ).

Thus I• is a cochain map.

Proposition 6.3 (Naturality and cochain map property). The maps Ik satisfy:

1. Cochain map: Ik+1 ◦ d = δ ◦ Ik for all k ≥ 0.
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2. Naturality: If f :M → N is smooth, then Ik(f
∗ω) = f∗sing(Ikω) for all ω ∈ Ωk(N), where f∗sing

is the pullback of singular cochains along f .

Proof. (1) The calculation above is exactly the verification of Ik+1 ◦ d = δ ◦ Ik, using the generalised Stokes

theorem and the identification of the coboundary as integration over the boundary.

(2) For naturality, let σ : ∆k →M be a singular simplex. Then

(Ik(f
∗ω))(σ) =

∫
∆k

σ∗(f∗ω) =

∫
∆k

(f ◦ σ)∗ω = (Ikω)(f ◦ σ) = (f∗sing(Ikω))(σ).

■

Because I• is a cochain map, it induces a homomorphism on cohomology.

Definition 6.6 (Integration map in cohomology). The integration map in de Rham cohomology is

I∗ : H∗
dR(M) −→ H∗

sing(M ;R), I∗([ω]) := [I•ω],

where [I•ω] denotes the singular cohomology class of the cochain Ikω.

The definition is well–posed: if ω differs from ω′ by an exact form dη, then I•(ω − ω′) = I•(dη) = δ(I•η)

is a coboundary in the singular complex, so the cohomology classes agree.

Example 6.7 (A 1–simplex on S1: integration detects winding). View S1 as R/Z via the covering

map

p : R −→ S1, t 7−→ e2πit.

There is a unique smooth 1–form α ∈ Ω1(S1) such that p∗α = dt on R. (Equivalently, α is the

invariant form that “measures angle” along the circle; it is closed and not exact.)

Fix an integer m ̸= 0, and define a singular 1–simplex σ : ∆1 → S1 by

σ(s) := e2πims, s ∈ ∆1 = [0, 1].

This path winds m times around the circle. Compute the integration cochain I1(α) on σ:

(I1α)(σ) =

∫
∆1

σ∗α =

∫ 1

0
(α)σ(s)

(
d
dsσ(s)

)
ds.
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Pull back along the lift s 7→ ms on R: since p∗α = dt,

σ∗α = (p ◦ (ms))∗α = (ms)∗dt = mds.

Therefore

(I1α)(σ) =

∫ 1

0
mds = m.

This is the key phenomenon behind the de Rham map in degree 1: integrating α over a loop returns

its winding number. In particular, the induced map I1 : H1
dR(S

1) → H1
sing(S

1;R) sends [α] to the

standard generator that evaluates a loop by its degree.

Example 6.8 (A 2–simplex on the torus T 2: a determinant appears). Identify the torus as T 2 = R2/Z2

with covering map π : R2 → T 2. The 1–forms dx, dy on R2 are translation–invariant, hence descend to

global forms (still denoted) dx, dy ∈ Ω1(T 2). Consider the standard area form ω := dx ∧ dy ∈ Ω2(T 2).

Write the standard 2–simplex as

∆2 = {(u, v) ∈ R2 : u ≥ 0, v ≥ 0, u+ v ≤ 1}

(with barycentric coordinate w = 1 − u − v understood). Fix real constants a, b, c, d, and define a

singular 2–simplex σ : ∆2 → T 2 by the affine rule

σ(u, v) :=
(
au+ bv , cu+ dv

)
mod Z2.

(If a, b, c, d ∈ Z, this is the projection of a linear map R2 → R2 to T 2; geometrically, it wraps the

triangle through lattice directions.)

Compute the pullback of ω:

σ∗dx = a du+ b dv, σ∗dy = c du+ d dv,

so

σ∗ω = σ∗(dx ∧ dy) = (a du+ b dv) ∧ (c du+ d dv) = (ad− bc) du ∧ dv.
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Therefore the integration cochain gives

(I2ω)(σ) =

∫
∆2

σ∗ω = (ad− bc)
∫
∆2

du ∧ dv = (ad− bc) ·Area(∆2).

Since Area(∆2) = 1
2 , we get

(I2ω)(σ) =
ad− bc

2
.

If you triangulate the unit square by two standard 2–simplices and map each by the same linear rule,

the values add and you recover exactly det
(
a b
c d

)
. This matches the intuition that integrating dx ∧ dy

over a fundamental domain counts oriented area (and, for integer data, winding multiplicity) on the

torus.

Remark 6.5 (First glimpse at the de Rham theorem). We now have a concrete, natural, and functorial

map

I∗ : H∗
dR(M) −→ H∗

sing(M ;R),

sending a smooth form to the singular cohomology class of its integration functional. The de Rham

theorem will assert that I∗ is an isomorphism for every smooth manifold M . That is, every real

singular cohomology class can be represented by a smooth closed form, and two such forms represent

the same class precisely when they differ by an exact form. Our next steps will be to prove this

remarkable fact, but even now we can see how the worlds of geometry and topology are meeting: the

generalised Stokes theorem ensures compatibility of differentials, and partitions of unity will let us

glue local primitives into global ones.

6.5 The de Rham Theorem

At this point we possess two parallel cohomology theories on a smooth manifold M : on the one hand,

singular cohomology H∗
sing(M ;R), built from cochains that assign numbers to singular simplices; on the

other, de Rham cohomology H∗
dR(M), built from smooth differential forms and the exterior derivative. We

also constructed the integration map (a natural cochain map)

I∗ : H∗
dR(M) −→ H∗

sing(M ;R), [ω] 7−→
[
σ 7→

∫
∆k

σ∗ω
]
,
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whose compatibility with differentials is nothing but the generalised Stokes theorem. The de Rham theorem

asserts that this bridge is, in fact, a perfect match.

Theorem 6.2 (de Rham). For every smooth manifold M , the integration cochain map

Ik : Ωk(M) −→ Cksing(M ;R), Ik(ω)(σ) :=

∫
∆k

σ∗ω,

induces an isomorphism of graded abelian groups

I∗ : H∗
dR(M)

∼=−−→ H∗
sing(M ;R).

We begin by isolating local statements and the glueing principle we shall use.

Lemma 6.2.1 (Homotopy invariance of singular cohomology via a cochain homotopy). Let X be a space

and f0, f1 : X → Y be homotopic via a continuous map H : X × [0, 1] → Y with H(−, 0) = f0,

H(−, 1) = f1. There exists a degree (−1) map S : Ck(Y ;R)→ Ck−1(X;R) such that

δS + Sδ = f∗1 − f∗0 .

Consequently f∗0 = f∗1 on singular cohomology.

Proof. We construct S from a prism operator on chains. For σ : ∆m → X define

σ̂ : ∆m × [0, 1] −→ Y, σ̂(u, t) := H(σ(u), t).

Triangulate the prism ∆m × [0, 1] into (m + 1) oriented (m+1)–simplices Qi : ∆
m+1 → ∆m × [0, 1],

i = 0, . . . ,m, by the standard “front/back” decomposition: in barycentric coordinates {e0, . . . , em} on ∆m

and {0, 1} on [0, 1], the vertices of Qi are

(e0, 0), (e1, 0), . . . , (ei, 0), (ei, 1), (ei+1, 1), . . . , (em, 1),

with the induced orientation. Define the prism chain operator P : Cm(X;R)→ Cm+1(Y ;R) by

P (σ) :=
m∑
i=0

(−1)i σ̂ ◦Qi.
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We claim the chain homotopy identity

∂P + P∂ = H1# −H0# on C•(X;R), (2)

where Ht := H(−, t) and Ht# denotes pushforward of chains by Ht ◦ (·). To prove (2), compute ∂(σ̂ ◦Qi)

by the alternating sum of its (m+2) faces; these are of three types: the bottom face (t = 0), the top face

(t = 1), and the (m) “lateral” faces. The signed sum of bottom faces over i yields H0#(σ); the signed sum

of top faces yields −H1#(σ) (orientation comparison produces the minus sign); and the signed sum of

lateral faces is precisely −P (∂σ) (this is the standard cancellation of the “prism of a boundary” with the

“boundary of a prism”; one checks that the lateral face of Qi glued along the jth face of ∆m appears with

the opposite sign to the corresponding face in Qj glued along the ith face, so they assemble to −P (∂σ)).

Summing over i gives (2).

Now pass to cochains by precomposition with P . Define S : Ck(Y ;R)→ Ck−1(X;R) via

S(φ)(τ) := φ
(
P (τ)

)
, τ ∈ Ck−1(X).

For φ ∈ Ck(Y ) and τ ∈ Ck(X),

(
δS(φ) + S(δφ)

)
(τ) = S(φ)(∂τ) + δφ

(
P (τ)

)
= φ

(
P (∂τ)

)
+ φ

(
∂P (τ)

)
= φ

(
(∂P + P∂)(τ)

)
,

and by (2) this equals φ
(
H1#(τ)−H0#(τ)

)
= (H∗

1φ−H∗
0φ)(τ). Thus δS + Sδ = H∗

1 −H∗
0 . Exactness of

cohomology then implies H∗
1 = H∗

0 on H∗
sing(X;R). ■

Lemma 6.2.2 (Local identification on contractible open sets). Let U ⊂ Rn be a nonempty contractible

open set. Then

I∗ : H∗
dR(U)

∼=−−→ H∗
sing(U ;R).

Proof. On the de Rham side, Poincaré’s Lemma shows Hk
dR(U) = 0 for k ≥ 1, and H0

dR(U) ∼= R (connected

case; otherwise a product over components), since closed 0–forms are locally constant functions. On

the singular side, by Lemma 6.2.1 applied to the homotopy from idU to a constant map, we have the

same result: Hk
sing(U ;R) = 0 for k ≥ 1 and H0

sing(U ;R) ∼= R. It remains to check that I∗ identifies the

generators in degree 0. A degree-0 de Rham class is represented by a constant function c ∈ R on each
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path component; then for a 0–simplex σ : ∆0 → U we have I0([c])([σ]) =
∫
∆0 σ

∗c = c. Hence I∗ is an

isomorphism in all degrees. ■

Lemma 6.2.3 (Good covers exist). Every smooth manifold M admits a good cover : an open cover

{Ui}i∈I such that every nonempty finite intersection Ui0···ir is diffeomorphic to an open ball in Rn (in

particular, contractible).

Proof. Equip M with a Riemannian metric (standard existence theorem). For each p ∈M , let inj(p) > 0

be its injectivity radius. Choose 0 < r(p) < 1
2 inj(p) and let Up be the geodesic ball of radius r(p) about p;

then the exponential map expp restricts to a diffeomorphism from the Euclidean ball Br(p)(0) ⊂ TpM onto

Up, and Up is strongly convex : any two points in Up are joined by a unique minimizing geodesic that lies

entirely in Up. The family {Up}p∈M is an open cover. By paracompactness of M we may extract a locally

finite refinement by such balls (e.g. choose a countable subcover by standard arguments). The intersection

of finitely many strongly convex balls is strongly convex: if x, y lie in
⋂r
j=1 Upj then the unique minimizing

geodesic γ joining x to y lies in each Upj , hence in the intersection. Strongly convex sets are diffeomorphic

to Euclidean balls via normal coordinates, so each nonempty finite intersection is diffeomorphic to a ball.

This yields a good cover. ■

Lemma 6.2.4 (Mayer–Vietoris and naturality of integration). Let M = U ∪ V with U, V open. There

are long exact sequences in cohomology

· · · → Hk−1
dR (U ∩ V )

δdR−−−→ Hk
dR(M)→ Hk

dR(U)⊕Hk
dR(V )

r∗U−r∗V−−−−−→ Hk
dR(U ∩ V )→ · · ·

and

· · · → Hk−1
sing (U∩V ;R)

δsing−−−−→ Hk
sing(M ;R)→ Hk

sing(U ;R)⊕Hk
sing(V ;R)

j∗U−j∗V−−−−−→ Hk
sing(U∩V ;R)→ · · ·

and the integration maps provide a commutative diagram of these exact sequences. In particular,

Ik ◦ δdR = δsing ◦ Ik−1.

Proof. We first recall cochain-level constructions.
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De Rham side: Consider the short exact sequence of complexes

0→ Ω•(M)
(rU , rV )−−−−−−→ Ω•(U)⊕ Ω•(V )

rUU∩V −rVU∩V−−−−−−−−−→ Ω•(U ∩ V )→ 0,

where rU denotes restriction. Exactness is clear: a pair (α, β) lies in the kernel of the right map iff

α|U∩V = β|U∩V , i.e. iff it comes from a unique ω ∈ Ω•(M) with ω|U = α, ω|V = β. The associated long

exact sequence in cohomology is the de Rham Mayer–Vietoris sequence. The connecting morphism δdR can

be described explicitly: given a class [θ] ∈ Hk−1
dR (U ∩ V ), choose a partition of unity {ρU , ρV } subordinate

to {U, V } and set

α := ρU θ ∈ Ωk−1(U ∩ V ), β := − ρV θ ∈ Ωk−1(U ∩ V ).

Extend α by zero to a form on U and β by zero to a form on V (still denoted α, β); then on U ∩V we have

α − β = θ. By exactness there exists ω ∈ Ωk(M) with dω representing δdR[θ] and satisfying rUω = dα,

rV ω = dβ. Concretely, one may take

δdR[θ] =
[
d(ρ̃Uθ)

]
(3)

where ρ̃Uθ denotes any extension of ρUθ by zero to M (different choices differ by a form supported in U

with exact differential on U , hence yield the same cohomology class on M).

Singular side: Consider the short exact sequence of cochain complexes

0→ C•
sing(M)

(j∗U , j
∗
V )

−−−−−−→ C•
sing(U)⊕ C•

sing(V )
r−−→ C•

sing(U ∩ V )→ 0,

where jU : U ↪→ M and jV : V ↪→ M are inclusions and r(Φ,Ψ) := Φ|U∩V − Ψ|U∩V . Exactness is

immediate. The connecting morphism δsing is defined as follows: for [φ] ∈ Hk−1
sing (U ∩ V ), choose cochain

lifts Φ ∈ Ck−1(U), Ψ ∈ Ck−1(V ) with Φ|U∩V − Ψ|U∩V = φ; then (δΦ, δΨ) lies in the image of Ck(M)

under (j∗U , j
∗
V ), hence there is a unique Ξ ∈ Ck(M) with j∗UΞ = δΦ and j∗V Ξ = δΨ. Define δsing[φ] := [Ξ].

Commutativity with integration: We must show Ik ◦ δdR = δsing ◦ Ik−1. Let [θ] ∈ Hk−1
dR (U ∩ V ) with θ

closed; define α, β from θ and a subordinate partition of unity as above, extend by zero, and let ω := dα on

U and ω := dβ on V , which glue to a global closed form representing δdR[θ] (this is (3)). On the singular

side, define cochains

Φ(σ) :=

∫
∆k−1

σ∗α, Ψ(σ) :=

∫
∆k−1

σ∗β.
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By construction Φ|U∩V −Ψ|U∩V = Ik−1(θ). Compute δΦ on a k–simplex τ : ∆k → U :

(δΦ)(τ) = Φ(∂τ) =
k∑
i=0

(−1)i
∫
∆k−1

(τ ◦ ιi)∗α =

∫
∂∆k

τ∗α =

∫
∆k

τ∗dα =

∫
∆k

τ∗ω = Ik(ω)(τ),

where ιi is the ith face inclusion and we used Stokes. The same holds on V with Ψ and dβ, hence the

unique Ξ ∈ Ck(M) with j∗UΞ = δΦ, j∗V Ξ = δΨ is exactly Ik(ω), because Ik(ω) restricts to those values

on U and V by the same computation. Therefore δsing(I
k−1[θ]) = [Ξ] = [Ik(ω)] = Ik(δdR[θ]), as required.

The commutativity of the other squares (restrictions and difference) follows directly from functoriality of

pullback and the definition of Ik. ■

Lemma 6.2.5 (Five Lemma). Consider a commutative diagram of abelian groups with exact rows

A1 −→ A2 −→ A3 −→ A4 −→ A5

↓∼= ↓∼= ↓ ↓∼= ↓∼=

B1 −→ B2 −→ B3 −→ B4 −→ B5

If the four outer vertical maps are isomorphisms and the diagram commutes, then the middle vertical

map A3 → B3 is an isomorphism.

Proof. Standard diagram chase: to prove injectivity, take x ∈ A3 mapping to 0 in B3; exactness and

isomorphisms show x lies in the image of A2 → A3 and its preimage must be 0, hence x = 0. For

surjectivity, given y ∈ B3, lift along B2 → B3 and push across isomorphisms to obtain a preimage in A3.

The commuting squares ensure well-definedness. (A complete elementwise chase is routine and omitted

here for brevity.) ■

Proof of Theorem 6.2. Fix a good cover {Ui}i∈I of M (Lemma 6.2.3). We prove that I∗ is an isomorphism

by iterated use of Mayer–Vietoris and Lemma 6.2.5.

First, by Lemma 6.2.2, for each i and, more generally, for each nonempty finite intersection Ui0···ir , the

map

I∗ : H∗
dR(Ui0···ir)→ H∗

sing(Ui0···ir ;R)

is an isomorphism. Consider two opens A,B ⊂M for which I∗ is known to be an isomorphism on A, B,

and A ∩B. Lemma 6.2.4 furnishes a commutative diagram of Mayer–Vietoris long exact sequences for
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A ∪B, with vertical maps I∗. The outer vertical maps in the relevant five-term extract are isomorphisms

by hypothesis; the Five Lemma then forces I∗ : Hk
dR(A ∪B)→ Hk

sing(A ∪B;R) to be an isomorphism for

all k.

Now order the index set so that Mr := U1 ∪ · · · ∪ Ur increases to M . The base case r = 1 holds by

Lemma 6.2.2. Assume the claim holds for Mr−1. Since Mr = Mr−1 ∪ Ur and Mr−1 ∩ Ur is a union of

finite intersections of the good cover (hence a disjoint union of sets on which I∗ is an isomorphism by

Lemma 6.2.2), the previous paragraph applies to yield that I∗ is an isomorphism on Mr. By induction

over finitely many r (using a finite subcover for each connected component, as Mayer–Vietoris is local and

our argument works one component at a time), we conclude I∗ is an isomorphism on M in all degrees. ■

Remark 6.6 (Role of Stokes and of locality). The cochain map identity δ ◦ Ik = Ik+1 ◦ d is the analytic

heart: it is exactly the generalised Stokes theorem on singular simplices. Poincaré’s Lemma (local

exactness of the de Rham complex) and homotopy invariance (local triviality of singular cohomology

on contractibles) identify the two theories on small pieces. Mayer–Vietoris is the mechanism that

propagates this local agreement to a global isomorphism; the Five Lemma provides the formal passage

from commutative exact diagrams to isomorphisms. No multiplicative structure was used anywhere

in the argument.

Theorem 6.2 is far more than a technical identification of two cohomology theories. It is a striking

unification of ideas: the left-hand side, H∗
dR(M), is born entirely from calculus — differential forms,

exterior derivatives, and the geometry of smooth manifolds; the right-hand side, H∗
sing(M ;R), arises from

the combinatorial world of simplices, chains, and purely topological invariants. The integration map I∗

weaves these two worlds together, translating analytic data into topological information, and vice versa,

with perfect fidelity.

The theorem serves as a culmination of all the machinery we have built: wedge products, exterior

derivatives, Stokes’ theorem, Mayer–Vietoris — each plays a precise role. It is also a doorway: by

recognising that smooth and singular cohomology coincide over R, we gain access to every computational

and conceptual tool from both domains. In this sense, de Rham’s Theorem is not merely an endpoint; it is

a bridge, opening the path toward deeper interactions between geometry, topology, and analysis.
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6.6 The Ring Structure

One of the most remarkable features of de Rham cohomology is that it is not just a graded family of vector

spaces: it naturally carries the structure of a graded-commutative R-algebra. This structure is inherited

directly from the wedge product of differential forms, which we studied earlier.

The motivation is straightforward: If ω measures some geometric quantity on p-dimensional pieces of M

and η measures some other quantity on q-dimensional pieces, then their wedge product ω ∧ η measures the

combination of the two, on (p+ q)-dimensional pieces. Since de Rham cohomology is built from closed

forms modulo exact forms, we ask whether this operation respects cohomology classes — and indeed, it

does.

Definition 6.7 (Cup product in de Rham cohomology). Let [ω] ∈ Hp
dR(M) and [η] ∈ Hq

dR(M) be

represented by closed forms ω ∈ Ωp(M) and η ∈ Ωq(M). We define their product to be the class

[ω]⌣dR [η] := [ω ∧ η] ∈ Hp+q
dR (M).

The first question is: is this well-defined? That is, does the cohomology class of ω ∧ η depend only on

the cohomology classes of ω and η, not on the particular representatives we choose?

Proposition 6.4 (Well-definedness). If ω′ = ω + dα and η′ = η + dβ are cohomologous to ω and η

respectively, then ω′ ∧ η′ is cohomologous to ω ∧ η. Hence the above definition does not depend on

the choice of representatives.

Proof. We expand:

ω′ ∧ η′ = (ω + dα) ∧ (η + dβ) = ω ∧ η + ω ∧ dβ + dα ∧ η + dα ∧ dβ.

We now use the graded Leibniz rule for d:

d(α ∧ η) = dα ∧ η + (−1)pα ∧ dη,

where deg(α) = p− 1 and dη = 0 since η is closed. Thus dα ∧ η = d(α ∧ η) is exact.

Similarly,

d(ω ∧ β) = dω ∧ β + (−1)pω ∧ dβ,
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and since dω = 0, we have ω ∧ dβ = (−1)pd(ω ∧ β), also exact.

Finally, dα ∧ dβ is exact because

d(α ∧ dβ) = dα ∧ dβ − (−1)p−1α ∧ d2β = dα ∧ dβ,

using d2 = 0.

Therefore,

ω′ ∧ η′ − ω ∧ η = (exact form),

so ω′ ∧ η′ and ω ∧ η define the same cohomology class. ■

Having established well-definedness, the rest of the structure follows from the algebraic properties of the

wedge product.

Proposition 6.5 (Algebraic structure). The operation ⌣dR makes H∗
dR(M) into a graded-commutative

R-algebra:

1. Bilinearity: ([ω1] + [ω2]) ⌣dR [η] = [ω1] ⌣dR [η] + [ω2] ⌣dR [η] and similarly in the second

slot.

2. Associativity: ([ω]⌣dR [η])⌣dR [θ] = [ω]⌣dR ([η]⌣dR [θ]).

3. Graded commutativity: [ω]⌣dR [η] = (−1)pq[η]⌣dR [ω].

4. Unit: The constant function 1 in Ω0(M) is closed and represents the identity element in

H0
dR(M).

Proof. Each property follows directly from the corresponding property of the wedge product on forms,

which we have already proved earlier. For example, graded commutativity is inherited because for forms

ω ∈ Ωp and η ∈ Ωq,

ω ∧ η = (−1)pqη ∧ ω.

Since d respects the wedge product via the graded Leibniz rule, this property survives the passage to

cohomology classes. ■
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Remark 6.7 (Connection with singular cohomology). Under the isomorphism of de Rham’s Theorem, this

wedge product corresponds exactly to the cup product on singular cohomology with real coefficients:

⌣dR ←→ ⌣ .

Thus H∗
dR(M) is not just isomorphic to H∗

sing(M ;R) as graded vector spaces, but as graded rings.

This reinforces the deep compatibility between the analytic and topological viewpoints.

Example 6.9 (Ring structure of H∗
dR(S

n)). From earlier computations, H0
dR(S

n) ∼= R, Hn
dR(S

n) ∼= R,

and all other groups vanish. Let u be a generator of Hn
dR(S

n). Since u ∧ u would have degree 2n > n,

it must vanish. Thus

H∗
dR(S

n) ∼= R⊕ R⟨u⟩, u2 = 0,

as a graded ring.

Example 6.10 (Ring structure of H∗
dR(T

2)). Let T 2 = S1 × S1 with projection maps π1, π2. Let

α, β ∈ H1
dR(S

1) be the standard generators. Set x := π∗1α and y := π∗2β in H1
dR(T

2). Then x ∧ x = 0,

y ∧ y = 0, and x ∧ y = −y ∧ x generates H2
dR(T

2) ∼= R. Thus

H∗
dR(T

2) ∼= ΛR(x, y),

the exterior algebra on two degree-one generators.

The graded ring structure is a powerful refinement: where the vector space structure of cohomology

detects how many holes there are in each dimension, the ring structure captures how those holes interact.

It is in this interaction that much of the deeper geometry and topology of a manifold is encoded.

6.7 Relative de Rham Cohomology

So far, our study of de Rham cohomology has measured global properties of a manifold M as a whole. But

in many situations, we are interested in information about M relative to a subspace A ⊆M . For instance:

• In integration problems, one may want to fix a portion of the boundary to have a prescribed value.
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• In topology, relative invariants appear when studying spaces obtained by gluing along a subspace.

• In algebraic topology, we have already seen the concept of relative singular cohomology H∗(X,A),

which measures cocycles on X that vanish on A.

The de Rham version follows exactly the same spirit: we look at differential forms on M that vanish

when restricted to A.

Definition 6.8 (Relative differential forms). Let M be a smooth manifold and A ⊆ M a smooth

submanifold (possibly with boundary). We define the space of relative k-forms by

Ωk(M,A) := {ω ∈ Ωk(M) | ι∗ω = 0 },

where ι : A ↪→M is the inclusion map. That is, ω vanishes on all k-tuples of tangent vectors based at

points of A.

It is immediate that d preserves this condition: if ω vanishes on A, then dω vanishes on A as well

(because pullback commutes with d and ι∗0 = 0). Hence the spaces Ω•(M,A) form a subcomplex of the

usual de Rham complex.

Definition 6.9 (Relative de Rham cohomology). The relative de Rham cohomology of the pair (M,A) is

Hk
dR(M,A) :=

ker
(
d : Ωk(M,A)→ Ωk+1(M,A)

)
im
(
d : Ωk−1(M,A)→ Ωk(M,A)

) .
In other words, a relative cohomology class is represented by a closed form ω on M that vanishes on A,

with two such forms considered equivalent if they differ by an exact form dη whose η also vanishes on A.

Remark 6.8 (Parallel with singular cohomology). This matches the singular cohomology definition:

Hk(X,A) =
{k-cocycles on X vanishing on A}
{k-coboundaries with this property}

.

The inclusion ι : A ↪→M plays the same role in both theories, and the map ι∗ is just the restriction

of forms.

We can now establish the long exact sequence of the pair in the de Rham setting, just as in the singular

case.
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Theorem 6.3 (Long exact sequence of a pair in de Rham cohomology). For a smooth manifold M and a

smooth submanifold A ⊆M , there is a natural long exact sequence

· · · −→ Hk−1
dR (A)

δ−→ Hk
dR(M,A) −→ Hk

dR(M)
ι∗−→ Hk

dR(A) −→ · · ·

Proof. We follow the standard short exact sequence of cochain complexes argument.

Consider the inclusion of complexes:

0 −→ Ω•(M,A)
inc−−−→ Ω•(M)

ι∗−−→ Ω•(A) −→ 0,

where ι∗ is restriction to A. We first check exactness:

• At Ω•(M,A): the inclusion is injective by definition.

• At Ω•(M): ker(ι∗) consists precisely of forms vanishing on A, i.e. Ω•(M,A).

• At Ω•(A): surjectivity of ι∗ follows because every form on A can be extended to a form on M (using

a tubular neighbourhood of A and a partition of unity).

Since d commutes with both inclusion and pullback, this is a short exact sequence of cochain complexes.

By the general snake lemma for cohomology (or the long exact sequence of cohomology for a short exact

sequence of cochain complexes), we obtain a long exact sequence in cohomology:

· · · → Hk−1
dR (A)

δ−→ Hk
dR(M,A)→ Hk

dR(M)
ι∗−→ Hk

dR(A)→ · · ·

Here δ is the usual connecting homomorphism induced by the short exact sequence of complexes. ■

Example 6.11. Let M = Dn be the n-dimensional closed ball and A = Sn−1 = ∂Dn. We know that

Hk
dR(D

n) ∼= 0 for k > 0, and H0
dR(D

n) ∼= R. The long exact sequence of the pair (Dn, Sn−1) gives

0→ Hn−1
dR (Sn−1)

δ−→ Hn
dR(D

n, Sn−1)→ 0,

and Hn−1
dR (Sn−1) ∼= R, so Hn

dR(D
n, Sn−1) ∼= R. This matches the intuition: a relative n-form is a

volume form on Dn whose restriction to the boundary vanishes, and its cohomology class records the
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total oriented volume.

Remark 6.9 (Relation to integration and Stokes’ theorem). Relative cohomology is the natural setting

for Stokes’ theorem with prescribed boundary conditions: if ω ∈ Ωn(M,A) and dω = 0, then
∫
M ω

depends only on the class [ω] ∈ Hn
dR(M,A). This viewpoint becomes particularly useful in manifold

theory and gauge theory, and later, in the proof of Poincaré duality.

6.8 Relation to Homotopy

In our earlier study of singular cohomology, we proved that cohomology is a homotopy invariant : if two

maps f, g : X → Y are homotopic, they induce the same map on cohomology. This property lies at the

heart of why cohomology is a topological invariant rather than merely a geometric one.

It is natural to ask: does the same hold for de Rham cohomology, which is defined in terms of smooth

differential forms? At first glance, one might worry: smooth forms seem sensitive to the precise geometric

shape of a manifold, while homotopy is a purely topological notion. The beauty of de Rham’s theorem

(which we have already proven) tells us these worlds agree — and homotopy invariance can be proven

directly in the smooth setting, without appealing to the singular theory.

Theorem 6.4 (Homotopy invariance of de Rham cohomology). Let M and N be smooth manifolds,

and let f, g :M → N be smooth maps that are smoothly homotopic. Then the induced pullbacks on

de Rham cohomology are equal:

f∗ = g∗ : H•
dR(N) −→ H•

dR(M).

Proof. Suppose H :M × [0, 1]→ N is a smooth homotopy from f to g, so H(x, 0) = f(x) and H(x, 1) =

g(x).

Our goal is to show that for any closed k-form ω on N , the pullbacks f∗ω and g∗ω differ by an exact

form on M . This will prove they define the same cohomology class.

The key idea is to use a chain homotopy operator K between the pullbacks, defined by integrating along

the homotopy direction.

Let πM : M × [0, 1] → M be projection onto M , and πI : M × [0, 1] → [0, 1] be projection onto the

interval. Given ω ∈ Ωk(N), pull it back toM × [0, 1] via H∗ω. Now decompose any form η ∈ Ωk(M × [0, 1])
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uniquely as

η = α(t) + dt ∧ β(t),

where α(t) and β(t) are families of forms on M depending smoothly on t.

We now define

K : Ωk(N) −→ Ωk−1(M)

by the formula

(Kω)x :=

∫ 1

0
βx(t) dt,

where β(t) is the component of H∗ω in the dt-direction. The integral is taken pointwise in x ∈ M ,

producing a smooth (k − 1)-form on M .

Claim: This K satisfies the chain homotopy relation

g∗ − f∗ = d ◦K +K ◦ d.

To see this, note that H∗ω = α(t) + dt ∧ β(t) by decomposition. The pullback at t = 0 is f∗ω = α(0)

and at t = 1 is g∗ω = α(1). Thus

g∗ω − f∗ω = α(1)− α(0) =
∫ 1

0

d

dt
α(t) dt.

Cartan’s magic formula for the exterior derivative on a product with an interval tells us

dM×I
(
α(t) + dt ∧ β(t)

)
= dMα(t) + dt ∧ dα

dt
− dt ∧ dMβ(t) + (no dt term here).

Comparing dt-components gives dα
dt = dMβ(t)± β′(t) appropriately, and one checks that the integral over

t matches exactly d(Kω) +K(dω).

If ω is closed, dω = 0, so

g∗ω − f∗ω = d(Kω),

showing they differ by an exact form. Passing to cohomology classes gives f∗ = g∗ on Hk
dR(N) for all

k. ■



De Rham Cohomology 128

Example 6.12. If M is contractible, then the identity map idM is homotopic to the constant map

c : M → {p} ⊂ M . Homotopy invariance shows that H•
dR(M) ∼= H•

dR(pt), so H
0
dR(M) ∼= R and all

higher groups vanish. This recovers the familiar fact that contractible manifolds have trivial de Rham

cohomology in positive degrees.

6.9 Key de Rham Cohomology Computations

We now consolidate the theory by computing H•
dR for several fundamental spaces. The plan is always the

same: identify good covers by simple (preferably contractible) open sets, use Poincaré’s Lemma (d–closed

⇒ exact on contractible sets), apply Mayer–Vietoris when helpful, and certify nontrivial classes by pairing

with cycles via integration (Generalized Stokes ensures exact forms integrate to 0 on cycles).

6.9.1 Contractible open sets U ⊂ Rn

Proposition 6.6. If U is nonempty and contractible, then

H0
dR(U) ∼= R, Hk

dR(U) = 0 (k ≥ 1).

Proof. A 0–form is a smooth function. If df = 0 on a connected set, f is locally constant, hence constant;

thus H0 ∼= R. For k ≥ 1, Poincaré’s Lemma on contractible U says every closed k–form is exact; hence

Zk = Bk and Hk = 0. ■

6.9.2 The circle S1

Cover S1 by two overlapping open arcs U, V whose closures are proper arcs (no full loop). Each of U, V is

contractible, so

H0(U) ∼= H0(V ) ∼= R, Hk(U) = Hk(V ) = 0 (k ≥ 1).

The intersection U ∩ V is a disjoint union of two arcs, hence has two path components, so

H0(U ∩ V ) ∼= R⊕ R, Hk(U ∩ V ) = 0 (k ≥ 1).
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The Mayer–Vietoris long exact sequence in cohomology for the cover S1 = U ∪ V includes

0 −→ H0(S1)
ρ−→ H0(U)⊕H0(V )

δ0−−→ H0(U ∩ V )
∂−→ H1(S1) −→ 0,

because the H1–terms of U, V, U ∩V vanish. Here ρ is restriction and δ0(a, b) = a|U∩V − b|U∩V . Concretely,

for constants a, b ∈ R, δ0(a, b) = (a− b, a− b) ∈ R⊕ R. Thus

Im(δ0) = {(t, t) : t ∈ R} ⊂ R⊕ R.

Exactness at H0(U) ⊕ H0(V ) implies Im(ρ) = ker(δ0) = {(a, a)}, so ρ identifies H0(S1) ∼= R with the

diagonal. Exactness at H0(U ∩ V ) gives

H1(S1) ∼=
H0(U ∩ V )

Im(δ0)
∼=

R⊕ R
{(t, t)}

∼= R.

Higher degrees vanish by dimension reasons, so

H0(S1) ∼= R, H1(S1) ∼= R, Hk(S1) = 0 (k ≥ 2).

Identifying a generator. On the universal cover π : R→ S1, t 7→ e2πit, the 1–form dt is closed. Although

dt does not descend to the circle as a global 1–form, its period on the deck transformation t 7→ t+ 1 is 1,

and the corresponding class on S1 is represented in coordinates by dθ (in any angular chart). Its integral

over the positively oriented loop is 1, so it generates H1(S1) ∼= R.

6.9.3 The n–sphere Sn (n ≥ 1)

Cover Sn by two open hemispheres U, V (remove the north/south poles); each is diffeomorphic to Rn, so

H0(U) ∼= H0(V ) ∼= R and Hk(U) = Hk(V ) = 0 for k ≥ 1. Their intersection U ∩ V deformation retracts

onto the equator Sn−1, hence H•(U ∩ V ) ∼= H•(Sn−1).

Mayer–Vietoris gives, for each k,

· · · → Hk(Sn)
ρ−→ Hk(U)⊕Hk(V )

δk−→ Hk(U ∩ V )
∂−→ Hk+1(Sn)→ · · ·
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Using Hk(U) = Hk(V ) = 0 for k ≥ 1, we get for 1 ≤ k ≤ n− 2 an isomorphism

Hk(U ∩ V )
∼−−→ Hk+1(Sn).

Inducting on n starting from S1 (computed above), we conclude

Hk(Sn) =


R, k = 0, n,

0, otherwise.

Top class. The orientation (volume) form volSn is closed and integrates to the volume of Sn; after scaling

to have total integral 1, its class generates Hn(Sn) ∼= R.

6.9.4 Punctured Euclidean space Rn \ {0}

The radial deformation retraction Rn \ {0} → Sn−1 is smooth and a homotopy equivalence, so homotopy

invariance yields

H•
dR(Rn \ {0}) ∼= H•

dR(S
n−1).

Hence H0 ∼= R, Hn−1 ∼= R, and all other degrees vanish.

Explicit generator in degree n−1. Let r =
√
x21 + · · ·+ x2n and set

ωn−1 =
1

Vol(Sn−1)

n∑
i=1

(−1)i−1 xi
rn
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

One checks directly dωn−1 = 0 on Rn \ {0}, and by pulling back the standard volume form on Sn−1 along

the radial projection,

∫
Sn−1

ωn−1 = 1. If ωn−1 = dη, Stokes would give
∫
Sn−1 ωn−1 =

∫
Sn−1 dη = 0, a

contradiction. Thus [ωn−1] is the generator of Hn−1.

6.9.5 The 2–torus T 2 = S1 × S1

View T 2 as R2/Z2 with coordinates (x, y) (mod 1). The 1–forms dx and dy are translation–invariant on

R2 and descend to smooth forms on T 2. They satisfy d(dx) = d(dy) = 0.
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They are not exact. Let γx(t) = (t, 0) and γy(t) = (0, t) be the fundamental loops (mod 1). Then

∫
γx

dx = 1,

∫
γx

dy = 0,

∫
γy

dx = 0,

∫
γy

dy = 1.

If dx = dF for a global function F on T 2, Stokes would give
∫
γx
dx =

∫
γx
dF = 0, contradiction. Similarly

for dy. Hence [dx], [dy] define two linearly independent classes in H1(T 2).

By de Rham’s theorem, H1(T 2) ∼= Hom(H1(T
2;R),R) and H1(T

2;R) ∼= R2, so dimH1(T 2) = 2.

Therefore {[dx], [dy]} is a basis:

H1(T 2) ∼= R⟨[dx], [dy]⟩ ∼= R2.

For degree 2, note dx∧dy is closed,
∫
T 2

dx∧dy = 1 (after suitable normalization of the fundamental domain),

so [dx ∧ dy] ̸= 0. Since dimH2(T 2) = 1 (again by de Rham’s theorem / Künneth for R–coefficients), this

class generates:

H0(T 2) ∼= R, H1(T 2) ∼= R2, H2(T 2) ∼= R.

(As a preview of the ring structure already discussed, [dx]⌣ [dy] = [dx∧dy] and [dx]⌣ [dx] = 0 = [dy]⌣

[dy], so H∗(T 2) ∼= ΛR([dx], [dy]).)

6.9.6 Real projective space RPn (with R–coefficients)

Cover RPn by the two standard affine charts

U0 = {[x0 : · · · : xn] | x0 ̸= 0} ∼= Rn, U1 = {x1 ̸= 0} ∼= Rn,

so Hk(Ui) = 0 for k ≥ 1 and H0(Ui) ∼= R. Their intersection U0 ∩ U1 deformation retracts onto RPn−1:

indeed, U0 ∩ U1 is diffeomorphic to (Rn \ {0})/{±1}, whose radial retraction descends to the quotient and

lands on RPn−1.

Mayer–Vietoris gives, for k ≥ 1,

0→ Hk(RPn)→ Hk(U0)⊕Hk(U1)→ Hk(U0 ∩ U1)→ Hk+1(RPn)→ 0,

i.e.

0→ Hk(RPn)→ 0⊕ 0→ Hk(RPn−1)→ Hk+1(RPn)→ 0.
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Thus for 1 ≤ k ≤ n− 2 we have isomorphisms

Hk(RPn−1) ∼= Hk+1(RPn).

Together with H0(RPn) ∼= R, this recursion shows (by induction on n and using RP1 ∼= S1) that

Hk(RPn;R) =



R, k = 0,

0, 0 < k < n,

R, k = n and n odd,

0, k = n and n even.

(The parity in top degree comes from orientability: RPn is orientable iff n is odd; an orientation yields a

nonzero top-degree class given by a global volume form.)

6.9.7 Closed orientable surfaces Σg of genus g (outline with precise invariants)

Let Σg be a compact, connected, oriented surface of genus g. Cutting along 2g disjoint essential loops

gives a 4g–gon with paired edges. Cover Σg by two open sets U, V obtained by slightly thickening two

complementary subskeleta of this cell structure: U deformation retracts to a wedge of g loops, as does

V ; the intersection U ∩ V retracts to a wedge of 2g loops. Using Mayer–Vietoris and Poincaré duality in

dimension 2 (or by a careful count with the LES), one finds

H0(Σg) ∼= R, H1(Σg) ∼= R2g, H2(Σg) ∼= R.

Concretely, you can build 2g closed 1–forms whose periods produce a basis dual to the 2g fundamental

1–cycles, and the oriented area form (normalized to integrate to 1) generates H2. (We omit the full

polygonal Mayer–Vietoris arithmetic here; the LES is completely analogous to the T 2 computation, just

with 2g generators.)

How to certify nontriviality (general recipe). Whenever you have a candidate closed form ω on a

manifold M , pick a cycle C in the corresponding degree and compute

∫
C
ω. If this integral is nonzero,

then [ω] ̸= 0 in cohomology, because exact forms integrate to 0 on cycles by Stokes. Conversely, on many

basic spaces the only obstruction to exactness is a nonzero period, so these integrals both detect and
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normalize generators (as we did with S1, Sn, Rn\{0}, and T 2).

6.9.8 Summary of computations.

Manifold M H•
dR(M)

Contractible U H0 ∼= R, Hk≥1 = 0

S1 H0 ∼= R, H1 ∼= R, Hk≥2 = 0

Sn (n ≥ 1) H0 ∼= R, Hn ∼= R, else 0

Rn \ {0} H0 ∼= R, Hn−1 ∼= R, else 0

T 2 H0 ∼= R, H1 ∼= R2, H2 ∼= R

RPn H0 ∼= R, Hk = 0 (0 < k < n), Hn ∼= R iff n odd

Closing remark. These examples show the full toolkit at work: Poincaré’s Lemma for contractible pieces,

Mayer–Vietoris to glue information, homotopy invariance to simplify spaces, and integration pairings to

certify generators. They also show the ring structure (e.g. T 2) and the tight link with homology provided

by the de Rham isomorphism: on each space above, the ranks of Hk
dR coincide with those of Hk and the

natural pairings detect bases on both sides.

With this, we bring our exploration of de Rham cohomology to a close. We began by grounding

ourselves in the language of differential forms, built the cochain complex (Ω•(M), d), and studied its

functorial behaviour, computational tools such as Mayer–Vietoris, and the integration map. The de Rham

theorem then revealed the remarkable bridge between smooth and singular worlds, identifying our smooth

cohomology with the singular cohomology of the underlying topological space. From there we enriched the

theory with a graded ring structure, extended it to relative settings, and examined explicit computations

on familiar manifolds.



De Rham Cohomology 134

7 Conclusion

We have travelled a long path, beginning with the concrete geometry of simplicial complexes and ending

with the smooth elegance of de Rham cohomology. Our first steps were firmly anchored in the world of

chains and boundaries, learning how to detect and classify holes in a space through homology. From there

we turned the perspective inside out, passing to cochains and coboundaries to build cohomology, a dual

theory that not only detects the same topological features but also carries a rich algebraic structure via

the cup product.

This algebraic insight paved the way for geometry to return to the stage. By introducing differential

forms, wedge products, and the exterior derivative, we gained a calculus on manifolds capable of encoding

topological information. The generalised Stokes theorem unified familiar results from vector calculus into

a single, far-reaching principle. In the smooth category, these constructions assembled into the de Rham

complex, whose cohomology groups measure the global geometry of a manifold.

The de Rham theorem provided the key revelation: that the smooth world and the topological world

are intimately linked, and that differential forms, despite their analytic nature, capture precisely the

same information as singular cohomology with real coefficients. Through functoriality, Mayer–Vietoris,

relative cohomology, and the graded ring structure, we saw how de Rham cohomology is both a powerful

computational tool and a deep conceptual bridge. Concrete computations on familiar manifolds illustrated

that these ideas are not merely abstract, but tangible and computable.

At the end of this journey, we are left with a picture of mathematics where geometry, topology, and

algebra are inseparably intertwined. Homology gave us the language of shape; cohomology revealed a

new dual perspective enriched with algebraic structure; and de Rham theory united smooth analysis with

purely topological invariants. It is in this interplay that much of the beauty of modern mathematics lies:

a single phenomenon viewed from multiple angles, each viewpoint illuminating the others.

Though our exploration ends here, the tools developed open the door to further landscapes — character-

istic classes, Hodge theory, and beyond — where the themes of duality, algebraic structure, and geometric

meaning continue to play in harmony. The bridge built here between analysis and topology is not the end

of the story, but a gateway to many others.
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