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1 Introduction

Symplectic geometry is a branch of differential geometry and topology that studies smooth
manifolds equipped with a closed, non-degenerate 2-form. Two centuries ago, the field provided
mathematical foundations to classical mechanics, and in particular Hamiltonian mechanics; a
classical mechanical system can be modeled by the phase space which is a symplectic space.
Hence, many mathematicians consider the symplectic structure’s date of origin to be in 1811
when Joseph-Louis Lagrange wrote the work Analytical Mechanics.

The origins for the field are still very debateable. While some argue that symplectic manifolds
arose from classical mechanics, this claim is not entirely correct as the first manifolds endowed
with a symplectic structure were the Kahler manifolds defined by Erich Kahler in 1933. Even so,
symplectic manifolds were not explicitly defined until 1950 by Charles Ehresmann who wanted to
find out whether any 2n real dimensional manifolds had a complex structure. Next, “symplectic
geometry” was used for the first time in 1943 by Carl Ludwig Siegel; however, he referred to
symplectic geometry as a generalization of hyperbolic geometry to %n(TH— 1) complex dimensions,
and although his half-space is indeed a symplectic space, nowadays symplectic geometry refers
to a much broader range of concepts. Another founding pioneer of the field was Jean-Marie

Souriau, who in 1953 gave a presentation titled “Géométrie symplectique différentielle.”

Despite its ties with mechanics, this branch of mathematics is considered an independent,
flourishing field: the geometry of symplectic manifolds. In this expository paper, we present a
self-contained introduction to the field of symplectic geometry. We define its key objects and
present some significant theorems with their proofs.

2 Symplectic Manifolds

2.1 Smooth Manifolds

First, we will define some key foundational objects. Let X be a set. A topology on X is a
collection T of subsets of X, called open subsets, satisfying

1. X and ) are open.

2. The union of any family of open subsets is open.



3. The intersection of any finite family of open subsets is open.

A pair (X, T) consisting of a set X together with a topology 7 on X is called a topological space.

A topological manifold of dimension n is a topological space M satisfying the following properties:

1. M is a Hausdorff space. For every pair of distinct points, there exist two disjoint open
subsets of M that each contain one of the points.

2. M is second-countable. There exists a countable basis for the topology of M.

3. M is locally Euclidean of dimension n. Each point of M has a neighborhood homeomorphic
to an open subset of R™.

Figure 1: Topological manifold

In differential geometry, it is useful to have a notion of smoothness on these manifolds such
that we can perform calculus on them. To do this, we need some more definitions to quantify
what “smoothness” means.

First, we define smooth functions. If U and V are open subsets of Euclidean spaces R™ and
R™, respectively, a function F': U — V' is smooth or infinitely differentiable (denoted by C*)
if each of its component functions has continuous partial derivatives of all orders. If F' is also
bijective and has a smooth inverse map, it is called a diffeomorphism.

Now we generalize this definition to manifolds. A coordinate chart on M is a pair (U, )
where U is an open subset of M and ¢ : U — U is a homeomorphism from U to an open subset
U= o(U) CR™

If (U, ), (V,%) are two charts such that U NV # (), the composite map o=t : p(UNV) —
(U NV) is called the transition map from ¢ to 1. The two charts are smoothly compatible if
either U NV = ) or the transition map 1 o ¢! is a diffeomorphism.

We define an atlas for M to be a collection of charts whose domains cover M. An atlas A is
a smooth atlas if any two charts in A are smoothly compatible with each other. A is mazimal if
it is not properly contained in any larger smooth atlas.

If M is a topological manifold, a smooth structure on M is a maximal smooth atlas A. A
smooth manifold is a pair (M, .4), that is, a manifold topology with a smooth structure.



Figure 2: Two charts on a manifold, and their respective transition map

2.2 2-forms

In general, differential forms are mathematical objects that provide a standardized approach to
define taking integrals over curves, surfaces, solids, and higher-dimensional manifolds; we will
end up integrating them over manifolds to give a measure of their volume. Furthermore, an
m-form can be thought of as an oriented density that can be integrated over an m-dimensional
oriented manifold.

To make a smooth manifold symplectic, it must be equipped with a special 2-form, a differ-
ential form that essentially assigns a scalar to every pair of tangent vectors at each point on the
manifold.

Formally, any function ¢ : D x R™ x R™ — R satisfying the conditions of
1. linearity in each of its two column-vector variables:
P(x,au+bv, w) = a(x;u, w) + bp(x; v, w)

and
Y(x,u,av 4+ bw) = ap(x;u,v) + by(x;u, w)

2. antisymmetry: ¥ (x;v,u) = —(x;u, V)

is called a differential 2-form on a set D C R™.

2.3 Symplectic Manifolds

Now, we are ready to define the core concept of symplectic geometry. A symplectic manifold
is a smooth 2n-dimensional manifold M along with a differential 2-form w € Q*(M) called the
symplectic form with the two properties:

1. wis closed as dw = 0, i.e. the exterior derivative of w vanishes.

2. w is non-degenerate: if w,(v,w) =0 for all v € T, M, then w = 0.



Assigning this symplectic form to M is referred to as giving M a symplectic structure. Note that
T,.M denotes the tangent space of M at a point x, and recall that the tangent space is the set
of all possible tangent vectors to curves on M passing through x; we will expand upon tangent
spaces later.

Relating this to quantum mechanics, 2-forms help with turning a function (the Hamiltonian
representing the total energy of the system) into a flow (the trajectories of the system in phase
space, like the solutions to Hamilton’s equations). However, a symplectic form specifically does
this in a method compatible with Hamilton’s equations, which is why it is helpful.

Now we present some well-known examples of symplectic manifolds.

Example: R?"

Let M = R?" with linear coordinates z1,...,Zn, ¥1,...,Yn. The form
n
Wy — Z d.ﬁ(}z VAN dyl
i=1

is symplectic, and the set

(CRRCREIRREN

is a symplectic basis of T, M.

R?" is the standard symplectic structure and serves as the prototype for all symplectic man-
ifolds, though it has trivial topology.

Another well-known example of a symplectic manifold is a Kéhler manifold, which has three
compatible structures: a complex structure, a Riemannian structure, and a symplectic structure.
We will omit its formal definition for brevity.

3 Symplectomorphisms

Now we will investigate maps between symplectic manifolds. Let (M7, w;) and (Ms,ws) be 2n-
dimensional symplectic manifolds, and let ¢ : M; — My be a diffeomorphism. Then ¢ is a
symplectomorphism if p*ws = wy. In other words, a symplectomorphism is a smooth, invertible
map between two symplectic manifolds that preserves their symplectic structures, and hence
preserves areas.

3.1 Theorem (Darboux)

This theorem is one of the most fundamental results in symplectic geometry.

Theorem: Any symplectic manifold (M?" w) is locally symplectomorphic to the “trivial”
symplectic manifold (R*",w), where wy = Y7, dz/ A dy’. In other words, there exists an open
neighborhood U C M of p and a diffeomorphism v : U — R?" such that 1 is a symplectomor-
phism.



A chart (U, 2!, ... 2"y, ..., y") is called a Darbour chart. The existence of Darboux charts
means there are no “local invariants” in symplectic geometry (e.g., no analogue of curvature
as contrasted to Riemannian geometry). In the context of physics, Darboux coordinates are
position/momentum pairs.

The Darboux theorem was first proved by Gaston Darboux in 1882, in connection with his
work on ordinary differential equations arising in classical mechanics. A proof discovered in 1971
by Alan Weinstein is based on the theory of time-dependent flows. A more elementary proof
given in Introduction to Smooth Manifolds by John M. Lee follows the following outline:

1. The smooth coordinates (z',...,2" y',...,y") on an open subset U C M are Darboux

coordinates if and only if their Poisson brackets satisfy
{«".y'} =67 {22/} ={y',y'} = 0.

Note that a Poisson bracket is an important binary operation Hamiltonian mechanics be-
tween functions depending on phase space and time, satisfying anticommutativity ({f, g} =
—{g. f}), billinearity ({af+0bg, h} = a{f, h}+b{g, h}, {h,af+bg} = a{h, f}+b{h, g}, for
a,b € R), Leibnez’s rule ({ fg,h} = {f, h}g+f{g, h}), and the Jacobi identity ({f,{g, h}}+
{9,{h, f}} + {h,{f,9}} = 0). In an intuitive sense, a Poisson bracket measures how the
flows generated by two functions “twist” relative to the symplectic form w.

2. Proceeding with induction on k, we can show that for each £k =0, ..., n, there are smooth
functions (x!,..., 2% y*, ..., y*) vanishing at p and satisfying the above in a neighborhood
of p such that the 2k-tuple of 1-forms (dx!,..., dz* dy',..., dy*) is linearly independent
at p. Recall that a 1-form is a linear combination of the differentials of the coordinates.

When k = n, this proves the theorem, and the full Darboux chart has been constructed.

4 Cotangent Bundles

Another important natural example of symplectic manifolds are cotangent bundles. Unlike the
previous trivial example of R?", cotangent bundles encode the topology of an underlying space.
Cotangent bundles are defined similarly to tangent bundles, which we shall define first.

Let M be a smooth manifold and p € M. The tangent space at p, denoted T,,M, is the vector
space of all directional derivatives at p. Its elements are called tangent vectors.
The tangent bundle T'M of a manifold M is the disjoint union of all tangent spaces:

T™ = | | T,M.

peEM

It is naturally a smooth manifold of dimension 2 dim M.

Given a vector space V', its dual space V* is the space of all linear functionals o : V' — R.
Recall that a linear functional is a linear map from a vector space to its field of scalars. If V' is
finite-dimensional, dim V* = dim V.

Next, in a similar vein, the cotangent space at p, denoted Ty M, is the dual space of T),M. Its
elements are called cotangent vectors (or 1-forms at p).



The cotangent bundle T*M is the disjoint union of all cotangent spaces:

"M = | | ;M.

peEM

It is also a smooth manifold of dimension 2dim M, with local coordinates (¢',...,q", p1,...,Pn)
where (¢') are coordinates on M and (p;) are fiber coordinates for 1-forms o = > | p; dg’,.

To understand what fiber coordinates are, we will go on a digression about fiber bundles.
A fiber bundle is a quadruple (E, B, 7, F') where:

e E (the total space) and B (the base space) are smooth manifolds,

e 7: ' — B is a surjective projection map,

F' (the fiber) is a manifold, and

Locally, E is diffeomorphic to the product space B x F' (i.e., for every p € B, there exists
a neighborhood U C B of p such that there exists a homeomorphism between 7—!(U) and
UxF).

Given a fiber bundle 7 : E — B and its projection map, the fiber over a point p € B is the
preimage:
E,=7"'(p) CE.

For every p € B, E, is diffeomorphic to F'.

fiber

Beeve manifold

fiher bundle

Figure 3: Visualizing a fiber bundle. A common intuitive picture is a hairbrush.

Fiber coordinates label points within each fiber, while base coordinates label points on the
base manifold.

Now we can see that cotangent bundles are naturally symplectic manifolds. The base coor-
dinates are analogous to position, and the fiber coordinates are analogous to momentum com-
ponents.

Theorem: Every cotangent bundle is a symplectic manifold () with the canonical symplectic
form, the Poincare two-form w = """ | dp; Adg', where (¢*, ..., ¢") being any local coordinates on
Q and (p1, ..., p,) being fiberwise coordinates with respect to the cotangent vectors dq', . .., dq".



5 Lagrangian Submanifolds

Lagrangian submanifolds are an important type of submanifold in symplectic geometry. They
generalize solutions to Hamilton’s equations where the configuration space is half the phase space
dimension, providing a bridge between classical and quantum systems.

Let (M,w) be a 2n-dimensional symplectic manifold. A submanifold Y of M is a Lagrangian
submanifold if, at each p € Y, T,Y is a Lagrangian subspace of T,M, i.e., wy|T,Y = 0 (w vanishes
on L) and dim7,Y = %dim T,M. Equivalently, if ¢ : Y < M is the inclusion map, then Y is
Lagrangian if and only if i*w = 0 and dimY = %dim M.

5.1 Weinstein’s Lagrangian Neighborhood Theorem

Now we provide a theorem emphasizing the usage of these submanifolds.

Theorem: Let M be a smooth 2n-dimensional manifold with two symplectic forms w; and
wy on M. Consider a compact Lagrangian submanifold i : L < M of both (M, w;) and (M, w,).
Then there exist two open neighborhoods U; and Us of L in M and a diffeomorphism f : U; — U,
such that f*ws = w; and f|;, = idy.

The theorem states that every Lagrangian submanifold locally resembles the zero section of
T,M with its canonical symplectic structure. It hence links classical states to quantum states
via cotangent bundles.
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