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Abstract

In this paper we will discuss minimal surfaces giving a few examples
and interesting theorems surrounding the topic.
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2 Background

We assume that the reader is familiar with surface patches and the first and
second fundamental forms. Recall the definition of the GauB map and so forth
the Weingarten map.
Definition 2.1. Let S be a surface. The GauB map is the map G : § — $2
(where S? is the unit sphere) sending a point p € S to the unit normal vector
N. If the choice of surface is ambiguous, we write Gg.
Definition 2.2. Let S be a surface, and let p € S. The Weingarten map W), of
S at p is defined to be
Wy, =—-D,G

where D, refers to the derivative at p and G is the GauB map.

Let W be the Weingarten map of a surface S at a point p € S. Recall that

W is a linear map from T,(S) to itself (where T},(s) is the set of all tangent
vectors to S at p). We now define the mean curvature.

Definition 2.3. The mean curvature of S at p is H = 1Tr(W) where Tr is the
trace.

From the first and second fundamental forms Edu? + 2Fdudv + Gdv? and
Ldu? 4+ 2Mdudv + Ndv? respectively, we define symmetric 2 x 2 matrices Fy
E F L M
and Fj; by [F G} and [M N]’
We offer this following proposition as a way of simplifying the Tr(W) ex-
pression.



Proposition 2.4. The Weingarten map W with respect to the basis o, 0, of
T,S is Fy ' Fyy.

Proof. consult either simon’s proof or Pressley massey ch8 |

We now show a simpler form for H.

Lemma 2.5.
_ LG-2MF+ NFE

a= 2(EG — F?)

Proof. To compute H, we need the trace of the matrix FI_IFH. Noting the
general formula for an inverted matrix, we calculate.

g _ 1 G -F|[L M]_ 1 LG - MF MG —NF
VM= pa "2 |-F E||M N|  EG_—F2|ME-LF NE-MF
Therefore,
1 . LG —2MF + NE
=3B ) = —ga =
Consult

If we have z = f(x,y), for a surface o(z,y) = (z,y, f(x,y)), we have

A+ ) few = 2f fy foy + (L4 S2) iy

H = 3
20+ 2+ 1))

Some more information on this formula can be found in [dC16, Chapter 3] We
now define the minimal surface and a corollary to go along.

Definition 2.6. A minimal surface is a surface whose mean curvature is zero
everywhere.

Corollary 2.7. If a surface S has least area among all surfaces with the same
boundary curve, then S is a minimal surface.

We will also give the definition for a ruled surface as we will make use of it
in another section.

Definition 2.8. A ruled surface is a surface that is a union of straight lines. We
call the lines the rulings of the surface.

3 Motivation

Minimal surfaces have a curious interpretation in soap films. Soap films are thin
layers of liquid surrounded by air. A soap film has energy due to the surface
tension on it. Those with physics knowledge will recognize that this energy is
directly proportional to its area (W = vdS). A soap film spanning a wire in
the shape of a curve would adopt the shape of a surface of least area with a
boundary curve. By the previous corollary, this will be a minimal surface.



4 Examples

The most common examples of a minimal surface are the catenoid and the
helicoid. We check that both of these are indeed minimal surfaces.

4.1 Catenoid

A picture of the catenoid is given below.

Lemma 4.1. A catenoid is a minimal surface.

Proof. The parametrization for a catenoid is o (u, v) = (cosh(u) cos(v), cosh(u) sin(v), u).
We straightforwardly calculate the fundamental forms.
o4, = (sinh(u) cos(v), sinh(u) sin(v), 1)
0y = (— cosh(u) sin(v), cosh(u) cos(v), 0)
Oy X 0y = (—cosh(u) cos(v), — cosh(u) sin(v), sinh(u) cosh(u))
= % = (—sech(u) cos(v), — sech(u) sin(v), tanh(u))
Oun = (cosh(u) cos(v), cosh(u) sin(v), 0)
Ouv = (—sinh(u) sin(v), sinh(u) cos(v), 0)
oy = (—cosh(u) cos(v), — cosh(u) sin(v), 0)
E = |joy]|? = cosh?(u)
F=0y,-0,=0
G = ||oy||* = cosh?(u)
L=N 0y =—1
M=N -0, =0
N =No,, =1
We now calculate H.
LG -2MF+ NE  — cosh?(u) 4 cosh?(u)
2(EG — F?2) 2 cosh® (u)

Thus, the catenoid is a minimal surface. |

H = =0




4.2 Helicoid

A picture of the helicoid is given below.

Lemma 4.2. The helicoid is a minimal surface.

Proof. The parametrization of a helicoid is o(u,v) = (vcos(u),vsin(u), Au).
From here, we just do the calculations.

oy = (—vsin(u), v cos(u), A)
oy = (cos(u), sin(u),0)
oy X 0y = (=Asin(u), Acos(u), —v)
(0w X o) 1

N = low X ool = (—Asin(u), A cos(u), —v)
u v

Ouu = (—v cos(u), —vsin(u),0)
ouw = (—sin(u), cos(u), 0)
ow = (0,0,0)
E=v4+ )\

F=0
G=1
L=o0y, -N=0

A
N=0,,-N=0
LG -2MF+ NFE

B=wa—ry ~°

M =0y, N =




5 Theorems with Minimal Surfaces

We will now get into some relationships between minimal surfaces and surfaces
of revolution and ruled surfaces. Recall that the surfaces of revolution are
constructed by taking a plane curve, called the profile curve, and rotate it around
a line in the plane, thus forming a surface in R3.

Theorem 5.1. Any minimal surface of revolution S is an open subset of a
plane or a catenoid.

Proof. By applying an isometry of R?, we can assume that the axis of the surface
S is the z-axis and the profile curve lies in the zz-plane. We parametrize S
as o(u,v) = (f(u)cos(v), f(u)sin(v), g(u)) where we assume the profile curve
u — (f(u),0,g(u)) is assumed to be unit-speed and f > 0. We omit the
calculations for the first and second fundamental forms. Consult [Prel0] for
more information.

du® + f(u)?dv? and (fij — fg)du® + fgdv?

where a dot denotes d%. Applying the lemma for the simpler form of H, we find
that the mean curvature is:

1 . . g

g Yiie o9

59— f9+ f)
We suppose now that, for some value of u, say u = ug, we have g(ug) # 0. Since
¢ is continuous (which follows from the fact that g is smooth), we have that
g(u) # 0 for u in some open interval containing ug. Let («, 8) be the largest
interval. Assuming that u € (a, 3), we differentiate the unit speed condition
f2+g=1toget ff + gj=0. Thus we have

(fi—fa)g=—Fff—FfP=-f(f>+9)=—f

fg—rfo=-=
g
We substitute this in for our previous expression for H:
1g f
H = 5(? - =)
g
From the unit speed condition ¢ = 1 — f2, S is minimal if and only if H = 0:
12— ff . )
R By
2 fg

To solve this differential equation, we substitute h = f , and notice the following
chain rule application:

podh_dndr_dn
Cdt  dfdtdf



Hence, we have:

dh
h— =1—h?
f i

Since we assumed that ¢ # 0, we have h? # 1, so we integrate:

/ hdh [ df
1-n2 ) f

N i
—ver-l

where a is a non-zero constant and we ommited signs. Noting that h = % and
integrating again:

/ afdf /
——— = [ du
Vazf?—1
1
f==v1+a?u+b)?
a
where b is a constant. By a change of parameter from v — w + b, we can

assume that b = 0. Therefore, f = %\/1 + a?u2. To compute g, we recall that

9221—f2-
1

a2 2

g'2:1—f2:1—h2:

dg_ 1
du V1+ a?u?

1
g = £~ sinh™*(au) + ¢( where ¢ is a constant)
a

au = £ sinh(a(g — ¢))

f = cosh(alg <))

Therefore the profile curve of S'is # = L cosh(a(z—c)). The surface S is obtained
by applying to the catenoid S, a translation along the z-axis. However, we are
not done. We have shown that the open subset of S corresponding to u € («, 3)
is part of the catenoid. Hence, we have excluded the possibility that S is a
plane.

To finish up, assume that S < oo. Then, if the profile curve is defined
for values of u > 3, we must have g(8) = 0, otherwise ¢ would be non-zero
on an open interval containing 5, which would contradict our assumption that
(a, B) is the largest open interval containing ug on which g # 0. The equations
written above show that ¢ = M;%ﬁ if u € (o, B) and so, since ¢ is a continuous

function of u, §(3) = +(1 +a282)~2 # 0. This contradiction shows that the
profile curve is not defined for values of v > . A similar argument applies to
a, and shows that (o, ) is the entire domain of definition of the profile curve.
Hence, the whole of S is an open subset of a catenoid.



The last case is if g(u) = 0 for all values of u on which the profile curve is
defined. Then, g(u) is a constant, for example C, and then S is an open subset
of the plane z = C. [ |

We might wonder about the relationship between ruled surfaces and minimal
surfaces. The following theorem sheds some light on it.

Theorem 5.2. Any ruled minimal surface is an open subset of a plane or
helicoid.

Proof. We take the usual parametrization of a ruled surface as o(u,v) = vy(u) +
vd(u), where « is a curve that meets each of the rulings and J(u) is a vector
parallel to the ruling through ~(u).

We make some assumptions. Firstly,, assume that [|0(u)|| = 1 for all values
of u. Secondly, we assume that § is never zero, where the dot refers to %. We

also assume that 4 - § = 0.
Note that o, =4 + vd and o, = 6.

E=|y+v|>and F = (¥ +vd)-6=%-6 and G =1
For simplicty, let A =+/EG — F2. We can then calculate N:
N =A"1(§ +vd) x &
Notice that we have g, =~ + US, Oup = 5, and o,, = 0, so:
L=A" (5 +vd) - (% +vd) x 6)
M=A"Y%((3+v0) x8) = A" (¥ x0)
N=0

Recall that H = W = 0, so we have:

(5 +v8) - (5 +v8) x 8) = 2(8-4)(6 - (5 x )

This has to hold for all values of (u,v). Equating coefficients of powers of v
gives .
Fe (7 x0) =2(6-9)(0- (y x9))
Fo(0x8)+6-(3x8)=0

6-(6x8)=0

where the last line stems from an inner product identity. The last line shows
that 4, §, and § are linearly dependent. Since § and § are perpendicular unit
vectors (by assumption), there are smooth functions «(u) and S(u) such that

6 =ad+ 6.



But, since 8 is unit speed, - = 0. Differentiating this gives §-6 = —4-6 = —1.
Hence, « = —1 and 8 =0, so )
0=—0

This equation shows that the curvature of the curve ¢ is 1, and that its principal
normalis —d. Hence, the binormal is 6 x (—¢), and noting the following

4

du(Sxé):5x5+5x5:—6x5:0

it follows that the torsion of § is 0. Therefore, § parametrizes a circle of radius
1. By applying an isometry of R?, we can assume that § is the circle with radius
1 and centre the origin in the zy— plane, so that

d(u) = (cos(u),sin(u), 0)

From § = —8, we get 8- (3 x8) = —8-(4x68) = 0,80 by - (6§ x8)+6- (4 x ) =0,
we have .
A (0x0)=0

Therefore, 5 is parallel to the zy plane, and hence v(u) = (f(u), g(u), au + b)
where f and g are smooth functions and a and b are constants. If a = 0,
the surface is an open subset of the plane z = b. Otherwise, from a previous
equation, we have

g cos(u) — fsin(u) = 2(f cos(u) 4 gsin(u))
Making use of the condition that % -4 = 0, we have
fsin(u) = g cos(u)
Differentiating this leaves:
fsin(u) 4 f cos(u) = §cos(u) — gsin(u)

Therefore, we have _
fcos(u) + gsin(u) =0

and using a previous equation we have f = g = 0. Moreover, f and g are con-
stants. By a translation of the surface, we can assume that the constants f,g,
and b are zero, so then y(u) = (0,0, au) and hence o (u, v) = (v cos(u), vsin(u), au)
which is a helicoid.

We assumed at the start that ¢ is never zero. If § is always zero, then
d is a constant vector, and the surface is a generalized cylinder. However, a
generalized cylinder is a minimal surface only if the cylinder is an open subset
of a plane. Using a similar argument at the end of the previous theorem, we are
done. |



6 Open Questions

We leave the reader with several open questions on the topic of Minimal Surfaces.

e Plateau’s problem involves finding a minimal surface from a fixed bound-
ary curve. Is it possible for a single smooth boundary curve to bound
infinitely many minimal surfaces.

e What is the number of solutions for a given boundary configuration. Can
a single boundary bound an infinite number of minimal surfaces?

e What is the overall structure of the space of all minimal surfaces as their
boundaries vary? The point of this question is to look at these surfaces
globally.

The reader should consult [DHSI0] to learn more about these open questions.
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