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Abstract

In this paper, we cover the foundations of higher-dimensional differential geometry
and topology. We construct smooth manifolds, define tangent and cotangent bundles,
and establish structural results like smoothness of the tangent bundle and partitions
of unity. Next, we explore differential forms, prove d2 = 0 to establish the exterior
derivative, and arrive at the Poincaré lemma. We establish results on geodesics and
completeness, prove curvature symmetries and Bianchi identities, and define the Levi-
Civita connection. Lastly, we use Gauss-Bonnet and Chern-Weil theory to relate
curvature to topology.
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1 Smooth Manifolds

1.1 Topological preliminaries and smooth structures
Definition 1.1 (Topological manifold). A topological n-manifold is a Hausdorff, second
countable topological space M such that every p ∈ M has a neighborhood homeomorphic to an
open subset of Rn.

Definition 1.2 (Charts, atlases, smooth structures). A chart is a pair (U,φ) with U ⊂ M
open and φ : U → φ(U) ⊂ Rn a homeomorphism. An atlas is a family of charts covering
M . Two charts (U,φ) and (V, ψ) are smoothly compatible if the transition ψ ◦ φ−1 is C∞

wherever defined. A smooth structure on M is a maximal smoothly compatible atlas. A
smooth manifold is a pair (M,A) where A is such a smooth structure.

Proposition 1.3 (Existence and uniqueness of maximal smooth atlas). Given any smooth
atlas A, there exists a unique maximal smooth atlas containing it.

Proof. Define A to be the set of all charts smoothly compatible with every chart in A. Then
A is an atlas containing A. It is maximal: if a chart is compatible with all charts in A, then
in particular it is compatible with all charts in A, hence belongs to A. For uniqueness, if B
is another maximal atlas containing A, then B must equal A.

1.2 Tangent vectors: derivations and velocities
Definition 1.4 (Tangent space via derivations). Let p ∈ M . A derivation at p is a linear
map

X : C∞(M) −→ R
satisfying the Leibniz rule

X(fg) = f(p)X(g) + g(p)X(f), ∀f, g ∈ C∞(M).

The vector space of derivations at p is called the tangent space and denoted TpM .

Definition 1.5 (Tangent bundle). The tangent bundle of M is the disjoint union

TM =
⊔

p∈M

TpM.

Proposition 1.6 (Tangent vectors from curves). Let γ : (−ε, ε) → M be a smooth curve
with γ(0) = p. Define

Xγ(f) = d
dt

∣∣∣∣
0
f(γ(t)).

Then Xγ is a derivation at p, hence an element of TpM .

Proof. Linearity follows from linearity of differentiation. For f, g ∈ C∞(M),

Xγ(fg) = d
dt

∣∣∣∣
0
f(γ(t))g(γ(t)) = f(p) d

dt

∣∣∣∣
0
g(γ(t)) + g(p) d

dt

∣∣∣∣
0
f(γ(t)),

which is the Leibniz rule. Hence Xγ is a derivation.
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Proposition 1.7 (Equivalence of definitions). Every tangent vector X ∈ TpM arises as Xγ

for some smooth curve γ with γ(0) = p. Thus the curve-based and derivation-based definitions
of tangent vectors are equivalent.
Proof. Choose a chart (U,φ) around p with φ(p) = 0. Let X ∈ TpM be a derivation.
Define vi = X(xi) where xi are coordinate functions. Define γ(t) = φ−1(tv). Then for any
f ∈ C∞(M),

X(f) =
n∑

i=1
vi∂(f ◦ φ−1)

∂xi
(0) = d

dt

∣∣∣∣
0
f(γ(t)),

so X = Xγ. Hence every tangent vector arises from a curve.
Definition 1.8 (Coordinate vector fields). In a chart (U,φ) with local coordinates (x1, . . . , xn),
define

∂

∂xi

∣∣∣∣
p
(f) = ∂

∂xi
(f ◦ φ−1)(φ(p)).

Proposition 1.9 (Coordinate basis). The family
{

∂
∂xi

∣∣∣
p

∣∣∣ i = 1, . . . , n
}

forms a basis for
TpM .

Proof. If ∑n
i=1 a

i ∂
∂xi

∣∣∣
p

= 0, apply this operator to xj to obtain aj = 0. Hence they are linearly
independent. Given X ∈ TpM , set vi = X(xi). Then X = ∑

vi ∂
∂xi

∣∣∣
p
. Thus they span

TpM .

1.3 Partitions of unity
Definition 1.10 (Partition of unity). Let {Uα}α∈A be an open cover of M . A smooth
partition of unity subordinate to {Uα} is a family of smooth functions {φα : M →
[0, 1]}α∈A such that:

1. supp(φα) ⊂ Uα for each α,

2. the family {φα} is locally finite,

3. ∑α∈A φα(x) = 1 for all x ∈ M .
Theorem 1.11 (Existence of partitions of unity). Let M be a smooth manifold and {Uα} an
open cover. Then there exists a smooth partition of unity subordinate to {Uα}.
Proof. Since M is paracompact and Hausdorff, the cover admits a locally finite refinement
{Vβ} with Vβ ⊂ Uα(β). For each β, choose a coordinate neighborhood Wβ with Wβ ⊂ Vβ. In
Rn construct a smooth bump function ψβ supported in Vβ and equal to 1 on Wβ. Pull back
via the chart to M . The family {ψβ} is locally finite and nonnegative. Define

S(x) =
∑

β

ψβ(x),

which is smooth and positive everywhere. Then set θβ = ψβ/S. Finally, for each α, define
φα =

∑
α(β)=α

θβ.

This yields the required partition of unity.
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Corollary 1.12. Any smooth manifold admits smooth global constructions built from local
data by means of partitions of unity.

2 Tangent and Cotangent Bundles, Differential Forms,
and Exterior Derivative

2.1 The tangent bundle as a smooth manifold and vector bundle
Definition 2.1 (Tangent bundle). Let M be a smooth manifold of dimension n. The tangent
bundle is the disjoint union

TM :=
⊔

p∈M

TpM,

together with the projection map

π : TM → M, π(p, v) = p.

Theorem 2.2 (Smooth structure on TM). The tangent bundle TM admits a unique smooth
manifold structure of dimension 2n such that the projection π : TM → M is smooth.
Moreover, TM is naturally a rank-n vector bundle over M .

Proof. Fix a chart (U,φ) on M , where φ : U → φ(U) ⊂ Rn. For p ∈ U , let v ∈ TpM with
coordinate representation v = ∑n

i=1 v
i ∂

∂xi

∣∣∣
p
. Define a local trivialization map

ΨU : π−1(U) → φ(U) × Rn, ΨU(p, v) =
(
φ(p), (v1, . . . , vn)

)
.

Given (x,w) ∈ φ(U) ×Rn, set p = φ−1(x) and define v = ∑
i w

i ∂
∂xi

∣∣∣
p
. Then ΨU (p, v) = (x,w).

Hence ΨU is bijective. Let (U,φ), (V, ψ) be two charts with overlap. Consider

ΨV ◦ Ψ−1
U : φ(U ∩ V ) × Rn → ψ(U ∩ V ) × Rn.

For (x, v) with x ∈ φ(U ∩ V ), this transition is

(x, v) 7→
(
ψ ◦ φ−1(x), J(x) v

)
,

where J(x) is the Jacobian matrix of ψ ◦ φ−1 at x. Since ψ ◦ φ−1 is smooth, J(x) depends
smoothly on x. Thus the transition map is smooth. The atlas {ΨU} endows TM with
the structure of a 2n-dimensional smooth manifold. In these coordinates π(x, v) = x,
which is smooth with surjective differential. Hence π is a smooth submersion. On each
fiber π−1(p) = TpM ∼= Rn, define addition and scalar multiplication coordinatewise. On
overlaps, the transition functions act by multiplication with J(x) ∈ GLn(R). Thus the vector
space structure is preserved across trivializations. Therefore TM is a rank-n smooth vector
bundle.

Corollary 2.3. Local trivializations of TM are given by π−1(U) ∼= U ×Rn. Transition maps
are smooth and linear on fibers.
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2.2 The cotangent bundle and differential forms
Definition 2.4 (Cotangent space and bundle). For p ∈ M , the cotangent space is the
dual space

T ∗
pM := Hom(TpM,R).

The cotangent bundle is
T ∗M :=

⊔
p∈M

T ∗
pM.

This is a rank-n vector bundle over M , dual to TM .

Definition 2.5 (Differential k-forms). For k ≥ 0, define the bundle of alternating covariant
k-tensors

ΛkT ∗M.

Its smooth sections are called differential k-forms:

Ωk(M) := Γ(ΛkT ∗M).

In particular, Ω0(M) = C∞(M).

Proposition 2.6 (Exterior algebra). For α ∈ Ωk(M) and β ∈ Ωℓ(M), there exists a wedge
product

α ∧ β ∈ Ωk+ℓ(M)
that is bilinear, associative (up to signs), and graded-commutative:

α ∧ β = (−1)kℓβ ∧ α.

Proof. At each fiber T ∗
pM , the wedge product is the standard exterior product of alternating

tensors. These satisfy bilinearity, associativity, and graded commutativity. Local trivial-
izations show coefficients vary smoothly, hence the wedge product yields a smooth global
form.

2.3 Exterior derivative
Theorem 2.7 (Exterior derivative). There exists a unique sequence of R-linear maps

d : Ωk(M) −→ Ωk+1(M), k ≥ 0,

such that:

1. If f ∈ C∞(M), then df is the usual differential.

2. For α ∈ Ωk(M), β ∈ Ωℓ(M),

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.

3. d2 = 0.
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Proof. On a chart (U, x1, . . . , xn), any k-form is written

ω =
∑

i1<···<ik

ωi1···ik
(x) dxi1 ∧ · · · ∧ dxik .

Define
dω =

∑
i1<···<ik

n∑
j=1

∂ωi1···ik

∂xj
(x) dxj ∧ dxi1 ∧ · · · ∧ dxik .

(1) For k = 0, ω = f , this recovers the usual differential.
(2) For wedge products, expand coefficients and check the sign rules; the Leibniz identity
holds.
(3) Applying d twice yields terms with second partial derivatives ∂j∂kωI multiplying dxj ∧dxk,
which vanish by symmetry of partials and antisymmetry of wedge. Thus d2 = 0.

Under a change of coordinates x̃ = x̃(x), the local expression transforms tensorially.
Transition Jacobians cancel precisely because the formula is alternating in indices. Hence the
definition is globally consistent.By partitions of unity, this operator extends to all of M . Any
operator satisfying (1)–(3) agrees with this local definition, hence is unique.

2.4 Interior product, Lie derivative, and Cartan’s formula
Definition 2.8 (Interior product). Let X ∈ Γ(TM) be a smooth vector field. The interior
product (or contraction) ιX : Ωk(M) → Ωk−1(M) is defined by

(ιXω)(X1, . . . , Xk−1) := ω(X,X1, . . . , Xk−1),

for ω ∈ Ωk(M) and X1, . . . , Xk−1 ∈ Γ(TM).

Proposition 2.9. For X ∈ Γ(TM), the interior product ιX is R-linear and satisfies the
graded Leibniz rule:

ιX(α ∧ β) = (ιXα) ∧ β + (−1)kα ∧ (ιXβ),
for α ∈ Ωk(M), β ∈ Ωℓ(M).

Proof. This follows by direct evaluation on vector fields, expanding both sides and comparing
signs from antisymmetry.

Definition 2.10 (Lie derivative of forms). The Lie derivative of a form ω ∈ Ωk(M) along
a vector field X ∈ Γ(TM) is defined by

LXω := d

dt

∣∣∣∣
t=0

(Ft)∗ω,

where Ft is the flow of X.

Proposition 2.11 (Properties of LX). The operator LX : Ωk(M) → Ωk(M) satisfies:

1. LX is R-linear.

2. LX commutes with d: LXd = dLX .
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3. LX is a graded derivation of degree 0:

LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ).

Theorem 2.12 (Cartan’s magic formula). For any vector field X and form ω,

LXω = d(ιXω) + ιX(dω).

Proof. It suffices to check on functions (0-forms) and 1-forms, and then extend by the
derivation property.

(1) For f ∈ C∞(M), LXf = X(f), while d(ιXf) = 0 and ιX(df) = df(X) = X(f).
(2) For α ∈ Ω1(M), LXα = d

dt
|0(F ∗

t α). Expanding, one obtains

LXα(Y ) = X(α(Y )) − α([X, Y ]).

On the other hand, (
d(ιXα) + ιX(dα)

)
(Y ) = Y (α(X)) − dα(X, Y ).

Using the coordinate expression for dα, one checks the two are equal.
(3) By derivation properties, equality extends to all k-forms.

2.5 Poincaré lemma
Theorem 2.13 (Poincaré lemma). Let U ⊂ Rn be open and star-shaped with respect to the
origin. If ω ∈ Ωk(U) is closed (dω = 0) and k ≥ 1, then ω is exact: there exists η ∈ Ωk−1(U)
with dη = ω.

Proof. Define the radial vector field X = ∑n
i=1 x

i ∂
∂xi , and the homothety Ht : U → U ,

Ht(x) = tx. Define the operator

(Kω)x =
∫ 1

0
tk−1 ιX

(
(Ht)∗ω

)
x

dt.

Then K : Ωk(U) → Ωk−1(U) is linear.
We compute:

(dK +Kd)(ω) = ω − (H0)∗ω.

Indeed, differentiating (Ht)∗ω with respect to t and using Cartan’s formula LX = dιX + ιXd
yields

d

dt
(H∗

t ω) = 1
t
H∗

t (LXω).

Integrating from t = 0 to t = 1 and rearranging gives the stated identity.
Now if dω = 0, then

ω = d(Kω) +K(dω) = d(Kω).
Moreover, (H0)∗ω = 0 for k ≥ 1 because pullback by a constant map annihilates positive-
degree forms.

Thus η := Kω satisfies dη = ω.
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3 Riemannian Geometry

3.1 Riemannian metrics and the Levi-Civita connection
Definition 3.1 (Riemannian metric). A Riemannian metric on a smooth manifold M is
a smooth section g ∈ Γ(Sym2T ∗M) such that gp is an inner product on TpM for each p ∈ M .
We write (M, g) for a Riemannian manifold.

Definition 3.2 (Connection on TM). A connection on TM is an R-bilinear map

∇ : Γ(TM) × Γ(TM) → Γ(TM), (X, Y ) 7→ ∇XY,

such that for f ∈ C∞(M) and X, Y ∈ Γ(TM):

1. ∇fXY = f ∇XY ,

2. ∇X(fY ) = X(f)Y + f ∇XY .

The torsion is T (X, Y ) := ∇XY − ∇YX − [X, Y ].

Definition 3.3 (Metric-compatibility). A connection ∇ is metric-compatible with g if

X
(
g(Y, Z)

)
= g(∇XY, Z) + g(Y,∇XZ)

for all X, Y, Z ∈ Γ(TM). Equivalently, ∇g = 0.

Theorem 3.4 (Fundamental theorem of Riemannian geometry). For every Riemannian
manifold (M, g) there exists a unique connection ∇ on TM that is torsion-free and metric-
compatible. It is characterized by the Koszul formula: for all X, Y, Z ∈ Γ(TM),

2 g(∇XY, Z) = X g(Y, Z) + Y g(Z,X) − Z g(X, Y )
− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]). (3.1)

Proof. Existence. Define ∇ pointwise by (3.1): for fixed X, Y , the right-hand side is C∞-
linear in Z and g-nondegeneracy determines a unique ∇XY . Check the connection axioms
by bilinearity and tensoriality from (3.1). Metric-compatibility follows by setting Z = Y
and polarizing; torsion-freeness follows by antisymmetrizing (3.1) in (X, Y ), which yields
2 g(∇XY − ∇YX − [X, Y ], Z) = 0 for all Z.

Uniqueness. If ∇̃ is another torsion-free, metric-compatible connection, subtract the
two Koszul identities to obtain g

(
(∇ − ∇̃)XY, Z

)
= 0 for all X, Y, Z, hence ∇ = ∇̃.

3.2 Local expressions and Christoffel symbols
Let (x1, . . . , xn) be local coordinates. Write ∂i := ∂

∂xi , gij := g(∂i, ∂j), and (gij) the inverse
matrix.

9



Definition 3.5 (Christoffel symbols). The Levi-Civita connection is locally determined by

∇∂i
∂j = Γk

ij ∂k,

where
Γk

ij = 1
2 g

kℓ
(
∂igjℓ + ∂jgiℓ − ∂ℓgij

)
.

The symmetry Γk
ij = Γk

ji holds by torsion-freeness.

Lemma 3.6 (Covariant derivatives of tensors). If Y = Y k∂k, then

(∇∂i
Y )k = ∂iY

k + Γk
iℓY

ℓ.

If α = αj dx
j, then

(∇∂i
α)j = ∂iαj − Γℓ

ij αℓ.

These extend uniquely to arbitrary tensor fields by the Leibniz rule and contraction invariance.

3.3 Geodesics, exponential map, and normal coordinates
Definition 3.7 (Geodesic). A smooth curve γ : I → M is a geodesic if ∇γ̇ γ̇ = 0. In
coordinates,

γ̈k + Γk
ij(γ) γ̇iγ̇j = 0.

Theorem 3.8 (Local existence, uniqueness, smooth dependence). For each (p, v) ∈ TM
there exists ε > 0 and a unique geodesic γ : (−ε, ε) → M with γ(0) = p, γ̇(0) = v. The
solution depends smoothly on (p, v).

Proof. The geodesic equation is a smooth first-order system on TM after rewriting as ẋ = y,
ẏ = −Γ(x)(y, y). Apply Picard-Lindelöf and smooth dependence on parameters.

Definition 3.9 (Exponential map). For p ∈ M , define expp on a neighborhood of 0 ∈ TpM by
expp(v) = γv(1), where γv is the geodesic with γv(0) = p, γ̇v(0) = v. Then d(expp)0 = idTpM ,
hence expp is a local diffeomorphism near 0.

Proposition 3.10 (Normal coordinates and Gauss lemma). There exists a coordinate chart
(U ;x1, . . . , xn) centered at p such that

1. x = exp−1
p on U (identify TpM ≃ Rn via an orthonormal basis),

2. gij(p) = δij and ∂kgij(p) = 0,

3. Γk
ij(p) = 0,

4. g(∂r, ∂θ) = 0 in polar normal coordinates (radial orthogonality).

Proof. Items (1)-(3) follow from expp and Taylor expansion; (4) is Gauss lemma, obtained by
differentiating g(γ̇v, γ̇w) along radial geodesics and using ∇g = 0.
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3.4 Completeness and Hopf-Rinow
Definition 3.11 (Metric completeness). Let dg be the distance induced by g. A Riemannian
manifold (M, g) is complete if (M,dg) is a complete metric space.

Theorem 3.12 (Hopf-Rinow). For a connected Riemannian manifold (M, g) the following
are equivalent:

1. (M,dg) is complete.

2. Every geodesic can be extended to a domain R (geodesic completeness).

3. Closed and bounded subsets of (M,dg) are compact.

Moreover, for any p, q ∈ M there exists a minimizing geodesic joining p to q.

Proof. (1) ⇒ (2): If a maximal geodesic γ : [0, b) → M has finite b, then {γ(t)} is Cauchy
as t ↑ b (bounded speed in normal coordinates), hence converges to x ∈ M by completeness.
Solve the geodesic IVP at (x, lim γ̇) to extend γ, contradiction.

(2)⇒(1): If (M,dg) is not complete, there is a Cauchy sequence without limit. By local
compactness, extract a limit curve of piecewise geodesics with finite length accumulating in
finite time; extend geodesically to obtain a limit point, contradiction.

(1)⇔(3): In a proper length space completeness implies Heine-Borel and conversely (use
Arzelà-Ascoli for minimizing sequences and Hopf-Rinow’s original argument on closed balls).

The minimizing geodesic follows by existence of length-minimizing curves between points
in proper length spaces and regularity of length minimizers, which satisfy the geodesic
equation.

3.5 Curvature: definitions, symmetries, and contractions
Definition 3.13 (Curvature tensor). For a connection ∇ on TM , the curvature is the
(1, 3)-tensor

R(X, Y )Z := ∇X∇YZ − ∇Y ∇XZ − ∇[X,Y ]Z.

The (0, 4)-tensor is R(W,X, Y, Z) := g(R(Y, Z)X,W ).

Proposition 3.14 (Curvature symmetries). For all W,X, Y, Z ∈ Γ(TM),

1. R(W,X, Y, Z) = −R(X,W, Y, Z),

2. R(W,X, Y, Z) = −R(W,X,Z, Y ),

3. R(W,X, Y, Z) = R(Y, Z,W,X),

4. R(W,X, Y, Z) +R(W,Y, Z,X) +R(W,Z,X, Y ) = 0 (first Bianchi identity).

Proof. (1) and (2) follow from skew-symmetry of R in its first two and last two slots, using
torsion-freeness. (3) is obtained by swapping pairs and using metric-compatibility. (4) follows
from the Jacobi identity and bilinearity of ∇.
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Proposition 3.15 (Second Bianchi identity). The covariant derivative of curvature satisfies

(∇WR)(X, Y ) + (∇XR)(Y,W ) + (∇YR)(W,X) = 0.

Proof. Compute ∇R in local coordinates, antisymmetrize in (W,X, Y ), and use ∇g = 0 and
torsion-freeness to cancel terms.

Definition 3.16 (Ricci and scalar curvature). The Ricci tensor is the trace Ric(X, Y ) :=
tr
(
Z 7→ R(Z,X)Y

)
. The scalar curvature is S := trg(Ric) = gijRicij.

Definition 3.17 (Sectional curvature). For a 2-plane σ ⊂ TpM spanned by u, v, the sectional
curvature is

K(σ) := R(u, v, v, u)
g(u, u)g(v, v) − g(u, v)2 .

This is independent of the choice of basis {u, v} of σ.

Lemma 3.18 (Coordinate expressions). In local coordinates,

Rm
ijk = ∂iΓm

jk − ∂jΓm
ik + Γm

iℓΓℓ
jk − Γm

jℓΓℓ
ik,

and Rijkl = gmiR
m

jkl. In normal coordinates at p, Γk
ij(p) = 0 and

Rijkl(p) = 1
2

(
∂ikgjl + ∂jlgik − ∂ilgjk − ∂jkgil

)∣∣∣∣
p
.

Proof. The first formula is standard from the definition of R. The second uses normal
coordinates, where first derivatives of g vanish at p, yielding the stated symmetrized second-
derivative identity.

Proposition 3.19 (Metric expansion in normal coordinates). In normal coordinates centered
at p,

gij(x) = δij − 1
3 Rikjℓ(p)xkxℓ +O(|x|3).

Proof. Differentiate the geodesic equation and use Γk
ij(p) = 0, ∂mΓk

ij(p) expressed via Rikjℓ(p);
integrate the resulting Taylor expansions for gij.

4 The Gauss-Bonnet Theorem in Dimension 2

4.1 Orthogonal frames and connection 1-forms
Let (Σ2, g) be an oriented Riemannian surface. Choose an oriented orthonormal frame of
vector fields (e1, e2) on an open set U ⊂ Σ. Let (ω1, ω2) be the dual coframe: ωi(ej) = δi

j.

Definition 4.1 (Connection form). There exists a unique 1-form ω1
2 on U such that

∇e1 = ω1
2 e2, ∇e2 = −ω1

2 e1.

The form ω1
2 is called the connection 1-form.
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Lemma 4.2 (Structure equations in dimension 2). With notation as above,

dω1 = −ω1
2 ∧ ω2,

dω2 = ω1
2 ∧ ω1.

Moreover, there exists a smooth function K such that

dω1
2 = K ω1 ∧ ω2,

where K is the Gaussian curvature.

Proof. The first two equalities are Cartan’s first structure equations specialized to dimension
2. The third is Cartan’s second structure equation: curvature 2-form Ω1

2 = dω1
2, which must

be a multiple of ω1 ∧ω2 since this spans Λ2T ∗Σ. The coefficient is K by definition of Gaussian
curvature.

4.2 Statement and proof of Gauss-Bonnet
Theorem 4.3 (Gauss-Bonnet, compact surfaces). Let (Σ, g) be a compact oriented Rieman-
nian surface without boundary. Then∫

Σ
K dA = 2π χ(Σ),

where χ(Σ) is the Euler characteristic of Σ.

Proof. On Σ, cover by finitely many domains admitting orthonormal frames. On each domain,
dω1

2 = K ω1 ∧ ω2. Thus globally, ∫
Σ
K dA =

∫
Σ
dω1

2.

Triangulate Σ by geodesic triangles. By Stokes’ theorem,∫
Σ
dω1

2 =
∑

faces F

∫
∂F
ω1

2.

Each geodesic edge contributes no geodesic curvature, and integrals reduce to turning
angles at vertices. At each vertex v, the contribution is 2π −∑ (angles at v). Summing over
all vertices gives ∑

v

(2π − angle sum at v) = 2π(V − E + F ) = 2πχ(Σ),

by the standard angle-defect count for a geodesic triangulation, which yields ∑v(2π −
angle sum at v) = 2π χ(Σ). Hence

∫
Σ K dA = 2πχ(Σ).

13



4.3 Extension to surfaces with boundary
Theorem 4.4 (Gauss-Bonnet with boundary). Let (Σ, g) be a compact oriented Riemannian
surface with smooth boundary ∂Σ. Then∫

Σ
K dA+

∫
∂Σ
kg ds = 2πχ(Σ),

where kg is the geodesic curvature of ∂Σ with respect to the inward normal.

Proof. Repeat the proof of Theorem 4.3, but now each boundary edge remains in the final
sum. For a boundary component γ, the integral

∫
γ ω

1
2 equals

∫
γ kg ds. Summing gives the

extra term
∫

∂Σ kg ds.

Corollary 4.5 (Sphere and torus). On S2 with the round metric, K = 1 and Area(S2) = 4π,
so
∫

S2 K dA = 4π = 2πχ(S2) with χ(S2) = 2. On T 2, χ(T 2) = 0, hence
∫

T 2 K dA = 0 for any
Riemannian metric.

5 Characteristic Classes and the Chern-Gauss-Bonnet
Theorem

5.1 Connections on vector bundles
Definition 5.1 (Smooth vector bundle). A smooth real (resp. complex) vector bundle
of rank r over M is a smooth manifold E with a smooth surjection π : E → M , such that for
every p ∈ M there exists an open U ∋ p and a diffeomorphism Φ : π−1(U) → U × Rr (resp.
Cr) commuting with the projections and linear on fibers. A choice of such (U,Φ) is a local
trivialization.

Definition 5.2 (Connection on a bundle). Let E → M be a smooth real or complex vector
bundle of rank r. A connection on E is an R-linear map

∇ : Γ(E) → Γ(T ∗M ⊗ E)

satisfying the Leibniz rule

∇(fs) = df ⊗ s+ f∇s, f ∈ C∞(M), s ∈ Γ(E).

Lemma 5.3 (Local expression). In a local trivialization {s1, . . . , sr} of E over U ⊂ M , each
section s = ∑

f isi has
∇s =

∑
i

df i ⊗ si +
∑
i,j

f iAj
i ⊗ sj,

where (Aj
i) is a matrix of 1-forms on U . Equivalently, ∇s = (df + Af) in matrix notation,

where f = (f i).

Proof. Apply ∇ to each basis section si. Define Aj
i by ∇si = ∑

j A
j
i ⊗ sj. Then extend to

general s by linearity and Leibniz.

Definition 5.4 (Connection matrix). In a chosen local frame, the matrix A = (Aj
i) of

1-forms is called the connection matrix.
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5.2 Curvature of a connection
Definition 5.5 (Curvature). The curvature of a connection ∇ is the bundle endomorphism

F∇ := ∇2 : Γ(E) → Γ(Λ2T ∗M ⊗ E).

Lemma 5.6 (Curvature in a local frame). In a local trivialization with connection matrix A,

F∇ = dA+ A ∧ A,

where the wedge includes matrix multiplication: (A ∧ A)j
i = ∑

k A
j
k ∧ Ak

i.

Proof. Compute ∇2s for s = ∑
f isi, using ∇s = df + Af . A direct expansion gives

∇2s = (dA+ A ∧ A)f,

hence F∇ = dA+ A ∧ A.

Proposition 5.7 (Gauge transformation). If the local frame changes by g : U → GLr(R),
then

A′ = g−1Ag + g−1dg, F ′ = g−1Fg.

Thus F∇ transforms by conjugation under change of frame.

Theorem 5.8 (Bianchi identity). The curvature satisfies

∇F∇ = 0.

In a local frame, this is
dF∇ + A ∧ F∇ − F∇ ∧ A = 0.

Proof. Compute ∇3 = 0 and expand in terms of A and F . Alternatively, observe that
F∇ = ∇2 and [∇,∇2] = 0 as graded derivations.

5.3 Invariant polynomials and the Chern-Weil homomorphism
Definition 5.9 (Invariant polynomial). Let r ≥ 1. A homogeneous polynomial P of degree k
on glr(C) is called invariant if

P (gAg−1) = P (A), ∀g ∈ GLr(C), A ∈ glr(C).

Equivalently, P is constant on conjugacy classes.

Example 5.10. 1. The trace tr(A) is invariant.

2. The determinant det(A) is invariant.

3. More generally, the elementary symmetric polynomials in eigenvalues are invariant.

4. For degree k, P (A) = tr(Ak) is invariant.
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Definition 5.11 (Chern-Weil form). Let E → M be a complex vector bundle with connection
∇ and curvature F∇. For an invariant polynomial P of degree k on glr(C), define

ωP := P
(
i

2πF∇

)
∈ Ω2k(M).

Theorem 5.12 (Chern-Weil). For any invariant polynomial P :

1. ωP is closed: dωP = 0,

2. the cohomology class [ωP ] ∈ H2k
dR(M) is independent of the choice of connection ∇.

Proof. Step 1 (Closedness). By the Bianchi identity, ∇F∇ = 0. In a local frame, F
transforms by conjugation. Since P is invariant, we have

dP (F∇) = P (dF∇ + [A,F∇]) = 0.

Hence dωP = 0.
Step 2 (Independence of ∇). Let ∇0,∇1 be two connections with curvatures F 0, F 1.

Define the affine family ∇t = (1 − t)∇0 + t∇1, t ∈ [0, 1], with curvature F t. Differentiate:

d

dt
P (F t) = d ηt,

for some explicitly defined transgression form ηt depending polynomially on A1 − A0 and
F t. Concretely, in a local frame, let At = (1 − t)A0 + tA1, then

d

dt
F t = d(A1 − A0) + [At, A1 − A0].

By multilinearity of P , this gives

d

dt
P (F t) = k P

(
d
dt
F t, (F t)k−1

)
.

This expression is exact: d
dt
P (F t) = d ηt. Integrating from 0 to 1:

P (F 1) − P (F 0) = d
(∫ 1

0
ηt dt

)
.

Hence P (F 1) and P (F 0) differ by an exact form. Therefore the de Rham class [P (F∇)] is
independent of ∇.

Definition 5.13 (Chern-Weil homomorphism). Assign to each invariant polynomial P the
cohomology class

wP (E) :=
[
P
(
i

2πF∇

)]
∈ H2k

dR(M).

This is the Chern-Weil homomorphism. It depends only on the isomorphism class of E.

Corollary 5.14. Characteristic classes arise as images of invariant polynomials under the
Chern-Weil homomorphism.
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5.4 Chern classes and characteristic forms
Definition 5.15 (Total Chern class). Let E → M be a complex vector bundle of rank r with
connection ∇ and curvature F∇. The total Chern class is defined by

c(E) := det
(
I + i

2πF∇

)
∈ Ωeven(M).

Expanding,
c(E) = 1 + c1(E) + c2(E) + · · · + cr(E),

where ck(E) ∈ Ω2k(M) is a closed 2k-form whose de Rham class is independent of ∇. The
cohomology class [ck(E)] ∈ H2k(M ;R) is called the k-th Chern class of E.

Proposition 5.16 (First Chern class for line bundles). If L → M is a complex line bundle
with connection ∇ and curvature F∇, then

c1(L) =
[
i

2πF∇

]
∈ H2(M ;R).

Proof. Here F∇ is a 2-form valued in gl1(C) = C. Thus

c(L) = 1 + i

2πF∇,

so c1(L) = [ i
2π
F∇].

Example 5.17 (Hopf bundle on S2). Let L → S2 be the tautological line bundle over
CP1 ≃ S2. With the Fubini–Study metric, the curvature is F∇ = −i ωF S, where ωF S is the
Kähler form normalized so that

∫
S2 ωF S = 2π. Hence∫
S2
c1(L) = i

2π

∫
S2
F∇ = 1.

Thus c1(L) generates H2(S2;Z).

Proposition 5.18 (Whitney sum formula). If E,F are complex vector bundles over M , then

c(E ⊕ F ) = c(E) ∧ c(F ).

Proof. In a block-diagonal trivialization, the curvature is FE⊕F =
(
FE 0
0 FF

)
. Hence

c(E ⊕ F ) = det
(
I + i

2π
FE⊕F

)
= det

(
I + i

2π
FE

)
det

(
I + i

2π
FF

)
.

Example 5.19 (Chern classes of CPn). Let h ∈ H2(CPn;Z) be the hyperplane class. The
Euler sequence gives

c(TCPn) = (1 + h)n+1.

Thus
ck(TCPn) =

(
n+ 1
k

)
hk.

In particular, cn(TCPn) = (n+ 1)hn, whose integral equals n+ 1, the Euler characteristic.
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5.5 Euler class and the Pfaffian
Definition 5.20 (Euler class of an oriented real bundle). Let E → M be an oriented real
vector bundle of rank 2n with connection ∇. Its Euler class is

e(E) :=
[
Pf
( 1

2πF∇

)]
∈ H2n(M ;R),

where Pf denotes the Pfaffian.

Definition 5.21 (Pfaffian). For a skew-symmetric 2n× 2n matrix A = (aij), the Pfaffian
is

Pf(A) = 1
2nn!

∑
σ∈S2n

sgn(σ)
n∏

k=1
aσ(2k−1),σ(2k).

It satisfies Pf(A)2 = det(A).

Example 5.22 (Rank 2 case). If E has rank 2, then F∇ =
(

0 α
−α 0

)
for some 2-form α.

Then
Pf(F∇) = α, e(E) =

[ 1
2πα

]
.

Example 5.23 (Tangent bundle of S2). For the round sphere S2, e(TS2) = [ 1
2π
K dA], where

K = 1. Thus
∫

S2 e(TS2) = 1
2π

∫
S2 dA = 2, which equals χ(S2).

Proposition 5.24 (Properties of Euler class). 1. e(E⊕F ) = e(E)∧e(F ) when rank(E), rank(F )
are even.

2. If E admits a nowhere-vanishing section, then e(E) = 0.

3. For E = TM ,
∫

M e(TM) = χ(M) when dimM is even (proved later).

5.6 The Chern-Gauss-Bonnet theorem
We now establish the precise relationship between the Euler class of the tangent bundle and
the Euler characteristic of a compact, oriented even-dimensional manifold.

Theorem 5.25 (Chern-Gauss-Bonnet). Let M be a compact, oriented smooth manifold of
dimension 2n. Then ∫

M
e(TM) = χ(M),

where e(TM) ∈ H2n(M ;R) is the Euler class of the tangent bundle and χ(M) is the Euler
characteristic.

Sketch of proof. Step 1. Local expression for the Euler form. Choose a Riemannian
metric g on M with Levi-Civita connection ∇. Let F∇ be its curvature 2-form, viewed as a
skew-symmetric matrix of 2-forms in so(2n). Define the Euler form by

Eul(g) := Pf
( 1

2πF∇

)
∈ Ω2n(M).
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By Chern-Weil theory, [Eul(g)] = e(TM) in cohomology, and Eul(g) is closed.
Step 2. Independence of g. If gt is a smooth family of metrics with Levi-Civita

connections ∇t, then the corresponding Euler forms differ by an exact form. Thus their
integrals over M coincide. Hence

∫
M Eul(g) depends only on the topology of M .

Step 3. Evaluation via Morse theory. Choose g to be generic so that a Morse
function f : M → R has non-degenerate critical points. Locally, the Euler form integrates to
±1 in a neighborhood of each critical point, with the sign given by the Morse index parity.
Summing over all critical points, one finds∫

M
Eul(g) =

∑
p∈Crit(f)

(−1)ind(p) = χ(M).

Step 4. Conclusion. Therefore∫
M
e(TM) =

∫
M

Eul(g) = χ(M).

Example 5.26 (Dimension 2). If dimM = 2, then F∇ =
(

0 K dA
−K dA 0

)
, where K is the

Gaussian curvature and dA the area form. Thus

Eul(g) = 1
2πK dA.

Hence the Chern-Gauss-Bonnet theorem reduces to the classical Gauss-Bonnet theorem:
1

2π

∫
M
K dA = χ(M).

6 Differential Topology
We now turn to global results in smooth topology, emphasizing the role of transversality and
critical point theory.

6.1 The Regular Value Theorem
Definition 6.1 (Regular and critical values). Let f : M → N be a smooth map between
smooth manifolds. A point p ∈ M is called a critical point of f if the differential

dfp : TpM → Tf(p)N

fails to be surjective. Otherwise, p is called a regular point. A point q ∈ N is a regular
value if all p ∈ f−1(q) are regular points.

Theorem 6.2 (Regular Value Theorem). Let f : Mm → Nn be a smooth map between smooth
manifolds, and let q ∈ N be a regular value. Then the preimage

f−1(q) ⊂ M

is a smooth submanifold of M of codimension n (dimension m− n).
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Proof. Let p ∈ f−1(q). Since q is regular, dfp : TpM → TqN is surjective. By the constant
rank theorem, there exist coordinate charts

(x1, . . . , xm) near p and (y1, . . . , yn) near q

such that in these coordinates,

f(x1, . . . , xm) = (x1, . . . , xn).

Then
f−1(q) = {(0, . . . , 0, xn+1, . . . , xm)},

which is locally a smooth submanifold of dimension m− n. Since this description is invariant
under coordinate changes, the submanifold structure is global.

Example 6.3 (Level sets in R3). Let f : R3 → R, f(x, y, z) = x2 + y2 + z2. The differential
df(x,y,z) = (2x, 2y, 2z). At any point except (0, 0, 0), this is surjective, so every nonzero r2 ∈ R
is a regular value. Thus

f−1(r2) = {x2 + y2 + z2 = r2} ∼= S2

is a smooth 2-dimensional submanifold of R3.

Example 6.4 (Rank-deficient value). Let f : R2 → R, f(x, y) = x2 + y2. Here df(x,y) =
(2x, 2y). At (0, 0) this vanishes, so 0 is a critical value. The preimage f−1(0) = {(0, 0)} is
not a 1-dimensional submanifold, but a point.

6.2 Sard’s Theorem
Definition 6.5 (Critical values). Let f : Mm → Nn be smooth. The set of critical points
is

Crit(f) = {p ∈ M | dfp is not surjective}.
The set of critical values is

f(Crit(f)) ⊂ N.

Theorem 6.6 (Sard’s Theorem). Let f : Mm → Nn be a smooth map. Then the set of
critical values of f has measure zero in N . Equivalently, almost every point q ∈ N is a regular
value.

Sketch of proof. Step 1. Reduction to Euclidean case. Using charts, it suffices to prove
the result for f : Rm → Rn.

Step 2. Taylor expansion. Fix p ∈ Rm. If dfp has rank < n, then in local coordinates,

f(x) = f(p) + Pk(x− p) + o(|x− p|k),

where Pk is the degree-k Taylor polynomial for some k depending on f .
Step 3. Volume estimates. By estimating the measure of images of small cubes under

f using higher-order terms, one shows that the Hausdorff dimension of the set of critical
values is at most n− 1.

Step 4. Conclusion. Therefore, the set of critical values has Lebesgue measure zero.
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Remark 6.7. The proof requires care: smoothness ensures sufficiently high differentiability
to control the remainder term in the Taylor expansion. In fact, the theorem is valid for Ck

maps whenever k > max(m− n, 0).

Example 6.8 (Quadratic map R2 → R). Let f(x, y) = x2 + y2. Critical points occur where
∇f = (0, 0), i.e. only at (0, 0). Thus the set of critical values is {0}, which has measure zero
in R. Hence almost every value r2 > 0 is regular.

Example 6.9 (Projection map). Let f : R3 → R2, f(x, y, z) = (x, y). Then df has rank
2 everywhere, so there are no critical points. Thus every value in R2 is regular. This is
consistent with Sard’s theorem since the critical set is empty.

6.3 Transversality
Definition 6.10 (Transversality to a submanifold). Let f : M → N be smooth and let S ⊂ N
be an embedded submanifold. We say that f is transverse to S at p ∈ M (written f ⋔ S
at p) if either f(p) /∈ S, or else

dfp(TpM) + Tf(p)S = Tf(p)N.

We say f is transverse to S (written f ⋔ S) if this holds at every p ∈ M .

Lemma 6.11 (Equivalent characterization). Suppose f(p) ∈ S. Then f ⋔ S at p iff the
composite

TpM
dfp−→ Tf(p)N ↠ Tf(p)N/Tf(p)S

is surjective.

Proof. By definition, dfp(TpM) + Tf(p)S = Tf(p)N . Modding out by Tf(p)S gives the stated
surjectivity.

Theorem 6.12 (Preimage theorem under transversality). Let f : Mm → Nn be smooth,
Sk ⊂ N an embedded submanifold, and assume f ⋔ S. Then f−1(S) is an embedded
submanifold of M of codimension n− k (hence of dimension m− n+ k). Moreover, for all
p ∈ f−1(S),

Tp

(
f−1(S)

)
= { v ∈ TpM | dfp(v) ∈ Tf(p)S }.

Proof. Fix p ∈ f−1(S). Choose charts ϕ : U → Rn on N with ϕ(f(p)) = 0 and such that

ϕ(S ∩ U) = {(y′, y′′) ∈ Rk × Rn−k | y′′ = 0}.

Choose a chart ψ : V → Rm on M with ψ(p) = 0 and f(V ) ⊂ U . Write f̃ := ϕ ◦ f ◦ ψ−1 :
ψ(V ) ⊂ Rm → Rk × Rn−k. Decompose f̃ = (g, h) with g : Rm → Rk, h : Rm → Rn−k. Then
f−1(S) ∩ V corresponds to h−1(0).

The transversality condition at p is equivalent to dh0 : Rm → Rn−k being surjective
(previous lemma). By the (Euclidean) regular value theorem, h−1(0) is a submanifold of Rm

of codimension n− k. The tangent space description follows from differentiating h = 0 at 0.
Finally, pass back through charts.
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Proposition 6.13 (Stability and functoriality). Let f : M → N , g : N → P , and S ⊂ P be
submanifolds.

1. If f ⋔ S, then transversality holds on a neighborhood of each p (openness in the C1

topology).

2. If f ⋔ S and g is a submersion near f(p), then g ◦ f ⋔ S at p.

3. If f ⋔ S and T ⊂ S is a submanifold, then (for p with f(p) ∈ T ) f ⋔ T iff

dfp(TpM) + Tf(p)T = Tf(p)N.

4. If fi : Mi → N are transverse to S (i = 1, 2), then f1 × f2 : M1 × M2 → N × N is
transverse to S × S.

Proof. (1) follows from upper semicontinuity of rank of dh in the proof of Theorem 6.12. (2)
If dgf(p) is surjective, then d(g ◦ f)p composed with the quotient by Tg(f(p))S is surjective. (3)
is immediate from the definition. (4) is a direct computation on differentials.

Definition 6.14 (Transversal intersection of submanifolds). Let Aa, Bb be embedded subman-
ifolds of Mm. They intersect transversely at p ∈ A ∩B if

TpA+ TpB = TpM.

We write A ⋔ B if this holds at every point of A ∩B.

Theorem 6.15 (Intersection submanifold). If A,B ⊂ M are embedded submanifolds with
A ⋔ B, then A ∩B is an embedded submanifold of M of dimension a+ b−m (the expected
dimension). Moreover,

Tp(A ∩B) = TpA ∩ TpB.

Proof. Let ιA : A ↪→ M be the inclusion. Consider f := ιA : A → M and S := B. Then
f ⋔ S is exactly TpA+TpB = TpM . Apply Theorem 6.12 to f to obtain that f−1(B) = A∩B
is a submanifold of A of codimension m − b, hence of dimension a − (m − b) = a + b − m.
The tangent space formula is immediate.

Definition 6.16 (Orientation conventions). Assume M is oriented. If A,B ⊂ M are oriented,
transversal submanifolds with dimA+ dimB = dimM , then A∩B is a finite set. Each point
p ∈ A∩B is assigned a sign ±1 as follows: choose oriented bases (BA,BB) for TpA and TpB.
The concatenation (BA,BB) projects to a basis of TpM . The sign is +1 if this agrees with the
orientation of M , and −1 otherwise.

Definition 6.17 (Intersection number). If A,B ⊂ M are compact oriented transversal
submanifolds with complementary dimensions, define

A ·B :=
∑

p∈A∩B

sign(p) ∈ Z.
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Proposition 6.18 (Invariance of intersection number). If At, Bt are smooth families of
compact oriented submanifolds in M of complementary dimensions such that At ⋔ Bt for all
t ∈ [0, 1], then At ·Bt is independent of t. In particular, the intersection number is invariant
under small perturbations and under homology.

Proof. Consider the cobordism WA = ⋃
t∈[0,1] At × {t} ⊂ M × [0, 1] and similarly WB.

Transversality implies WA ⋔ WB, and WA ∩ WB is a compact 1-manifold with boundary
(A0 ∩ B0) ⊔ (A1 ∩ B1) with appropriate signs. Thus the signed count of boundary points
vanishes, yielding A0 ·B0 = A1 ·B1.

Theorem 6.19 (Thom transversality theorem (non-parametric)). Let M,N be smooth
manifolds, S ⊂ N an embedded submanifold. Then the set

T := { f ∈ C∞(M,N) | f ⋔ S }

is residual (countable intersection of open dense sets) in the C∞ Whitney topology. If M is
compact, T is open and dense in each Cr topology (1 ≤ r ≤ ∞).

Proof sketch. Use Sard’s theorem on the evaluation map ev : C∞(M,N)×M → N , ev(f, p) =
f(p), and consider the jet extension j1f and the submanifold of 1-jets transverse to S.
Parametric transversality plus Baire category yields residuality; compactness of M gives
openness.

Theorem 6.20 (Parametric transversality). Let F : P × M → N be smooth, S ⊂ N a
submanifold, and suppose F ⋔ S. Then for a residual subset of parameters p ∈ P , the partial
map Fp := F (p, ·) : M → N is transverse to S.

Proof. Apply Sard’s theorem to the projection of the transverse set F−1(S) ⊂ P × M
to P , using that transversality implies that projection is a submersion on a dense set of
parameters.

Corollary 6.21 (Generic regular values and intersections). 1. For a smooth f : M → N ,
a residual set of q ∈ N are regular values; thus f−1(q) is a submanifold of the expected
codimension.

2. If A,B ⊂ M are submanifolds, then after an arbitrarily small perturbation (or by
generic ambient isotopy) they can be made transverse; if dimA+ dimB = dimM , the
intersection is a finite set counted with signs.

Example 6.22 (Graphs intersecting a horizontal plane). Let u : R2 → R be smooth, and
consider the graph Γ = {(x, y, u(x, y))} ⊂ R3 and the plane z = c. For generic c, the
intersection Γ ∩ {z = c} is a smooth 1-dimensional submanifold (a collection of curves)
because the height map has c as a regular value.

Example 6.23 (Curves in the plane). Two embedded C∞ curves in R2 can be perturbed
slightly to intersect transversely; intersections are isolated and counted with signs +1 or −1
according to orientation.

Remark 6.24 (Manifolds with boundary). If M has boundary and S ⊂ N is a submanifold,
the statement of Theorem 6.12 holds with f−1(S) a manifold with boundary when f(∂M) ⋔ S
and the interior transversality conditions hold.
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6.4 Degree Theory
Definition 6.25 (Orientation of manifolds). A smooth n-manifold M is oriented if its
tangent bundle admits a continuous choice of orientation of each TpM . Equivalently, the
structure group of TM reduces to GL+(n,R). If M is oriented, so is each tangent space TpM ,
consistently.

Definition 6.26 (Degree of a smooth map). Let Mn, Nn be compact, connected, oriented
n-manifolds without boundary, and let f : M → N be smooth. Choose a regular value q ∈ N
of f (guaranteed by Sard). Then f−1(q) is a finite set, and we define

deg(f) :=
∑

p∈f−1(q)
sign

(
det(dfp)

)
,

where sign(det(dfp)) = +1 if dfp : TpM → TqN preserves orientation, and −1 otherwise.

Proposition 6.27 (Independence of choice of regular value). The integer deg(f) does not
depend on the choice of regular value q.

Proof. Let q0, q1 ∈ N be two regular values. By Sard’s theorem, almost every q is regular, so
we can connect q0 and q1 by a path γ : [0, 1] → N intersecting only regular values. Consider
the set Z = {(p, t) ∈ M × [0, 1] | f(p) = γ(t)}. Transversality ensures Z is a compact
1-manifold with boundary f−1(q0) × {0} ⊔ f−1(q1) × {1}. Each boundary point inherits a
sign from orientation. Since the oriented boundary of a compact 1-manifold has total signed
count zero, the two sums agree.

Theorem 6.28 (Homotopy invariance of degree). If f, g : M → N are homotopic smooth
maps between compact oriented n-manifolds, then

deg(f) = deg(g).

Proof. Let H : M × [0, 1] → N be a homotopy between f and g. For a regular value q of
H (again by Sard’s theorem), the preimage H−1(q) is a compact oriented 1-manifold with
boundary

f−1(q) × {0} ⊔ g−1(q) × {1}.

The boundary orientation argument shows the sums of signs agree, hence deg(f) = deg(g).

Example 6.29 (Maps between spheres). For f : Sn → Sn, the degree deg(f) is an integer
classifying [Sn, Sn] ∼= Z.

1. The identity map idSn has degree +1.

2. The antipodal map x 7→ −x has degree (−1)n+1.

3. Any reflection Sn → Sn reversing orientation has degree −1.

Example 6.30 (Covering maps). Let π : S1 → S1 be π(z) = zk for z ∈ C, |z| = 1. Then
deg(π) = k because each point has exactly k preimages, all orientation-preserving.
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Theorem 6.31 (Properties of degree). For smooth maps between compact oriented n-
manifolds:

1. Normalization: deg(idM) = 1.

2. Multiplicativity: deg(f ◦ g) = deg(f) · deg(g).

3. Homotopy invariance: If f ≃ g, then deg(f) = deg(g).

4. Surjectivity criterion: If deg(f) ̸= 0, then f is surjective.

Sketch. (1) is immediate. (2) follows from the chain rule and counting preimages. (3) was
proved in Theorem 6.28. (4) If deg(f) ̸= 0, then every regular value has a nonempty preimage,
hence f must hit every point of N .

Remark 6.32 (Degree and homology). The degree is characterized homologically as follows:
for f : Mn → Nn between compact oriented manifolds,

f∗[M ] = deg(f) [N ] ∈ Hn(N ;Z),

where [M ] and [N ] are fundamental classes. This gives a topological definition independent
of smoothness, extending the theory to continuous maps.

6.5 The Poincaré-Hopf Theorem
Definition 6.33 (Index of a zero of a vector field). Let X be a smooth vector field on an
oriented n-manifold M , and let p ∈ M be an isolated zero of X. Choose a small neighborhood
U of p diffeomorphic to Bn ⊂ Rn. Then X|∂U is a map ∂U ∼= Sn−1 → Rn \ {0} ≃ Sn−1. The
index of X at p is defined as

indp(X) := deg
(

X
∥X∥ : ∂U → Sn−1

)
.

Remark 6.34. The index is an integer independent of the choice of neighborhood U . It
measures how the vector field “winds” around the zero p.

Definition 6.35 (Index sum). If X has isolated zeros {p1, . . . , pk}, the total index of X is

ind(X) =
k∑

i=1
indpi

(X).

Theorem 6.36 (Poincaré-Hopf). Let M be a compact, oriented n-manifold, and let X be a
smooth vector field on M with isolated zeros. Then∑

p∈Zero(X)
indp(X) = χ(M).
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Sketch of proof. Step 1. Local description. Near each zero, the index is defined via the
degree of a normalized map on a small sphere.

Step 2. Global construction. Patch together neighborhoods of zeros to cover M .
Outside of these, X never vanishes and defines a nowhere-vanishing vector field.

Step 3. Euler class relation. The Euler class e(TM) of the tangent bundle is
represented by a Thom form whose pullback via X yields a differential form supported near
the zeros of X. Integrating gives ∫

M
e(TM) =

∑
p

indp(X).

Step 4. Chern-Gauss-Bonnet. By Theorem 5.25,
∫

M e(TM) = χ(M). Thus the index
sum equals χ(M).

Example 6.37 (Sphere S2). On S2, every smooth vector field must vanish somewhere. Take
the height function h(x, y, z) = z; its gradient vector field has exactly two zeros (north and
south poles), each of index +1. Thus ind(X) = 2 = χ(S2).

Example 6.38 (Torus T 2). On T 2, consider the constant vector field induced from R2. This
has no zeros, hence ind(X) = 0. Since χ(T 2) = 0, the theorem holds.

Remark 6.39 (Existence of nowhere-vanishing vector fields). The theorem shows that a
compact oriented manifold admits a nowhere-vanishing vector field iff χ(M) = 0. For example,
odd-dimensional spheres S2n+1 admit such fields, but even-dimensional spheres S2n do not.

6.6 Morse Theory
Definition 6.40 (Morse function). Let M be a smooth manifold. A smooth function f :
M → R is a Morse function if all its critical points are non-degenerate, i.e.

det
(
Hesspf

)
̸= 0 for all p ∈ Crit(f),

where Hesspf is the Hessian of f at p with respect to local coordinates.

Definition 6.41 (Morse index). For a non-degenerate critical point p of f , the Morse index
λ(p) is the number of negative eigenvalues of Hesspf . Equivalently, λ(p) is the dimension of
the maximal subspace on which the quadratic form is negative definite.

Theorem 6.42 (Morse lemma). Let p be a non-degenerate critical point of f : M → R.
Then there exist local coordinates (x1, . . . , xn) centered at p such that

f(x) = f(p) − x2
1 − · · · − x2

λ + x2
λ+1 + · · · + x2

n.

Thus near p, f looks like a quadratic form determined by the index.

Sketch. Taylor expand f at p. Since ∇f(p) = 0, the leading nontrivial term is the quadratic
form 1

2Hesspf . By a linear change of coordinates (Sylvester’s law of inertia), this quadratic
form can be diagonalized with ±1 coefficients. Higher-order terms can be absorbed by a
smooth coordinate change, yielding the normal form.
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Theorem 6.43 (Morse inequalities). Let M be a compact smooth manifold and f : M → R
a Morse function. Let Ck denote the number of critical points of index k, and let bk =
dimHk(M ;R) be the k-th Betti number. Then:

Ck ≥ bk for all k,
k∑

i=0
(−1)k−iCi ≥

k∑
i=0

(−1)k−ibi for each k,

n∑
i=0

(−1)iCi =
n∑

i=0
(−1)ibi = χ(M).

Idea of proof. The sublevel sets Ma = {x ∈ M | f(x) ≤ a} change topology only when
a passes a critical value. Crossing a critical value of index λ corresponds to attaching a
λ-cell. Hence the chain complex generated by critical points computes the homology of M .
Comparing with singular homology yields the inequalities.

Example 6.44 (Height function on S2). Take f(x, y, z) = z on S2 ⊂ R3. There are two
critical points: north pole (index 2) and south pole (index 0). Thus C0 = C2 = 1, C1 = 0.
The Betti numbers are b0 = b2 = 1, b1 = 0. So Ck = bk, and χ(S2) = 2 matches.

Example 6.45 (Height function on T 2). Embed the torus T 2 in R3 as a surface of revolution.
The height function has 4 critical points: a minimum (index 0), two saddles (index 1), and a
maximum (index 2). So (C0, C1, C2) = (1, 2, 1). The Betti numbers are (b0, b1, b2) = (1, 2, 1).
Again the Morse inequalities are sharp.

Remark 6.46. Morse theory provides a powerful method to compute the topology of manifolds
by analyzing critical points of generic smooth functions. It is also the foundation of Floer
theory and many modern developments in symplectic geometry and topology.
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7 Characteristic Classes
Characteristic classes provide algebraic invariants associated to vector bundles. They are
cohomology classes constructed from curvature or obstruction theory, and they measure the
“twisting” of bundles. Characteristic classes unify geometry and topology: locally a vector
bundle is trivial, but globally it may fail to be, and characteristic classes detect this failure.

7.1 Vector bundles and structure groups
Definition 7.1 (Vector bundle). A real vector bundle of rank k over a smooth manifold
M is a smooth manifold E together with a smooth surjection π : E → M such that each fiber
π−1(p) is a k-dimensional vector space, and for each p ∈ M there exists a neighborhood U of
p and a diffeomorphism

ϕ : π−1(U) → U × Rk

that restricts fiberwise to linear isomorphisms. The maps ϕ are called local trivializations.
Example 7.2. The tangent bundle TM is a rank n vector bundle over an n-manifold M .
Similarly, the cotangent bundle T ∗M and tensor bundles ⊗rT ∗M⊗sTM are natural examples.
Definition 7.3 (Transition functions and structure group). Given a vector bundle E → M
with trivializations over {Ui}, on overlaps Ui ∩ Uj we obtain transition maps

gij : Ui ∩ Uj → GL(k,R)
satisfying the cocycle condition gijgjk = gik. The group GL(k,R) is called the structure
group of the bundle.
Remark 7.4. Reduction of structure group (e.g. to O(k) or SO(k)) corresponds to additional
geometric structures: metrics and orientations. Characteristic classes will be defined relative
to such reductions.

7.2 Definition of characteristic classes
Characteristic classes are cohomology classes c(E) ∈ H∗(M) assigned functorially to vector
bundles E → M , with the following key properties:

1. Naturality: For f : N → M , we have c(f ∗E) = f ∗c(E).

2. Whitney sum formula: For bundles E,F over M ,
c(E ⊕ F ) = c(E) ⌣ c(F ).

3. Normalization: On trivial bundles, c reduces to 1 (or a fixed known value).
Different cohomology theories give rise to different classes:
• Stiefel–Whitney classes wi(E) ∈ H i(M ;Z/2) for real bundles.

• Chern classes ci(E) ∈ H2i(M ;Z) for complex bundles.

• Pontryagin classes pi(E) ∈ H4i(M ;Z) for real bundles.

• The Euler class e(E) ∈ Hn(M ;Z) for oriented rank n real bundles.
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7.3 Stiefel-Whitney Classes
Stiefel-Whitney classes are the fundamental characteristic classes for real vector bundles.
They live in mod 2 cohomology and capture subtle obstructions to orientability and to the
existence of nonvanishing sections.

Theorem 7.5 (Existence). To every real vector bundle E → M of rank k there is associated
a sequence of cohomology classes

wi(E) ∈ H i(M ;Z/2), 0 ≤ i ≤ k,

called the Stiefel-Whitney classes, with w0(E) = 1. They satisfy:

1. w(E ⊕ F ) = w(E) ⌣ w(F ) (Whitney sum formula),

2. w(E) is natural under pullbacks: w(f ∗E) = f ∗w(E),

3. If E is trivial, then w(E) = 1.

Definition 7.6 (Total class). The total Stiefel-Whitney class of E is

w(E) = 1 + w1(E) + w2(E) + · · · + wk(E).

Remark 7.7. w1(E) measures orientability: w1(E) = 0 if and only if E is orientable. In
particular, w1(TM) = 0 if and only if M is an orientable manifold.

Example 7.8 (The Möbius bundle). The Möbius line bundle L → S1 is nontrivial. It has
w1(L) ̸= 0 ∈ H1(S1;Z/2). This exactly captures the failure of orientability of L.

Example 7.9 (Tangent bundle of real projective space). The tangent bundle of RP n has
total Stiefel-Whitney class

w(TRP n) = (1 + a)n+1, a ∈ H1(RP n;Z/2) generator.

This formula follows from the splitting principle and the short exact sequence relating the
tautological line bundle γ1 and its orthogonal complement.

Proposition 7.10 (Obstructions to nonvanishing sections). Let E → M be a rank k vector
bundle. Then wk(E) ∈ Hk(M ;Z/2) is the obstruction to the existence of a nowhere-vanishing
section. In particular, for the tangent bundle TM , the Euler class mod 2 coincides with
wn(TM).

Remark 7.11. The Stiefel-Whitney classes give nontrivial information even when ordinary
cohomology vanishes over Z, since they live in Z/2-coefficients. For example, they detect the
nontriviality of vector bundles over spheres.
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7.4 Chern Classes
Chern classes are the primary characteristic classes for complex vector bundles. They live
in integral cohomology and satisfy axioms analogous to those of Stiefel-Whitney classes,
together with stronger functoriality properties.

Theorem 7.12 (Existence and uniqueness (axiomatic characterization)). There exists a
unique assignment to each complex vector bundle E → M of cohomology classes

ck(E) ∈ H2k(M ;Z), 0 ≤ k ≤ rank(E),

called the Chern classes of E, such that:

1. Naturality: For any smooth map f : N → M , ck(f ∗E) = f ∗ck(E).

2. Whitney sum: c(E ⊕ F ) = c(E) ⌣ c(F ), where c(E) = 1 + c1(E) + · · · is the total
class.

3. Normalization: If L → CP1 is the tautological line bundle O(−1) and x ∈ H2(CP1;Z)
is the positive generator, then c1(L) = −x.

Moreover ck(E) = 0 for k > rank(E) and c0(E) = 1.

Definition 7.13 (Total Chern class and Chern roots). The total Chern class is c(E) =
1 + c1(E) + · · · + cr(E) ∈ Heven(M ;Z) for r = rank(E). On a space where E splits as a direct
sum of line bundles (splitting principle), write E ∼=

⊕r
j=1 Lj and set xj := c1(Lj) ∈ H2(·;Z).

Then
c(E) =

r∏
j=1

(1 + xj), ck(E) = ek(x1, . . . , xr),

where ek is the k-th elementary symmetric polynomial. The xj are formal Chern roots.

Theorem 7.14 (Splitting principle). For any complex bundle E → M there exists a map
π : M̃ → M such that π∗ : H∗(M ;Z) ↪→ H∗(M̃ ;Z) is injective and π∗E splits as a direct sum
of complex line bundles. Any identity between universal polynomials in Chern classes that
holds for split bundles holds for all bundles.

Proof idea. Construct the full flag bundle of E, whose fibers parametrize complete flags in Ep.
Over this bundle the pullback of E admits a tautological filtration with line-bundle quotients.
Injectivity of π∗ on cohomology follows from Leray-Hirsch.

Proposition 7.15 (Basic properties). Let E,F be complex bundles.

1. c1(E∗) = −c1(E) and c(E∗) = ∏
j(1 − xj).

2. c(E ⊗ F ) = ∏
i,j(1 + xi + yj) under the splitting principle.

3. If L is a line bundle, then c(L) = 1 + c1(L) and ck(L) = 0 for k ≥ 2.

4. If E is trivial, then c(E) = 1.
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Proof. Under the splitting principle E = ⊕
Li, F = ⊕

Mj . Duals, tensor products, and sums
reduce to line-bundle operations, where the identities are immediate from c(L) = 1 + c1(L)
and c1(L∗) = −c1(L).

Proposition 7.16 (Relation with Stiefel-Whitney classes). For a complex vector bundle E,
regard it as a real bundle ER of rank 2r. Then

w2k(ER) ≡ ck(E) (mod 2), w2k+1(ER) = 0.

Proof. This follows from the identification of the complex structure with a reduction of
structure group U(r) ⊂ SO(2r) and the naturality of the Bockstein homomorphism; see
standard arguments via classifying spaces BU(r) → BSO(2r).

Example 7.17 (Line bundles on CPn). Let O(1) → CPn be the hyperplane line bundle and
h := c1(O(1)) ∈ H2(CPn;Z) the hyperplane class. Then c(O(1)) = 1 + h and c(O(−1)) =
1 − h.

Example 7.18 (Tangent bundle of CPn). The Euler (short exact) sequence

0 −→ O −→ O(1)⊕(n+1) −→ TCPn −→ 0

implies, by Whitney multiplicativity,

c(TCPn) = c(O(1)⊕(n+1))
c(O) = (1 + h)n+1.

Hence ck(TCPn) =
(

n+1
k

)
hk and in particular cn(TCPn) = (n+ 1)hn.

Proposition 7.19 (First Chern class via connections). If L → M is a complex line bundle
with unitary connection ∇ and curvature F∇, then

c1(L) =
[
i

2πF∇

]
∈ H2(M ;Z),

and this class is integral (periods lie in Z).

Proof. This is the r = 1 case of Chern-Weil theory (curvature form represents c1) together
with integrality of its periods via the holonomy/transition-function cocycle.

Example 7.20 (Product manifolds). For complex manifolds X, Y , the tangent bundle satisfies
T (X × Y ) ∼= π∗

XTX ⊕ π∗
Y TY , hence

c
(
T (X × Y )

)
= π∗

Xc(TX) ⌣ π∗
Y c(TY ).

Remark 7.21 (Chern character). The Chern character is the rational class

ch(E) :=
r∑

j=1
exj ∈ Heven(M ; )

under the splitting principle. It satisfies ch(E ⊕ F ) = ch(E) + ch(F ) and ch(E ⊗ F ) =
ch(E) ⌣ ch(F ). In terms of Chern classes,

ch(E) = r + c1(E) + 1
2

(
c1(E)2 − 2c2(E)

)
+ · · · .
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Corollary 7.22 (Top Chern class and Euler class). If E is a complex rank-n vector bundle,
then the Euler class of the underlying real oriented bundle satisfies

e(ER) = cn(E) ∈ H2n(M ;Z).

Proof. Under a unitary connection, the real curvature lies in u(n) ⊂ so(2n); the Pfaffian
representing e(ER) equals the top Chern form, hence the integral classes coincide.

7.5 Pontryagin Classes
Pontryagin classes are characteristic classes of real vector bundles, defined in integral coho-
mology, but detected via Chern classes of their complexifications.

Definition 7.23 (Pontryagin classes). Let E → M be a real vector bundle of rank k. Its
Pontryagin classes are elements

pi(E) ∈ H4i(M ;Z), 0 ≤ i ≤ ⌊k/2⌋,

defined by
pi(E) := (−1)i c2i(E ⊗R C) ∈ H4i(M ;Z),

where E ⊗R C is the complexification of E.

Definition 7.24 (Total Pontryagin class). The total Pontryagin class is

p(E) = 1 + p1(E) + p2(E) + · · · ∈ H4∗(M ;Z).

Proposition 7.25 (Basic properties). Pontryagin classes satisfy:

1. Naturality: pi(f ∗E) = f ∗pi(E) for smooth f : N → M .

2. Whitney sum: p(E ⊕ F ) = p(E) ⌣ p(F ).

3. For a complex bundle E, with Chern roots xj, one has p(ER) = ∏
j(1 +x2

j); equivalently,
pi(ER) = (−1)i c2i(E ⊕ E) (so c(E) c(E) = 1 − p1(ER) + p2(ER) − · · · ).

Example 7.26 (Trivial bundle). If E is trivial, then p(E) = 1.

Example 7.27 (Tangent bundle of Sn). All Pontryagin classes vanish for the tangent bundle
of spheres Sn (because H4i(Sn) = 0 for i ≥ 1).

Example 7.28 (Tangent bundle of CP n). For CP n, using Example 7.18, the tangent bundle
has

c(TCP n) = (1 + h)n+1, h ∈ H2(CP n;Z).
From the relation pi(E) = (−1)ic2i(E⊗RC), one obtains explicit formulas for p1(TCP n) and
higher classes.

Remark 7.29 (Relation with Stiefel-Whitney classes). Modulo 2, Pontryagin classes reduce
to squares of Stiefel-Whitney classes:

pi(E) ≡ w2i(E)2 ∈ H4i(M ;Z/2).
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Theorem 7.30 (Hirzebruch signature theorem, preview). For a closed oriented 4k-dimensional
manifold M , the signature of the quadratic form on H2k(M ;R) is given by

σ(M) = ⟨L(p1, . . . , pk), [M ]⟩,

where L is the Hirzebruch L-polynomial in Pontryagin classes. This deep theorem links
topology, geometry, and analysis.

7.6 Euler Class
The Euler class is the fundamental characteristic class associated to real, oriented vector
bundles of even rank. It generalizes the notion of the Euler characteristic of a manifold.

Definition 7.31 (Euler class of an oriented bundle). Let E → M be a real, oriented vector
bundle of rank n = 2k. The Euler class

e(E) ∈ Hn(M ;Z)

is the unique characteristic class such that:

1. e(E) is natural under pullback: e(f ∗E) = f ∗e(E).

2. If E admits a nowhere-vanishing section, then e(E) = 0.

3. If E is the tangent bundle of a closed oriented n-manifold M , then ⟨e(TM), [M ]⟩ =
χ(M), the Euler characteristic of M .

Remark 7.32. The Euler class can be defined abstractly using the Thom isomorphism: e(E)
is the pullback of the Thom class under the zero section M → E.

Proposition 7.33 (Top Chern class). If E is a complex vector bundle of rank r, then the
Euler class of the underlying real bundle ER satisfies

e(ER) = cr(E).

Example 7.34 (Sphere tangent bundle). For S2, e(TS2) is a generator of H2(S2;Z) ∼= Z, and
⟨e(TS2), [S2]⟩ = 2, in agreement with χ(S2) = 2. For S2k+1 there exists a nowhere-vanishing
vector field, so e(TS2k+1) = 0 (and indeed χ(S2k+1) = 0), even though H2k+1(S2k+1;Z) ∼= Z.

Theorem 7.35 (Gauss-Bonnet). Let M be a closed, oriented Riemannian manifold of
dimension 2k. Then

χ(M) =
∫

M
e(TM),

where e(TM) is represented by the Pfaffian of the curvature form of the Levi-Civita connection.
This is the differential-geometric incarnation of the Euler class.

Remark 7.36. This result bridges algebraic topology and differential geometry: the Euler class
is purely topological, but its de Rham representative is the Pfaffian polynomial in curvature.

33



8 Chern-Weil Theory via Principal Bundles

8.1 Principal bundles and connections
Definition 8.1 (Principal G-bundle). Let G be a Lie group. A principal G-bundle over
a smooth manifold M is a smooth manifold P with a smooth right action R : P × G → P
that is free and proper, together with a smooth surjective submersion π : P → M whose fibers
are the G-orbits. Locally, there exist trivializations Φ : π−1(U) → U × G intertwining the
G-action by right multiplication on G.

Definition 8.2 (Connection 1-form). A connection on a principal G-bundle π : P → M is
a g-valued 1-form ω ∈ Ω1(P ; g) such that:

1. For each ξ ∈ g, letting ξ♯ be the fundamental vertical vector field on P , one has
ω(ξ♯) = ξ.

2. R∗
gω = Adg−1ω for all g ∈ G.

The horizontal subspace at u ∈ P is HuP := kerωu ⊂ TuP , giving a G-equivariant splitting
TuP = HuP ⊕ VuP with VuP = ker dπu.

Definition 8.3 (Curvature 2-form). The curvature of a connection ω is the g-valued 2-form

Ω := dω + 1
2 [ω, ω] ∈ Ω2(P ; g),

where [ , ] is the Lie bracket extended fiberwise and wedge-multiplied.

Lemma 8.4 (Equivariance and horizontality). For a connection ω with curvature Ω:

1. R∗
gΩ = Adg−1Ω for all g ∈ G,

2. ιξ♯Ω = 0 for all ξ ∈ g (horizontality).

Proof. Differentiate R∗
gω = Adg−1ω and use the definition of Ω. For horizontality, compute

ιξ♯Ω = ιξ♯dω+ 1
2ιξ♯ [ω, ω] and use Cartan’s formula together with ω(ξ♯) = ξ and G-equivariance.

Theorem 8.5 (Bianchi identity on principal bundles). For any connection ω with curvature
Ω,

DΩ := dΩ + [ω,Ω] = 0,
where D is the covariant exterior derivative.

Proof. Compute DΩ = d(dω+ 1
2 [ω, ω])+ [ω, dω+ 1

2 [ω, ω]] and apply d2 = 0, the graded Jacobi
identity, and bilinearity of the bracket.

34



8.2 Invariant polynomials and basic forms
Definition 8.6 (Invariant polynomial). A symmetric k-linear form P : gk → R (or C) is
Ad-invariant if

P (AdgX1, . . . ,AdgXk) = P (X1, . . . , Xk) ∀g ∈ G, Xi ∈ g.

Equivalently, P ◦ (Adg)⊗k = P for all g.

Definition 8.7 (Chern-Weil form on P ). Given an Ad-invariant polynomial P of degree k
and the curvature Ω, define the R-valued 2k-form on P

P (Ω) := P
(

Ω, . . . ,Ω︸ ︷︷ ︸
k times

)
∈ Ω2k(P ).

Lemma 8.8 (Basicness). P (Ω) is G-invariant and horizontal; hence it is basic and descends
to a unique form ωP ∈ Ω2k(M) satisfying π∗ωP = P (Ω).

Proof. G-invariance follows from equivariance R∗
gΩ = Adg−1Ω and Ad-invariance of P . Hor-

izontality follows from ιξ♯Ω = 0 and multilinearity. Basic forms are exactly the invariant
horizontal forms; thus there is a unique descendant on M .

Theorem 8.9 (Chern-Weil). Let P be an Ad-invariant degree-k polynomial on g and ωP ∈
Ω2k(M) its descendant. Then:

1. dωP = 0,

2. The de Rham class [ωP ] ∈ H2k
dR(M) is independent of the choice of connection ω,

3. The assignment P 7→ [ωP ] is natural with respect to pullback of bundles and bundle
maps.

Proof. (1) dP (Ω) = DP (Ω) on P because P is constant coefficient. Using Bianchi DΩ = 0
and Ad-invariance of P , DP (Ω) = 0. Hence dωP = 0.

(2) Let ω0, ω1 be connections with curvatures Ω0,Ω1 and consider ωt = (1 − t)ω0 + tω1 on
P × [0, 1]. A standard transgression computation yields

d

dt
P (Ωt) = dCSP (ωt; ω̇t),

where CSP is an explicit (2k − 1)-form (Chern-Simons transgression). Pulling back to M
and integrating in t shows the difference of the descendants is exact.

(3) Naturality follows from functoriality of pullback of principal bundles, connections, and
curvatures together with Ad-invariance of P .
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8.3 Chern-Simons transgression forms
Definition 8.10 (Relative transgression). Given two connections ω0, ω1 with difference
α := ω1 − ω0, define

CSP (ω0, ω1) := k
∫ 1

0
P
(
α,Ωt, . . . ,Ωt

)
dt ∈ Ω2k−1(P ),

where Ωt is the curvature of ωt = ω0 + tα. It is G-basic up to exact terms and descends
locally.

Proposition 8.11 (Transgression identity).

P (Ω1) − P (Ω0) = dCSP (ω0, ω1).

Consequently, the associated base forms on M differ by an exact form.

Proof. Differentiate P (Ωt) with respect to t, use Dtω̇t = d
dt

Ωt and Bianchi, then integrate
from 0 to 1.

8.4 Associated bundles and classical classes
Definition 8.12 (Associated vector bundle). Let π : P → M be a principal G-bundle and
ρ : G → GL(V ) a representation. The associated bundle is E := P ×ρ V → M . A
principal connection ω induces a covariant derivative ∇ on E whose local connection matrix
is ρ∗(ω), with curvature F∇ = ρ∗(Ω).

Example 8.13 (Chern classes from U(r)). Take G = U(r), ρ the defining representation on
Cr. For the invariant polynomials Pk(A) = 1

k!trA
k on u(r), the normalized forms

ck(E) :=
[

1
(2πi)k

Pk(F∇)
]

∈ H2k(M ;R)

recover the Chern classes (and are integral). The total Chern class is det
(
I + i

2π
F∇
)
.

Example 8.14 (Pontryagin from SO(n)). For a real bundle with structure group SO(n),
complexify and use P2k(A) = tr(A2k) with normalization to obtain pk(E) = (−1)kc2k(E ⊗ C).

Example 8.15 (Euler class from SO(2n)). On an oriented real rank-2n bundle, the invariant
polynomial Pf (Pfaffian) on so(2n) yields

e(E) =
[
Pf
( 1

2πΩ
)]

∈ H2n(M ;R).

8.5 Functoriality, Whitney sum, and block structure
Proposition 8.16 (Naturality). If f : N → M and f ∗P is the pulled-back principal G-bundle
with pulled-back connection, then for any invariant polynomial P ,

f ∗ωP = ωP (f ∗P ).
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Proposition 8.17 (Whitney sum via block-diagonal). Let E,F be complex vector bundles
with unitary connections ∇E,∇F and curvatures FE, F F . On E ⊕ F with block-diagonal
connection, the curvature is FE⊕F =

(
F E 0
0 F F

)
. Hence

det
(
I + i

2π
FE⊕F

)
= det

(
I + i

2π
FE

)
· det

(
I + i

2π
F F

)
,

so c(E ⊕ F ) = c(E) ⌣ c(F ).

8.6 Normalization and integrality
Proposition 8.18 (Normalization constants). With the normalizations i

2π
for unitary cases

and 1
2π

for orthogonal Pfaffians, the Chern–Weil forms represent integral cohomology classes
when the structure group is compact and connected, coinciding with topological characteristic
classes defined via classifying spaces.

Proof idea. Use the classifying map M → BG and identify de Rham representatives with
pullbacks of universal forms on BG whose periods are integral, together with the de Rham
isomorphism.

8.7 Summary
Chern-Weil theory assigns to each Ad-invariant polynomial P on the Lie algebra of the
structure group a canonical closed form on the base whose cohomology class is independent
of the connection. For classical structure groups and canonical polynomials (trace powers,
Pfaffian, elementary symmetric functions), these recover the standard characteristic classes
(Chern, Pontryagin, Euler), and satisfy functoriality and Whitney sum via curvature block-
diagonalization. The difference of representatives for different connections is exact, measured
by Chern-Simons transgression forms.
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