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Introduction

In the late 19th century, mathematicians began to expand differential geometry beyond the classical
study of curves and surfaces by exploring the properties of smooth manifolds and tangent bundles.
Henri Poincaré investigated vector fields on these manifolds, particularly paying attention to zeros,
points where a vector field vanishes. He observed that these zeros were not random, but instead
suggested insight into a manifold’s structure.

Poincaré introduced the concept of an index for an isolated zero of a vector field, generalizing
the notion of winding numbers from planar vector fields. This index measures how the surrounding
vectors “wrap around” the zero and can be formalized as the degree of a map from a small sphere
in the tangent space to the unit sphere. His work suggested that the sum of the indices of all zeros
might be connected to a global topological invariant, the Euler characteristic of the manifold.

Building on Poincaré’s insights, in the early 20th century, Heinz Hopf provided a precise formu-
lation of the Euler characteristic. He proved that for any smooth vector field with isolated zeros
on a compact, oriented manifold, the sum of the indices equals the manifold’s Euler characteristic.
This came to be what is now known as the Poincaré–Hopf theorem, which aligned with earlier
observations such as the Hairy Ball theorem and established a connection between local differential
behavior and global topological properties.

The discovery of the theorem marked a major milestone in differential geometry. By generalizing
classical results and pointing toward later advances in characteristic classes and index theory, the
Poincaré–Hopf theorem highlights a fundamental principle of modern geometry: how local analytic
behavior of vector fields is linked to information about the manifold’s structure.

Preliminaries

An n-dimensional manifold is a topological space M that is Hausdorff (meaning any two distinct
points can be separated by disjoint open sets) and second-countable (meaning there exists a count-
able collection of open sets such that every open set in M can be expressed as a union of them),
and in which every point p ∈ M has a neighborhood U ⊆ M homeomorphic to an open subset of
Rn.

A smooth manifold is an n-dimensional manifold that has a maximal atlas of charts φ :
U ⊂ M → Rn, whose transition maps are C∞-smooth. If M has a boundary, the charts map
neighborhoods in M to open subsets of the closed half-space Hn = {x ∈ Rn : xn ≥ 0}. Unless
stated otherwise, all manifolds and maps are assumed C∞-smooth.
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For the following definitions, let M be a smooth, compact, oriented manifold of dimension n,
possibly with boundary ∂M . Throughout, we assume all manifolds and maps are C∞-smooth.

A vector field on M is a smooth section X : M → TM of the tangent bundle TM , assigning
to each point p ∈ M a tangent vector X(p) ∈ TpM . A point p ∈ M is called a zero (or singularity)
of X if X(p) = 0 ∈ TpM . We say X has an isolated zero at p if there exists a neighborhood U ⊆ M
of p such that p is the only zero of X in U .

To each isolated zero p of X, there’s an associated integer called the index of X at p, denoted
indp(X). The index measures the local behavior of the vector field near p, describing how the
vectors ”wrap around” the zero. Formally, in a local coordinate chart (U,φ) with φ(p) = 0 ∈ Rn,
the map

X

∥X∥
: ∂Bε(0) → Sn−1

from the boundary of a small ball around zero to the unit sphere is well-defined and continuous,
and the index is defined as the topological degree of this map. The index is independent of choices
made and is stable under homotopies of the vector field that do not create or destroy zeros.

The Euler characteristic χ(M) is a topological invariant of the manifold M , defined via any
finite triangulation or cellular decomposition by the alternating sum

χ(M) =

n∑
i=0

(−1)ici,

where ci is the number of i-dimensional cells. Equivalently, in algebraic topology, it can be computed
as

χ(M) =

n∑
i=0

(−1)i dimHi(M ;Q),

the alternating sum of the dimensions of the rational cohomology groups of M .
For oriented surfaces, the Euler characteristic relates with curvature through the Gauss–Bonnet

theorem: ∫
M

K dA+

∫
∂M

kg ds = 2πχ(M),

where K is the Gaussian curvature of the surface, kg is the geodesic curvature of the boundary, and
dA, ds denote area and arc-length measures respectively.

Let M be a smooth manifold. Two vector fields X,Y ∈ X(M) with isolated zeros are said to be
homotopic through vector fields with isolated zeros if there exists a smooth map

H : M × [0, 1] → TM

such that for each t ∈ [0, 1], the map Ht(x) := H(x, t) defines a smooth vector field on M with
isolated zeros, and

H0 = X, H1 = Y.

Theorem (Poincaré–Hopf)

Let M be a compact, oriented, smooth manifold, and let X be a smooth vector field on M with
only finitely many isolated zeros. Then∑

p∈Zero(X)

indp(X) = χ(M),

2



where the sum is taken over all isolated zeros p of the vector field X, indp(X) denotes the index of
X at p, and χ(M) is the Euler characteristic of M .

Example 1 (S2)

The unit sphere S2, defined as
S2 = {x ∈ R3 : ∥x∥ = 1},

is among the most classical and comprehensible examples of a smooth, compact, oriented 2-
dimensional manifold. For this reason, we will use it to explore and show the Poincaré–Hopf
theorem and its implications.

According to the theorem, for any smooth vector field X on a compact oriented manifold M
with isolated zeros, the sum of the indices of these zeros equals the Euler characteristic χ(M). In
the case of the 2-sphere, the Euler characteristic is known to be

χ(S2) = 2.

Therefore, any vector field X on S2 must have zeros whose indices sum to 2.

A standard example illustrating the Poincaré–Hopf theorem on S2 is constructed from the radial
vector field on R3:

Xrad(x) = x, x ∈ R3.

This vector field points directly outward from the origin, where the magnitude of the vector is
proportional to the distance from the origin. While Xrad is not tangent to S2, we can project it
orthogonally onto the tangent space TxS2 at each point x ∈ S2.

The tangent space TxS2 consists of all vectors perpendicular to x, since S2 is defined by the
constraint ∥x∥ = 1. The orthogonal projection Px : R3 → TxS2 is given by

Px(v) = v − ⟨v, x⟩x,

where ⟨·, ·⟩ denotes the standard inner product.
We then apply this to a radial vector field:

X(x) = Px(x) = x− ⟨x, x⟩x = x− (1)x = 0.

At first glance, this appears to be zero everywhere, but we want to manipulate the radial vector field
to generate a more useful tangent vector field. Instead, consider the constant vector e3 = (0, 0, 1)
in R3. Projecting e3 onto TxS2 yields the vector field:

X(x) = e3 − ⟨e3, x⟩x.

This vector field is tangent to the sphere at every point.

The zeros of X are the points x ∈ S2 where

X(x) = 0 =⇒ e3 = ⟨e3, x⟩x.

Taking the inner product of both sides with x, we find

⟨e3, x⟩ = ⟨e3, x⟩⟨x, x⟩ = ⟨e3, x⟩.
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The vector e3 lies in the direction of x scaled by the factor ⟨e3, x⟩, so for X(x) = 0, x must be
parallel to e3, i.e.,

x = ±e3.

Therefore, the zeros of X occur precisely at the north pole (0, 0, 1) and the south pole (0, 0,−1).
Each of these zero is isolated. We can also compute the index at each zero by observing the

behavior of X near these points. Both zeros correspond to simple ”sources” or ”sinks” of the vector
field, and each has index +1.

More precisely, the index can be computed by considering the map from a small circle around
the zero into the unit circle in the tangent space, induced by normalizing the vector field. Around
the north pole, the vector field looks like a radial outward pointing field on the tangent plane, which
has degree +1. This is also the case at the south pole.

Thus, summing the indices,

indnorth pole(X) + indsouth pole(X) = 1 + 1 = 2,

which matches the Euler characteristic χ(S2) = 2.

Example 2: The Torus

The Poincaré–Hopf theorem states that for any smooth vector field X on a compact, orientable
surface M with isolated zeros, the sum of the indices of those zeros equals the Euler characteristic:∑

p∈Z(X)

indp(X) = χ(M).

To confirm this for the torus T 2, we’ll check this identity in this section. We start with the
computations where:

• Using a CW-decomposition, T 2 has one 0-cell, two 1-cells, and one 2-cell, giving

χ(T 2) = 1− 2 + 1 = 0.

• Using the product formula, since T 2 ∼= S1 × S1,

χ(T 2) = χ(S1)χ(S1) = 0 · 0 = 0.

Now we consider the standard embedding

σ(θ, ϕ) =
(
(a+ b cos θ) cosϕ, (a+ b cos θ) sinϕ, b sin θ

)
, 0 < b < a.

The coordinate vector field σϕ is tangent to the torus and nowhere zero. Define

X(θ, ϕ) := σϕ(θ, ϕ).

Thus X is a smooth, nowhere-vanishing vector field, so its zero set is empty: Z(X) = ∅.
Since X has no zeros, ∑

p∈Z(X)

indp(X) = 0,

which agrees with χ(T 2) = 0. This proves the Poincaré–Hopf theorem in the case of the torus.
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Example 3: The Klein Bottle

The Klein bottle K is a compact, non-orientable surface with

χ(K) = 0.

By the Poincaré–Hopf theorem, for any vector field X on K with isolated zeros,∑
p∈Zero(X)

indp(X) = 0.

Since K admits a nowhere-vanishing vector field (e.g. a horizontal constant field on the funda-
mental rectangle compatible with identifications), one obtains

Zero(X) = ∅ =⇒
∑

indp(X) = 0,

matching χ(K).
If zeros are present, they must occur in pairs with opposite index:

indp1(X) + indp2(X) = 0,

so that the global index sum remains 0.

Application to Physics

The Poincaré–Hopf theorem application on the Klein bottle has interesting applications in physics,
particularly in magnetic confinement fusion. Surfaces with Klein bottle topology can support
smooth, nowhere-vanishing vector fields, which appear in certain magnetic surfaces of tokamaks and
stellarators. These configurations influence the behavior of magnetic field lines and are associated
with phenomena like abnormal sawtooth crashes. This results with the theorem playing an integral
role in understanding and designing plasma confinement systems.

The Hairy Ball Theorem

The Hairy Ball theorem states that there does not exist a continuous, nowhere-vanishing tangent
vector field on an even-dimensional sphere, in particular on S2. Equivalently, every continuous
tangent vector field X on S2 must vanish at least at one point. This follows from the Poincaré–Hopf
theorem: since

χ(S2) = 2,

any smooth vector field X on S2 satisfies∑
p∈Z(X)

indp(X) = 2,

so Z(X) ̸= ∅. In particular, no continuous tangent field on S2 can be nonvanishing.
This theorem gets its name from the fact that it is impossible to “comb” the hair on a sphere

smoothly without creating at least one “cowlick” or zero where the hair stands straight.
It is also applicable to the real world where, for example, it is present in meteorology: there

must always be at least one calm point or vortex in any continuous wind pattern on the Earth’s
surface.
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