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Abstract

A unifying framework for multivariable calculus, differential geometry, and math-
ematical physics is offered by calculus on manifolds. In order to get to the general
Stokes’ Theorem, this paper presents the fundamentals of differential forms, tangent
spaces, smooth manifolds, and integration theory. The fundamental theorem of calcu-
lus, Green’s theorem, the divergence theorem, and Stokes’ theorem in three dimensions
are among the traditional results of vector calculus that are subsumed by the general
theorem. By doing this, it illustrates the mathematical power of abstraction by reveal-
ing that conclusions that are recognizable from basic calculus are actually shadows of
a more profound geometric truth.

1 Introduction

Functions on the real line R, limits, derivatives, and integrals are the first concepts in classical
calculus. These concepts are extended to functions on subsets of R™ in the passage to
multivariable calculus, which also introduces partial derivatives, gradients, multiple integrals,
and vector fields. However, the breadth of physics and mathematics necessitates an even
more expansive framework. Although spaces like spheres, tori, and Grassmannians have
local Euclidean structure, they cannot be simply represented globally as subsets of R". We
refer to these areas as manifolds.

Calculus on manifolds allows one to describe and study geometric and physical processes
in their natural environment by generalizing the tools of differential and integral calculus
to these spaces. Stokes’ theorem, which subsumes a family of vector calculus theorems
and connects integrating over a manifold to integration over its border, is a key unifying
conclusion.

2 Smooth Manifolds

Definition 2.1. A topological manifold of dimension n is a Hausdorff, second-countable
topological space M such that every point p € M has a neighborhood U homeomorphic to an
open subset of R™. A smooth manifold is a topological manifold equipped with a maximal
smooth atlas, meaning that transition maps between overlapping charts are smooth.



The concept of smoothness allows one to define differentiability of functions on M and
construct the framework for differential geometry.

Example 2.1. The circle S' = {(z,y) € R* : 2* + y* = 1} is a one-dimensional smooth
manifold. Locally, neighbourhoods on S* resemble open intervals in R. However, globally,
St is compact and has nontrivial topology.

Example 2.2. The real projective plane RP? is the set of lines through the origin in R3.
Although it cannot be embedded in R® without self-intersection, it is a smooth 2-manifold.

Charts and atlases provide local coordinate systems, enabling us to perform calculus as
if we were in R”, while smooth transition functions guarantee global consistency.

3 Tangent Space and Cotangent Space
Let M be a smooth n-dimensional manifold. At each point p € M, we define:

e The tangent space T, , the vector space of directional derivatives at p.
e The cotangent space T; M, the dual space of T, M, consisting of linear maps:
wp : T,M — R.

Elements of Ty M are called covectors (or dual vectors).

4 Differential Forms

At each point of a manifold, one can define a vector space that represents all possible
directions of motion.

Definition 4.1. The tangent space T,M at p € M 1is the vector space of derivations at p,
i.e., linear maps v : C*°(M) — R satisfying the Leibniz rule v(fg) = v(f)g(p) + f(p)v(g).

An alternative characterization uses equivalence classes of smooth curves through p. This
intuition aligns with the notion of velocity vectors.

The dual space Ty M is the cotangent space, whose elements are linear maps 7, M — R.
A differential 1-form at p is an element of Ty M.

Definition 4.2. A differential k-form on M is a smooth section of A¥T*M, i.e., a smooth
assignment to each p € M of an alternating multilinear map (T,M)* — R.

Differential forms can be combined using the wedge product, which satisfies skew-symmetry
and bilinearity. This structure provides the algebraic backbone for integration theory.



5 Integration on Manifolds

To generalize integration, orientation must be defined.

Definition 5.1. An orientation on an n-manifold M is a choice of equivalence class of
atlases where all transition functions have positive Jacobian determinant. A manifold with
a chosen orientation is called an oriented manifold.

Given an oriented n-manifold M, one can integrate compactly supported n-forms by
pulling them back to coordinate charts, using partitions of unity, and summing over the
atlas.

Example 5.1. On the 2-sphere S?, in spherical coordinates (0,¢), the area form is w =
sin(0)dd A do. Its integral over S* is [g, w = 4w, which is the total surface area.

Integrating over curved spaces without embedding them in FEuclidean space is made
possible by the machinery of integration on manifolds, which generalizes classical multiple
integrals.

6 The Exterior Derivative

The exterior derivative extends the notions of gradient, curl, and divergence.

Definition 6.1. The exterior derivative d : QF(M) — QM) is the unique linear operator
satisfying:

1. d*> =0 (nilpotency),
2. d(f)=df for smooth functions f (the differential),
3. dlaNB)=daA B+ (=) aAdB for a e QF(M).

Example 6.1. In R?, a 1-form w = fdx + gdy + hdz has exterior derivative

dw = @—@ dy N\ dz + %—% dz N\dz + @—g dx N dy,
z 0z O or Oy

which corresponds precisely to the curl of (f,g,h).

Thus, d captures geometric operations from vector calculus in an abstract framework.

7 Stokes’ Theorem

Theorem 7.1 (Stokes’ Theorem). Let M be an oriented smooth n-dimensional manifold
with boundary OM . For any (n — 1)-form w with compact support,

/dw:/ w.
M oM
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This theorem subsumes classical results:

e For n =1, it is the fundamental theorem of calculus.

e For n = 2, it recovers Green’s theorem in the plane.

e For n = 3, it yields both the divergence theorem and the classical Stokes’ theorem.

Example 7.1. Let M be a region in R® with smooth boundary OM. If w corresponds to a
vector field ¥, then [, dw becomes [, (V -F)dV, while [,, w becomes [, F-dS. This is
the divergence theorem.

7.1 Fundamental Theorem of Calculus (FTC)

The FTC relates the integral of a derivative over an interval to the values of the function at
the boundary:

bdf
| =10 fla)

This is a special case of the general Stokes’ theorem for 0-forms (functions) on a 1-dimensional
manifold.

Fx) = /lr Flt)dt

Figure 1: Diagrammatic representation of FTC

7.2 Green’s Theorem

Green’s theorem relates a line integral around a closed curve C' to a double integral over the
plane region D it encloses:

j{C(de—i-Qdy) ://D (%—2—5) dx dy.

This is a special case of Stokes’ theorem for 1-forms in R2.
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Figure 2: Diagrammatic representation of Green’s Theorem

7.3 Divergence Theorem (Gauss’s Theorem)

The divergence theorem relates the flux of a vector field through a closed surface S to the
divergence over the volume V' it encloses:

]iF-dS:///V(V-F)dV.

This is a special case of the general Stokes’ theorem for (n — 1)-forms in R™ (where n = 3
here).



Figure 3: Diagrammatic representation of Divergence Theorem

7.4 Classical Stokes’ Theorem

The classical Stokes’ theorem relates a line integral around a closed curve C' to a surface
integral over a surface S bounded by C"

]iF-dr://S(VxF)-dS.

This is a special case of the general Stokes’ theorem for 1-forms in R?.



Figure 4: Diagrammatic representation of Classical Stokes” Theorem

8 Applications and Conclusion

Stokes” theorem is a cornerstone of modern geometry and physics. In Maxwell’s equations,
the curl and divergence laws are succinctly expressed using differential forms and Stokes’
theorem. In topology, the theorem connects local differential properties to global invariants,
leading to de Rham cohomology.

Calculus on manifolds reveals that the seemingly disparate results of vector calculus are
special cases of a single elegant principle. The framework not only provides computational
tools but also insight into the structure of space itself, highlighting the unity of mathematics
across algebra, analysis, and geometry.
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