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Abstract. In basic terms, Lie groups are the language of continuous symmetry. The main idea is that these non-linear
structures can be studied through a linear approximation called the Lie algebra, which is just the tangent space at the

identity. We will begin by discussing the correspondence between a group and its algebra using the exponential map,
(touching on the Baker-Campbell-Hausdorff formula and the famous covering homomorphism from SU(2) to SO(3)). We

conclude with a brief look at the bigger picture, such as the structure theory of Lie algebras and their role in representation

theory.
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1. What Is Continuous Symmetry?

While the symmetries of a crystal lattice are discrete (countable), the symmetries of physical laws under rotations or
translations in spacetime, however, are continuous (uncountable). The role of the Lie group is to handle the continuous
case that group theory could not. Lie theory was named after the Norwegian mathematician Sophus Lie. A Lie group is
a smooth manifold that is also a group, with the two structures playing nicely together. In fact, Lie’s original motivation
grew from very concrete geometric problems involving line complexes and sphere mappings [2].

A Lie group is very powerful. We can use tools from calculus to kill problems in group theory, or use algebra to get
a handle on geometry. Differential geometry teaches us how to think about curves and surfaces, which are manifolds of
dimension 1 and 2. Lie theory is what appears when that geometric intuition is applied to higher-dimensional manifolds
that have a group structure [4].

Our goal here is to provide an initial understanding of the subject. We will define the main objects, but the real aim
is to understand the connection between a Lie group and its “linearization,” the Lie algebra. This relationship is the
bedrock of the entire theory.

2. The Building Blocks of a Lie Group

To properly define a Lie group, we need to merge ideas from two different worlds: abstract algebra and differential
geometry. Let us briefly recall the key concepts from each.

Groups. An abstract group is a set with a binary operation satisfying a few simple rules. It is a sparse definition, but
powerful enough to describe every kind of symmetry we know.

Definition 2.1. A group is a set G together with a binary operation m : G × G → G, where the image of (g, h) is
written as gh, satisfying:

(1) Associativity, (gh)k = g(hk) for all g, h, k ∈ G.
(2) An identity element, such that there exists an element e ∈ G such that eg = ge = g for all g ∈ G.
(3) An inverse element, such that for each g ∈ G, there exists an element g−1 ∈ G such that gg−1 = g−1g = e.

Smooth manifolds. A smooth manifold is essentially a space that, when zoomed in far enough on any point, starts to
look like ordinary Euclidean space. This local “flatness” is what allows us to do calculus on them. A good first picture
to keep in mind is the surface of a sphere or a torus in R3.

Definition 2.2. A subset S ⊂ R3 is a surface if for every point p ∈ S, there is an open neighborhood W of p in R3 and
a homeomorphism, which is a continuous bijection with a continuous inverse, from an open set U ⊂ R2 to S ∩W . Such
a map is called a surface patch or chart.

More generally, an n-dimensional topological manifold is a Hausdorff, second-countable topological space that is locally
homeomorphic to Rn. To make it smooth, we require that the transition maps between any two overlapping charts are
infinitely differentiable. This collection of compatible charts is called an atlas. Figure 1 illustrates this concept.

Definition 2.3. For a point p on a surface S, the tangent space TpS is the plane of all possible velocity vectors of
curves on S that pass through p. If a patch is given by σ : U → S, the tangent space at σ(u, v) is the two-dimensional
vector space spanned by the partial derivatives {σu, σv}. This generalizes to an n-dimensional manifold, where TpM is
an n-dimensional real vector space.

Defining a lie group. We can now put these two ideas together.

Definition 2.4. A Lie group is a smooth manifoldG that is also a group, such that the group operations of multiplication
m(g, h) = gh and inversion i(g) = g−1 are smooth maps.

Remark 2.5. The smoothness requirement is the crucial glue that holds the definition together. It’s not enough for a
set to be a group and a manifold separately.

Example 2.6. By far the most common examples are matrix Lie groups. These are closed subgroups of the general
linear group GLn(R), the group of all invertible n × n real matrices. GLn(R) is itself a manifold, since it’s an open

subset of the vector space Rn2

, the space of all n× n matrices, carved out by the condition det(A) ̸= 0. Many familiar
groups are defined by the matrices that leave some bilinear form β(v, w) = vTBw invariant. A group G of this type is
given by G = {g ∈ GLn(R) | gTBg = B}. The condition on the Lie algebra is the infinitesimal version of this, as shown
in the following proposition.
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Figure 1. A smooth manifold M covered by charts mapping neighborhoods to Euclidean space. The
transition maps between overlapping charts are required to be smooth.

Proposition 2.7. The Lie algebra of G = {g ∈ GLn(R) | gTBg = B} is g = {X ∈ Mn(R) | XTB +BX = 0}.

Proof. Let X ∈ g. By definition, the curve γ(t) = exp(tX) must lie in G for all t ∈ R. This means exp(tX)TB exp(tX) =
B, and by differentiating at t = 0 we get 0. Using the product rule along with d

dt exp(tX)|t=0 = X, we get

XT exp(0)TB exp(0) + exp(0)TBX exp(0) = 0,

which simplifies to XTB + BX = 0. For the other direction, assume XTB + BX = 0. It is clear that XTB = −BX,
which implies (XT )kB = (−1)kBXk for any integer k ≥ 0. It follows that

exp(tX)TB = exp(tXT )B =

( ∞∑
k=0

tk(XT )k

k!

)
B

= B

( ∞∑
k=0

tk(−X)k

k!

)
= B exp(−tX).

Thus, exp(tX)TB exp(tX) = B exp(−tX) exp(tX) = BI = B. This shows exp(tX) ∈ G for all t, so X ∈ g, as
desired. □

Here are some examples:

• If B = I, we get the orthogonal group O(n), which leaves the dot product invariant. Its Lie algebra o(n) is
the space of skew-symmetric matrices, as XT + X = 0. The subgroup SO(n) of matrices with determinant 1
corresponds to rotations.

• If B =

(
0 Ik

−Ik 0

)
, we get the symplectic group Sp2k(R).

The special linear group SLn(R) consists of matrices with determinant 1. Its Lie algebra sln(R) is the space of traceless
matrices.

Example 2.8. The simplest Lie groups are abelian. The real line R with addition, the circle group S1 = {z ∈ C | |z| = 1}
with complex multiplication, and the n-torus Tn = S1 × · · · × S1 are all examples.

3. Linearizing a Lie Group

So, how can we possibly get a handle on such a complicated object as a Lie group? The central idea in all of Lie
theory is linearization. We trade the non-linear group G for a related linear object, its Lie algebra g, which is much
easier to work with.
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Figure 2. The 2-torus (T 2), a classic example of a compact, abelian Lie group.

The lie algebra as tangent space.

Definition 3.1. The Lie algebra g of a Lie group G is the tangent space to G at the identity element e.

g := TeG.

As a tangent space, g is a vector space of the same dimension as G.To show the non-commutativity of the group,
the algebra is equipped with a bilinear operation called the Lie bracket [·, ·] : g × g → g. This bracket must be anti-
symmetric, so [X,Y ] = −[Y,X], and satisfy the Jacobi identity, [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. For a matrix
group G ⊆ GLn(R), the Lie algebra is the set of matrices

L(G) = {X ∈ Mn(R) | exp(tX) ∈ G for all t ∈ R}.
In this case, the Lie bracket is the familiar matrix commutator [X,Y ] = XY − Y X.

Figure 3. The Lie algebra g is the tangent space to the Lie group G at the identity e. It is a flat,
linear approximation of the group near that point.

The exponential map. To get from the algebra back to the group, we need a bridge: the exponential map. This map
allows us to recover the local group structure entirely from the algebra.

Definition 3.2. The exponential map, exp : g → G, sends a vector X ∈ g to the point on the group reached by following
a path γX(t) for one unit of time. The path γX is the unique one-parameter subgroup, which is a smooth homomorphism
from (R,+) to G, whose starting velocity at t = 0 is X. We define exp(X) := γX(1).
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Figure 4. The exponential map takes a vector in the Lie algebra g and maps it to a point on the group
G by following the one-parameter subgroup it generates.

For matrix Lie groups, this is just the matrix exponential, exp(A) =
∑∞

k=0 A
k/k!. The map provides a local diffeo-

morphism from a neighborhood of 0 ∈ g to a neighborhood of e ∈ G. How the group’s multiplication relates to the
algebra’s vector space structure is shown by the Baker-Campbell-Hausdorff formula.

The Baker-Campbell-Hausdorff Formula. IfX,Y are sufficiently small vectors in g, their product exp(X) exp(Y )
is equal to exp(Z) for some Z ∈ g. The formula gives Z as an infinite series of Lie brackets:

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + . . . .

The relationship between a Lie group homomorphism ϕ : G → H and its corresponding Lie algebra homomorphism
dϕe : g → h is combined with the exponential map. This is summarized by the following commutative diagram:

g G

h H

expG

dϕe ϕ

expH

Remark 3.3. In practice, the full Baker-Campbell-Hausdorff formula is famously messy and almost never used for
explicit calculations. The way that its actually applicable is because it guarantees that the group’s multiplication is
completely determined by the Lie bracket, at least near the identity. The first few terms are often sufficient for local
approximations.

The adjoint representation. The Lie bracket isn’t an ad-hoc definition; it comes naturally from the group structure
itself. The group G acts on itself by conjugation: cg(h) = ghg−1. Taking the differential of this map at the identity
gives a linear map on the Lie algebra, called the adjoint representation of the group.

Ad(g) = (dcg)e : g → g.

This gives a homomorphism Ad : G → GL(g), turning each group element g into an invertible linear map on the algebra.
Differentiating this map at the identity gives a map from the Lie algebra of G to the Lie algebra of GL(g):

ad := L(Ad) : g → gl(g) = End(g).

As it turns out, this map ‘ad’ is the Lie bracket: ad(X)(Y ) = [X,Y ]. The two are tied together by a beautiful formula:

Ad(exp(X)) = ead(X) =

∞∑
k=0

(adX)k

k!
,

which cleanly connects group conjugation with the algebraic bracket structure [3]. This fundamental identity can be
seen below:
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G GL(g)

g gl(g)

Ad

exp

ad

exp

4. Why Does It Take a 720° Turn to Get Back to Where You Started?

To make all this abstract theory concrete, there is no better example than the relationship between the special unitary
group SU(2) and the rotation group SO(3). This connection is notably the basis for the quantum mechanical theory of
electron spin.

Proposition 4.1. The Lie algebras so(3) and su(2) are isomorphic.

Proof. Note that so(3) is the three-dimensional real vector space of 3×3 real skew-symmetric matrices, with a standard

basis given by E1 =

0 0 0
0 0 −1
0 1 0

 , E2 =

 0 0 1
0 0 0
−1 0 0

 , E3 =

0 −1 0
1 0 0
0 0 0

. Similarly, su(2) has a basis F1 =

1
2

(
i 0
0 −i

)
, F2 = 1

2

(
0 1
−1 0

)
, F3 = 1

2

(
0 i
i 0

)
. It is clear that for both sets of bases, [Xi, Xj ] = ϵijkXk holds, where X

is either E or F , thus the linear map sending Fi to Ei for each i ∈ J1, 3K is a Lie algebra isomorphism, as desired. □

Since their Lie algebras are the same, the groups SU(2) and SO(3) must look identical locally. Globally, however,
they are different beasts.

Theorem 4.2. There is a 2-to-1 surjective homomorphism ϕ : SU(2) → SO(3). Topologically, SU(2) is the simply
connected universal cover of SO(3).

Proof. We define a map using the adjoint representation Ad : SU(2) → Aut(su(2)). This action leaves the inner product
on su(2) given by ⟨X,Y ⟩ := −2Tr(XY ) invariant, which guarantees that the image of Ad is a subgroup of O(su(2)) ∼=
O(3). Because SU(2) is connected, its image must lie in SO(3), so we obtain a homomorphism ϕ : SU(2) → SO(3),
which is surjective. It follows that some g ∈ SU(2) is in the kernel of ϕ if and only if it commutes with every element in
su(2), which implies that g lies in the center of SU(2). The center of SU(2) is {±I}, and thus, ϕ is a 2-to-1 surjective
homomorphism. We can see this in the relationship below:

1 {±I} SU(2) SO(3) 1i ϕ

Since SU(2) is topologically the simply connected 3-sphere S3, it is the universal covering group of SO(3), and it follows
that SO(3) ∼= SU(2)/{±I}, as desired. □

Remark 4.3. This 2-to-1 covering has direct physical consequences. Objects that transform under SO(3), such as
vectors, come back to where they started after a 360° rotation. Objects that transform under SU(2), such as spinors
like electrons, pick up a minus sign after a 360° rotation and need a full 720° rotation to return to their original state.
This strange “double covering” is one of the useful properties of the quantum mechanical description of spin.

Figure 5. The “belt trick” is a nice physical analogy for the SU(2) double cover of SO(3).
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5. Structure and Representation Theory

Lie theory (obviously) doesn’t just end with the exponential map. The correspondence between Lie groups and Lie
algebras is the starting point for a structure theory that lets us classify these objects and understand how they can act
on other spaces.

Structure of lie algebras. We can analyze the structure of a Lie algebra g by looking for its ideals, which are
subspaces stable under the Lie bracket. One way to do this is with the derived series, defined by D0(g) = g and
Dk+1(g) = [Dk(g), Dk(g)].

Definition 5.1. A Lie algebra g is solvable if its derived series eventually hits {0}. A Lie algebra is semisimple if it
has no non-zero solvable ideals. A non-abelian Lie algebra is simple if its only ideals are {0} and itself.

Theorem 5.2 (Levi’s Theorem [3]). Any finite-dimensional real Lie algebra g can be broken down as a semidirect
product of its largest solvable ideal, called the radical and denoted rad(g), and a semisimple subalgebra s.

g = rad(g)⋊ s

This theorem important because it reduces the general study of Lie algebras to two more manageable cases: solvable
and semisimple. One of the main tools for telling them apart is the Killing form.

The Killing Form and Cartan’s Criteria. The Killing form is a symmetric bilinear form on g built from the
adjoint representation:

κ(X,Y ) := tr(ad(X) ◦ ad(Y )).

Cartan’s criteria use the Killing form to sort algebras. A Lie algebra g is solvable if and only if κ(X,Y ) = 0 for all
X ∈ g, Y ∈ [g, g]. A Lie algebra g is semisimple if and only if its Killing form is non-degenerate. These are powerful
computational tests. For example, one can compute the Killing form for sln(R) to be κ(X,Y ) = 2nTr(XY ), which
is non-degenerate, proving it is semisimple. Semisimple Lie algebras can be broken down further into a direct sum
of simple ones, which have been completely classified into the classical families of types An, Bn, Cn, Dn and five
exceptional cases, E6, E7, E8, F4, G2.

Proposition 5.3. The Killing form is associative, meaning κ([X,Y ], Z) = κ(X, [Y,Z]) for all X,Y, Z ∈ g.

Proof. It suffices to expand the definition. Note that ad is a Lie algebra homomorphism, so ad([X,Y ]) = [ad(X), ad(Y )].
We have

κ([X,Y ], Z) = tr(ad([X,Y ]) ◦ ad(Z))

= tr((ad(X)ad(Y )− ad(Y )ad(X)) ◦ ad(Z))

= tr(ad(X)ad(Y )ad(Z))− tr(ad(Y )ad(X)ad(Z)).

Using tr(ABC) = tr(BCA), on the second term, we see

κ([X,Y ], Z) = tr(ad(X)ad(Y )ad(Z))− tr(ad(X)ad(Z)ad(Y ))

= tr(ad(X) ◦ (ad(Y )ad(Z)− ad(Z)ad(Y )))

= tr(ad(X) ◦ [ad(Y ), ad(Z)])

= tr(ad(X) ◦ ad([Y,Z])) = κ(X, [Y,Z]),

as desired. This property is also called the invariance of the Killing form. □

Representation theory. One of the main reasons to study Lie theory is for its applications in representation theory,
which is the study of how these groups and algebras act on vector spaces. A representation of a Lie algebra g on a
vector space V is just a Lie algebra homomorphism ρ : g → gl(V ), where gl(V ) is the algebra of endomorphisms of V
with the commutator bracket.

Theorem 5.4 (Lie’s Theorem [3]). Let g be a solvable Lie algebra over an algebraically closed field of characteristic zero.
Then for any finite-dimensional representation ρ : g → gl(V ), there is a non-zero vector v ∈ V that is a simultaneous
eigenvector for all operators ρ(X) for X ∈ g.

This theorem implies that any representation of a solvable Lie algebra can be put into an upper-triangular basis. For
semisimple algebras, the situation is much nicer.



8 AARUSH KULKARNI

Theorem 5.5 (Weyl’s Theorem on Complete Reducibility [3]). Every finite-dimensional representation of a semisimple
Lie algebra is completely reducible, meaning it is a direct sum of irreducible subrepresentations.

Remark 5.6. Weyl’s theorem is a really special property of semisimple algebras. For other Lie algebras, representations

can be indecomposable without being irreducible. For instance, the representation of R by matrices

(
1 x
0 1

)
fixes a 1D

subspace but does not split into a direct sum of 1D representations.

This reduces the whole problem to classifying the irreducible representations, or “irreps.” In physics, these irreps often
correspond to fundamental particles. Combining systems, which corresponds to the tensor product of representations,
means decomposing the resulting representation into its irreducible parts. For GL(V ), for instance, the irreps are the
Schur functors SλV , indexed by partitions λ. Decomposing their tensor products is governed by combinatorial rules like
the Littlewood-Richardson rule, which gives integer coefficients cνλµ in the expansion [1]:

SλV ⊗ SµV ∼=
⊕
ν

(SνV )⊕cνλµ

For the standard representation V of GL(V ), where λ = (1), the tensor product V ⊗ V splits into symmetric and
anti-symmetric parts:

V ⊗ V ∼= Sym2(V )⊕ Λ2(V ),

corresponding to

S(1)V ⊗ S(1)V ∼= S(2)V ⊕ S(1,1)V.

This kind of decomposition is a routine calculation in physics and math, from combining angular momenta in quantum
mechanics to dealing with tensors in general relativity.

6. The ‘Periodic Table’ of Simple Lie Algebras

Weyl’s Theorem tells us that representations of semisimple Lie algebras break down into irreducible building blocks.
This shifts everything to classifying these building blocks: the simple Lie algebras themselves and their irreps. The
complete classification of simple Lie algebras over C is one of the greatest achievements of modern mathematics, thanks
mainly to Wilhelm Killing and Élie Cartan.

Root space decomposition. The trick to dissecting a semisimple Lie algebra g is to find a maximal abelian subalgebra
whose elements can all be diagonalized at the same time under the adjoint representation.

Definition 6.1. A Cartan subalgebra h of g is a nilpotent subalgebra that is its own normalizer. For semisimple Lie
algebras, this is thankfully equivalent to being a maximal abelian subalgebra.

Since everything in h commutes, the linear maps ad(H) for H ∈ h form a commuting family of operators on g. Over
C, this means we can simultaneously diagonalize them, which leads to the root space decomposition.

Theorem 6.2 (Root Space Decomposition [3]). Let g be a semisimple Lie algebra over C with Cartan subalgebra h.
Then g splits into a direct sum of vector spaces:

g = h⊕
⊕
α∈Φ

gα

where Φ ⊂ h∗ \ {0} is a finite set of linear functionals called roots, and gα is the eigenspace

gα = {X ∈ g | [H,X] = α(H)X for all H ∈ h}.

Miraculously, each root space gα turns out to be one-dimensional.

The set of roots Φ forms a beautiful, highly symmetric geometric object in the dual space h∗, known as a root system.
This object is the combinatorial skeleton of the Lie algebra.
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Root systems and dynkin diagrams. The geometry of the root system tells you everything you need to know about
the algebra. The Killing form gives us an inner product on h∗, turning it into a Euclidean space.

Definition 6.3. A root system is a finite set of non-zero vectors Φ in a Euclidean space V that satisfies:

(1) Φ spans V .
(2) If α ∈ Φ, the only multiples of α in Φ are ±α.
(3) For any α ∈ Φ, the reflection sα across the hyperplane orthogonal to α maps the set Φ to itself.

(4) For any α, β ∈ Φ, the number nβα = 2 ⟨β,α⟩
⟨α,α⟩ must be an integer.

Classifying simple Lie algebras now boils down to classifying irreducible root systems. These, in turn, can be encoded
in simple graphs called Dynkin diagrams. To make one, you pick a basis of simple roots ∆ ⊂ Φ. The diagram gets
a node for each simple root. The number of edges between two nodes, say for αi and αj , is nijnji. If the roots have
different lengths, an arrow points from the longer root to the shorter one.

The Classification Theorem. Every simple complex Lie algebra corresponds to one of the following Dynkin
diagrams. There are four infinite families corresponding to the classical algebras: An for sln+1, a simple chain of n
nodes; Bn for so2n+1, a chain with a double edge at the end; Cn for sp2n, similar to Bn but with the arrow reversed;
and Dn for so2n, a chain with a fork at the end. In addition, there are exactly five exceptional algebras, denoted
E6, E7, E8, F4, G2. This classification is exhaustive; it is a complete “periodic table” for simple Lie algebras.

Figure 6. The complete classification of simple complex Lie algebras via their Dynkin diagrams,
showing the four infinite classical families and five exceptional cases.

7. Classifying Irreducible Representations

Now that we understand the structure of semisimple algebras via root systems, we can describe their representations
in a similar combinatorial way. The main idea is again to diagonalize the action of the Cartan subalgebra h on the
representation space V .

Weights and weight spaces. Just like the algebra itself, any finite-dimensional representation V splits into eigenspaces
for the action of h.

Definition 7.1. Let (ρ, V ) be a representation of a semisimple Lie algebra g. A functional λ ∈ h∗ is a weight of the
representation if its weight space

Vλ = {v ∈ V | ρ(H)v = λ(H)v for all H ∈ h}
is non-zero. The dimension of Vλ is called the multiplicity of the weight λ. The whole representation splits as a direct
sum of its weight spaces: V =

⊕
λ Vλ.
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The root vectors Xα ∈ gα act as ladder operators, moving vectors from one weight space to another: if v ∈ Vλ, then
Xα · v ∈ Vλ+α. This motivates the set of weights for any representation to form highly structured patterns, shifted
copies of the root system.

The theorem of the highest weight. For an irreducible representation, this structure is extremely rigid. Once we
choose a set of positive roots, there will always be a unique “highest” weight.

Theorem 7.2 (Theorem of the Highest Weight [1]). For every finite-dimensional irreducible representation V of a
semisimple Lie algebra g, there is a unique highest weight λ, such that all other weights are of the form λ −

∑
kiαi

for non-negative integers ki and simple roots αi. Furthermore: the highest weight space Vλ is one-dimensional; two
irreducible representations are isomorphic if and only if they have the same highest weight; and for any “dominant
integral weight” λ, which is a specific combinatorial condition, there exists a unique irreducible representation with that
highest weight.

This amazing theorem creates a nice bijection between irreducible representations and a set of simple combinatorial
objects called dominant integral weights. It reduces the hard problem of classifying representations to a much easier
combinatorial one.

Example 7.3. The Lie algebra sl3(C), of type A2, has a 2D Cartan subalgebra, so its weights live on a plane. The
standard representation V ∼= C3 has three weights, forming a triangle. Its dual V ∗ has three weights forming an inverted
triangle. The adjoint representation, which is the action of sl3 on itself, has weights given by the six roots plus a zero
weight of multiplicity two, forming a hexagon. If you tensor the standard representation with its dual, V ⊗ V ∗, the
resulting 9D representation decomposes into the 8D adjoint representation and a 1D trivial one. This is exactly the
decomposition of mesons into quarks and antiquarks in the “Eightfold Way” model of particle physics!

Figure 7. The baryon octet from the “Eightfold Way” particle physics model. This is a weight diagram
for the 8-dimensional adjoint representation of the SU(3) flavor symmetry group.

8. Homogeneous and Symmetric Spaces

The connection between algebra and geometry isn’t just about the group manifold itself. Lie groups often act on
other geometric spaces in a highly structured way.

Homogeneous spaces. A smooth manifold M is called a homogeneous space if a Lie group G acts on it transitively.
This just means you can get from any point p to any other point q by acting with some group element g ∈ G. Roughly
speaking, the space “looks the same” from every point.
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Definition 8.1. If a Lie group G acts transitively on a manifold M , and H is the stabilizer subgroup of some point
p ∈ M , meaning H = {g ∈ G | g · p = p}, then H is a closed Lie subgroup of G, and the manifold M is diffeomorphic to
the quotient space of left cosets G/H.

This gives the manifold M the structure of a fiber bundle over the base space G/H with fiber H:

H G G/Hi π

Remark 8.2. The notation G/H formalizes the idea that a geometric object is defined by its symmetries. The sphere
S2 is “round” because the rotation group SO(3) acts transitively on it; every point is the same as every other.

Example 8.3. Many of the most important spaces in geometry are homogeneous spaces. For instance, Euclidean space
Rn is the quotient E(n)/O(n), where E(n) is the group of isometries of Rn. The spaces of constant positive and negative
curvature are also canonical examples.

Proposition 8.4. The n-sphere Sn, the canonical space of constant positive curvature, is diffeomorphic to the homoge-
neous space SO(n+ 1)/SO(n).

Proof. Let the Lie group G = SO(n+ 1) act on the manifold M = Sn ⊂ Rn+1 by the standard matrix-vector multipli-
cation. It is clear that this action is smooth. To show it is transitive, let p, q ∈ Sn be any two points. Since both are
unit vectors, there exists a rotation in SO(n+ 1) that maps p to q. Thus, G acts transitively on M .

Note that Sn is diffeomorphic to the quotient G/H, where H is the stabilizer of a chosen point. Let us choose the
north pole p = e1 = (1, 0, . . . , 0)T . The stabilizer is H = {g ∈ SO(n + 1) | ge1 = e1}. If ge1 = e1, the first column of
g must be e1. Since g ∈ O(n + 1), its columns must be orthonormal, thus the first row of g to be (1, 0, . . . , 0). Thus g
must be of the block form

g =

(
1 0
0 A

)
,

where A is an n× n matrix. Also, from g ∈ SO(n+ 1) it follows gT g = I and det(g) = 1. The orthogonality condition
implies ATA = I, so A ∈ O(n). The determinant condition implies det(g) = 1 · det(A) = 1, so A ∈ SO(n). It follows
that the stabilizer H is isomorphic to SO(n), and therefore Sn ∼= SO(n+ 1)/SO(n), as desired. □

Remark 8.5. Similarly, the hyperbolic space Hn, the space of constant negative curvature, can be represented as the
quotient SO+(n, 1)/SO(n), where SO+(n, 1) is the component of the identity of the Lorentz group leaving a quadratic
form of signature (n, 1) invariant.

Symmetric spaces. An especially important class of homogeneous spaces are the symmetric spaces, introduced by
Élie Cartan. A Riemannian manifold (M, g) is a symmetric space if, for every point p ∈ M , the geodesic symmetry sp,
which flips vectors in the tangent space by sending expp(v) to expp(−v), is a global isometry of the whole manifold.

Theorem 8.6 (Cartan). Every simply connected, complete Riemannian symmetric space is one of three types: Euclidean,
which is a flat space like Rn; compact, having positive curvature like Sn; or non-compact, having negative curvature like
Hn. Furthermore, every such space can be written as a homogeneous space G/H for a semisimple Lie group G.
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