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Abstract. This paper presents a detailed exposition of de Rham cohomology, an important
bridge between differential geometry and algebraic topology. Beginning with the fundamen-
tals of exterior derivatives and differential forms, we construct the de Rham complex and
introduce the notions of closed and exact forms. We then generalize to cohomology in the
context of differential complexes and establish the smooth homotopy invariance of de Rham
cohomology groups. Key results, including Poincaré’s lemma, the Mayer–Vietoris sequence,
Stokes’ theorem, and de Rham’s theorem, are stated and proved.

1. Introduction

De Rham cohomology occupies a central position in modern mathematics, providing a
unifying framework that connects smooth differential forms on a manifold with topological
invariants. The theory demonstrates that smooth data-captured by the calculus of differen-
tial forms-can encode purely topological properties of a space.

The study begins with the algebraic structure of the space of smooth differential forms on
a manifold [3–5,8], equipped with the exterior derivative. This structure forms the de Rham
complex, whose cohomology groups [1,2,4,9] measure the failure of closed forms to be exact.
These groups are finite-dimensional for compact manifolds and reveal deep relationships
between geometry and topology.

From this foundation, one can investigate invariance properties under smooth homotopy
[7], understand the local-to-global structure via Mayer–Vietoris sequences [3, 7], and relate
integration on manifolds to cohomological properties through Stokes’ theorem [6, 7]. The
culmination of the theory is de Rham’s theorem [7], which asserts an isomorphism between
de Rham cohomology and singular cohomology with real coefficients—a profound statement
bridging analysis and topology.

The purpose of this paper is to provide a systematic development of these ideas. We aim
to present de Rham cohomology [3,7,9] as a conceptual cornerstone of differential geometry.

2. DeRham Theory

To start of with studying DeRham theory, we need a notion of exterior derivatives:-

Definition 2.1. Let x1, x2, .. be the linear coordinates on Rn. We define Ω∗ as the algebra
over R generated by dx1, dx2, ...dxn with the relations (dxi)

2 = 0 and dxidxj = −dxjdxi.
The operation d is called an exterior derivative.

Following the notion of an exterior derivative, we have the following definition of n-forms :-

Definition 2.2. ω is said to be an n-form if it can be written as
∑

i1,...1n
fi1,...,indxi1 ...dxin

where fi1,...in are C∞ functions.
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Now Ω∗ has a basis 1, dxi, dxidxj, dxidxjdxk, ...., dx1dx2...dxn and thus we can decompose
it as Ω∗(Rn) = ⊕n

q−=0Ω
q(Rn) where Ωq(Rn) consists of the C∞ q-forms on Rn. Now, the

exterior derivative d : Ωq(Rn) → Ωq+1(Rn) is defined as follows:-
(i)if f ∈ Ω0(Rn) then df =

∑
i
∂f
∂xi
dxi

(ii) if ω =
∑
fIdxI , then dω =

∑
dfIdxI We now illustrate the above definitions by consid-

ering the following examples:-

Example. In 1 dimension, if ω = xdy then dω = dxdy

A particularly interesting case is that of 3 Dimensions,

Example. • Functions/0-forms:-df = ∂f
∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz

• 1 forms:- d(f1dx+f2dy+f3dz) =
∂f3
∂y
dydz+ ∂f2

∂z
dzdy+ ∂f1

∂z
dzdx+ ∂f3

∂x
dxdz+ ∂f2

∂x
dxdy+

∂f1
∂y
dydx = (∂f3

∂y
− ∂f2

∂z
)dydz − (∂f1

∂z
− ∂f3

∂x
)dxdz + (∂f2

∂x
− ∂f1

∂y
)dxdy where the first step

follows from the expansion of f and the fact that d2x = 0 and the second step follows
from the fact that dxidxj = −dxjdxi

• 2 forms:- d(f1dydz − f2dxdz + f3dxdy) = (∂f1
∂x

+ ∂f2
∂y

+ ∂f3
∂z

)dxdydz

And hence, we can make the following identification:-

• d(0-forms)=gradient
• d(1-forms)=curl
• d(2-forms)=divergence

Now a natural thing to do is to have a notion of products of differential forms;

Definition 2.3. Let τ =
∑
fIdxI and ω =

∑
gJdxJ , then the wedge product of τ and ω

(τ ∧ ω) is defined as τ ∧ ω =
∑
fIgJdxIdxJ .

Proposition 2.4. If τ is an n-form and ω is an m-form then, τ ∧ ω = (−1)n+mω ∧ τ

We would naturally like to explore the product rule:-

Proposition 2.5. d(τ∧ω) = (dτ)∧ω+(−1)nτ∧dω. This property is called anti-derivation

Proof. This follows from the product rule of functions and the anti-symmetry of dxidxj since
d(τ ∧ ω) =

∑
d(fIgI)dxIdxJ =

∑
dfIgIdxIdxJ +

∑
fIdgIdxidxj now since dg is a 1-form,

d(τ ∧ ω) =
∑
dfIgIdxIdxJ + (−1)n

∑
fIdxIdgIdxJ = (dτ) ∧ ω + (−1)nτdω ■

Proposition 2.6. d2 = 0

Proof. Now for functions, d2f = d(
∑

i
∂f
∂xi
dxi) =

∑
i

∂2f
∂xi∂xj

dxidxj = 0. On forms, ω = fIdxI ,

d2ω = d(dfIdxI) = d2fIdxI − dfId
2xI = 0. And thus, we conclude that d2 = 0 ■

Putting it all together, we have

Definition 2.7. The complex Ω∗(Rn) together with the differential operator d is called the
de Rham complex on Rn.

Recall the following definition of the kernel:-

Definition 2.8. Let d : Ωq(Rn) → Ωq+1(Rn) the kernel of Ωq(Rn) is the elements of Ωq(Rn)
such that d(Ωq(Rn)) = 0

Now we have the following notion of closed and exact forms:-
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Definition 2.9. A closed q-form is the kernel of Ωq(Rn)

and,

Definition 2.10. A exact q-form is the image of Ωq−1(Rn)

We now have

Proposition 2.11. All exact forms are closed forms

Proof. This follows from the fact that d2 = 0 because that implies d(d(exactform)) = 0 ■

3. Co homology, DeRham Co homology, Differential Complexes and
Smooth Homotopy Invariance

Now we have the following notion of a general differentiation complex by relaxing dxidxj =
−dxidxj differential complex:-

Definition 3.1. A direct sum of vector spacesC = ⊕q∈ZH
q(C), indexed by integers is called

a differential complex if there are homomorphisms ... → Cq−1 →d Cq →d Cq+1 such that
d2 = 0

We thus have the following notion of a co homology of C by the fact that all exact forms
are closed forms:-

Definition 3.2. The co homology of C is the direct sum of vector spacesH(C) = ⊕q∈ZH
q(C),

where Hq(C) = kerCq/imCq−1

And we special to the case of a De-Rham Cohomolgy as:-

Definition 3.3. The q − th de Rham Co homology of Rn is the vector space Hq
DR(Rn) =

{closedq − forms}/{exactq − forms}

Note that all definitions so far work equally well for any open subset U of Rn. Dealing
with chains and complexes, we make the following notion of a special class of functions:-

Definition 3.4. A map f : A→ B between two differential complexes is called a chain map
if it commutes with differential operators of A and B; fdA = dBf .

We now define a special sequence of vector spaces such that the co homology of that
sequence is the empty set:-

Definition 3.5. A sequence of vector spaces ... → Vi−1 →fi−1 Vi →fi Vi+1 → ... is said to
be exact if for all i the kernel of fi is equal to the image of the predecessor fi−1 ( or, the co
homology of the Vector spaces Vi is the empty set).

As a special case, we have:-

Definition 3.6. An exact sequence of the form 0 → A → B → C → 0 is called a short
exact sequence.

Proposition 3.7. Given a short exact sequence of differential complexes, 0 → A →f

B →g C → 0 in which the maps f and g are chain maps, there exists a long sequence
groupsHq(A) →f∗ Hq(B) →g∗ Hq(C) →d∗ Hq+1(C) and such a sequence is exact

Proof. This follows since f and g are chain maps and hence such maps between kernels (
minus a trivial part) are well defined and are exact. ■
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Having defined chain maps, we now define the pull back map as:-

Definition 3.8. Given a map f : M → N , the pull back map f ∗ : Ωk(N) → Ωk(M) is
defined by f ∗(w)|p(ν1, ...νk) = w|f(p(Df−1ν1, ..., Df

−1νk)

Now the pull back map is indeed a chain map:-

Proposition 3.9. The pullback commutes with the exterior derivative

Additionally,

Proposition 3.10. The pullback commutes with the wedge product

Now we have a rather interesting theorem for which require the following definition:-

Definition 3.11. We say a map h :M × I → N is a smooth homotopy if it is smooth. We
say that two maps are smoothly homo topic, f : M → N and g : M → N , if there exists a
smooth homotopy h with h(0, x) = f(x) and h(x, 1) = g(x). We say that two manifolds M
and N are smoothly equivalent if there exist smooth maps f :M → N and g : N →M such
that f ◦ g and g ◦ f are smoothly homo topic to the identity maps on M and N

Finally, we have the following interesting theorem:-

Theorem 3.12. If two manifolds M and N are smoothly homo topically equivalent then
their kth co homology groups are isomorphic for all k.

Proof. Suppose f : M → N and g : M → N as above, with h : M × I → M such that
h(x, 0) = x and h(x, 1) = g(f(x)). Let ω ∈ Hk((g ◦ f)(M)). Then there exists a pullback
h∗(ω) = η + dt∧ α where η ∈ Hk(M × I), α ∈ Hk(M × I), neither η or α contain a dt term
t is the coordinate in I. Furthermore, for all t0 ∈ I,h(, t0) : M → M induces the pullback
h∗(., t0)(ω) = η|t=t0 . Since η varies smoothly with time, we can apply the fundamental
theorem of calculus , h∗(1, ω) − h∗(0, ω) = η|t=1 − η|t=t0 =

∫
∂η
∂t
dt. We have two exterior

derivative operators which we will temporarily distinguish, dM and dM×I . Because ω is closed
and the pullback commutes with the exterior derivative. 0 = h∗(dM(ω)) = dM×I(h

∗(ω)) =
dt ∧ (∂η

∂t
− dM(α)). Combining these last two equations yields h∗(., 1)(ω) − h∗(., 0)(ω) =∫ 1

0
dM(α)dt = dM(α)(

∫ 1

0
αdt) which is an exact form .Therefore, (g ◦ f)∗ = h∗(., 1) is the

identity map on Hk so f ∗ and g∗ are inverses so they are isomorphisms. ■

4. Poincare’s Lemma

We now turn to an important lemma in the study of De Rham Co homology, namely,
the so-called Poincare’s lemma.
To begin with, we notice the following fact:-

Proposition 4.1. Hq
DR({x}) and Hq

DR({x}) are isomorphic to R when q = 0 and vanish
when q ̸= 0

Proof. First lets compute the DeRham Cohomology groups. The one point space is a 0 −
dimensional smooth manifold and all maps are smooth on it. Since it has 0−dimensions
Ωk({x}) = 0 for k > 0 and so only the differentials are the set of all functions of the point
x into R Therefore, H0

DR({x}) ≃ R. To compute the singular co homology groups, we note
that there is only one k − simplex into the space {x} which is the constant function. So
the set of k-chains is then isomorphic to R i.e, the set of all scalar multiples of this simplex.
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This then implies that Sk({x},R) ≃ R. Now, consider a k-complex σ where k > 0. Now
cosnider dσ = each σi must also be the same since there is only one possible map they can
be. Therefore d on odd k-chains is the zero map. This then forces H0({x};R) ≃ R and
H0({x};R) = 0 when k is both odd and even. ■

This implies

Theorem 4.2. Poincare’s lemma:- Every closed form is locally exact.

Proof. Take a ball around any point p. Every ball is contractible. Now Hk(Rn−1) ≃
Hk(Rn−1 × I) and thus the theorem follows from the fact that Hn(Rn) = 0. ■

5. Mayer-Vietoris

To start of we shall define 3 special types of maps:-

Definition 5.1. Let U and V be open sets whose union forms a manifold. Define the
restriction map res : Hk(U ∪ V ) → Hk(U)⊕Hk(V ) by res(w) ≡ (w|U , w|V )
Definition 5.2. Let U and V be open sets whose union forms a manifold.Define the differ-
ence map diff : Hk(U)⊕Hk(V ) → Hk(U ∩ V ) by diff(ω, η) ≡ ω − η

Definition 5.3. Let U and V be open sets whose union forms a manifold. Define the co-

boundary map cobd : Hk(U ∩ V ) → Hk+1(U ∩ V ) by cobd(ω)p ≡

{
d(α)p : p ∈ U

d(β)p : p ∈ V
where

α is a k-form on U , β is a k-form on V, and α − β = ω on U ∩ V . Since ω is closed,
dω = 0 = dα − dβ on U ∩ V . Notice, this map is obtained by extending ω to the whole
manifold, the applying the co boundary map.

Proposition 5.4. The co boundary map is well defined up to exact forms.

With the above notions, we have the following three theorems:-

Theorem 5.5. The sequence Hk(U ∪ V ) →res Hk(U)⊕Hk(V ) →diff Hk(U ∩ V ) is exact.

Proof. Let ω ∈ Hk(U ∪ V ). Then res(ω) = (ω|U , ω|V ) and therefore, diff(res(ω)) = 0.
Thus, im(res) ⊂ ker(diff).Let (ω, η) ∈ ker(diff), so ω = η on U ∩ V . Then define

αp =

{
ωp : p ∈ U

ηp : p ∈ V.

Then res(α) = (ω, η) so ker(diff) ⊂ im(res) ■

Theorem 5.6. The sequence Hk(U ∪ V ) →res Hk(U) ⊕ Hk(V ) →diff Hk(U ∩ V ) →cobd

Hk+1(U ∩ V ) is exact.

Proof. Let (ω, η) ∈ Hk(U) ⊕ Hk(V ). Then cobd(diff(ω, η)) = cobd(ω − η). We can chose
α = ω, β = η with α and β defined as in the definition of the co-boundary map. Therefore ,

cobd(ω)p =

{
d(ω)p : p ∈ U

d(η)p : p ∈ V.
Now since ω and η are closed,cobd(ω) = 0. Thus,im(diff) ⊂

ker(cobd). Next, let ω ∈ ker(cobd). Since ω ∈ ker(cobd), dα = 0 and dβ = 0. Therefore,
(α, β) ∈ Hk(U)⊕Hk(V ). Then diff(α, β) = α− β = ω. Thus, ker(cobd) ⊂ im(diff) ■

Theorem 5.7. The sequence Hk(U ∩ V ) →cobd Hk+1(U ∪ V ) →res Hk+1(U) ⊕ Hk+1(V ) is
exact.
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Proof. Let ω ∈ U ∩ V ,α, β, as in the definition for the co boundary map. Then res =
(cobd(ω)) = (dα, dβ) which is exact be definition. Then, im(cobd) ⊂ ker(res). Finally , let

ω ∈ ker(res). Then α − β ∈ Hk(U ∩ V ). By definition, cobd(α − β)p =

{
(dα)p : p ∈ U

(dβ)p : p ∈ V

But d(α) = ω and d(β) = ω|V so ker ⊂ im(cobd). ■

Finally, we have

Definition 5.8. The Mayer-Vietrois sequence is the sequence 0 → H0(U ∪ V ) → H0(U)⊕
H0(V ) → H0(U ∩ V ) → H1(U ∪ V ) → H1(U)⊕H1(V ) → H1(U ∩ V )

Theorem 5.9. The Mayer-Vietoris sequence is exact.

6. Stokes’ Theorem

We now focus on an important notion of mathematics namely- Stokes’ theorem. We shall
start of with a notion of a boundary:-

Definition 6.1. The standard k-simplex ∆k is defined to be

∆k =

{
{(x1, ..., xk) ∈ Rk :

∑k
i=1 xi ≤ 1,∀xi ≥ 0}

{0}.
For a differentiable manifold M , a dif-

ferentiable (or smooth) singular k-simplex is a map σ : ∆k → M which extends to a C∞-
mapping on a neighborhood of ∆k. We will simply call this a k-simplex.

Definition 6.2. For a differentiable manifold M , a differentiable(or smooth) singular k−
simplex which we will denote by Sk(M ;R). An element of this vector space is of the form∑m

i=1 aiσi and is called a k-chain. The set of all chains is denoted by S∗(M ;R).

Definition 6.3. We can define a boundary operator ∂ on its simplexes. Suppose we have
some k-simplex σ. We define σi to be its i-th face i.e, we restrict σ onto the i-th face of the
standard k-simplex. Then we define the boundary operator as ∂σ =

∑
(−1)iσi giving us a

(k − 1) simplex, the alternating sign keeping track of orientation.

We now have the following important property:-

Proposition 6.4. ∂ ◦ ∂ = 0

Proof. This follows from the way ∂ is defined through the alternating sum. ■

We now define integrals as:-

Definition 6.5. Let M be a smooth manifold. Suppose σ is an n-simplex on M and ω is a
differential n-form on M . Define the integral of ω over σ as:-
When n = 0,

∫
σ
ω = ω(σ(0))

When n ≥ 1,
∫
σ
ω =

∫
∆n σ

∗(ω).

We also require the following notion of supports:-

Definition 6.6. Let ω be a smooth k−form on X, a k-dimensional manifold with boundary.
The support of ω is defined as the closure of the set of points where ω(x) ̸= 0; we say that
ω is compactly supported if the support is compact.

Now by some additional machinery, one can prove:-
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Theorem 6.7. If f : X → Y is an orientation-preserving diffeomorphism, then
∫
X
ω =∫

Y
f ∗ω for every compactly supported , smooth k − form on X (k = dimX = dimY )

Finally, we now present the generalized Stokes’ Theorem as:-

Theorem 6.8. Suppose that X is any compact oriented k-dimensional manifold with bound-
ary , so ∂X is a k − 1 dimensional manifold with the boundary orientation. If ω is any
smooth k − 1 form on X then,

∫
∂X
ω =

∫
X
dω

Proof. Both sides of the equation are linear in ω, so we may assume ω to have a compact
support contained in the image of a local diffeomorphism h : U → X, where U is an open
subset of Rk or Hk. The rest of the proof proceeds y considering the theorem by cases.Our
first case will consist of a neighborhood of X locally diffeomorphic to an open subset of Rk

, where we expect both sides of the theorem to evaluate to 0 since there is no boundary
over which to evaluate the differential form. Our second case will consist of a neighbor-
hood of X locally diffeomorphic to an open subset of Hk. First, we assume U is open in
Rk.Then

∫
∂X
ω = 0 and

∫
X
dω =

∫
U
h∗(dω) =

∫
U
dν, where ν = h∗ω. Since ν is a (k − 1)-

form in k−space, it can be expressed as ν =
∑k

i (−1)i−1fidx1..d̂xi..dxk where d̂xi means the

term dxi is omitted. Then dν = (
∑

i
∂f
∂xi

)dx1 ∧ ... ∧ dxk and
∫
Rk dν =

∑
i

∫
Rk

∂f
∂xi
dx1...dxk.

Integrate the ith term first with respect to xi:-
∫
Rk−1(

∫ +∞
−∞

∂f
∂xi

)dx1...dxi..dxk. Of course,∫ +∞
−∞

∂f
∂xi
dxi is the function of x1, ...x̂i, ...xk that maps to any (k − 1) tuple (b1, ..b̂i, ..b̂k)

the number
∫ +∞
−∞ g′(t)dt, where g(t) = fi(bi, ..., t, ...bk). Since ν has a compact support, g

vanishes outside any sufficiently large interval (−a, a) in R1. Therefore, the Fiundamen-

tal Theorem of Calculus implies
∫ +∞
−∞ g′(t)dt =

∫ a
−a g

′(t)dt = g(a) − g(−a) = 0. Thus∫
X
dω = 0. We now take a look at the second case of the Fundamnetal theorem. When

U ⊂ Hk, we repeat the above process for every term except the last term . Since the
boundary of Hk is the set where xk = 0, the last integral is

∫
Rk−1(

∫∞
0

∂f
∂xk

dxk)dx1..dxk. Now

the compact support implies that fk vanishes if xk is outside some large interval (0, a),
but although fk(x1, ..., xk−1, a) = 0, fk(x1, ...xk−1, 0) ̸= 0. Thus applying the Fundamen-
tal Theorem of Calculus, we obtain

∫
X
dω =

∫
R −fk(x1, ..., xk, 0)dx1..dxk−1. On the other

hand,
∫
∂X
ω =

∫
∂Hk ν. Since xk = 0 on ∂Hk, dxk = 0 as well. Consequently, if i < k,

the form (−1)i−1fidx1 ∧ .. ∧ d̂xi ∧ ... ∧ dxk restricts to 0 on ∂Hk. So the restriction of ν
to ∂Hk is (−1)k−1f(x1, ..., xk, 0)dx1 ∧ .. ∧ dxk−1 whose integral over ∂Hk is therefore

∫
∂X
ω.

Now ∂Hk is diffeomorphic to Rk−1 under the map (x1, x2, ..xk) → (x1, ..., xk−1, 0) but this
diifemorphism does not always carry the usual orientation of Rk−1 to the boundary orien-
tation of ∂Hk. Let e1, ..ek be the standard ordered basis for Rk, so e1, ..., ek is the stan-
dard ordered basis for Rk−1. Since Hk is the upper half-space, the outward unit-normal
to ∂Hk is ek = (0, ...0,−1). Thus in the boundary orientation, of ∂Hk, the sign of the
ordered basis {−ek, e1, ..ek−1} is the standard orientation of Hk. The latter is easily seen
to be (−1)k, so the usual diffeomorphism Rk → ∂Hk changes orientation by the factor
(−1)k. The result is the following formula

∫
∂X
ω =

∫
∂H∗(−1)k−1fk(x1, ..., xk−1)dx1...dxk−1 =

(−1)k
∫
Rk−1(−1)k−1fk(x1, ..., xk−1, 0)dx1...dxk−1 = −

∫
Rk−1 fk(x1, ...xk−1, 0)dx1..dxk−1. This is

exactly the formula we derived for
∫
X
dω. Since both sides of the theorem are evaluated to

the same value, they are equivalent, which means the theorem holds for subset of Hk. ■

Stokes theorem then implies that this collection of homomorphisms {lk} commutes with
the exterior derivatives and boundary operators, and so it is a co-chain map.
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Definition 6.9. Let U be some smooth manifold. We denote the induced homeomorphisms
of the kth co homology groups vy DRk(U) : Hk

DR(U) → Hk(U). We call the collection
{DRk(U)} the DeRham homeomorphism on U or simply DR(U) and if each Drk(U) is an
isomorphism then we say DR(U) is an isomorphism.

In order to make use of the Mayer-Vietrois sequences we need the following lemmaa.

Lemma 6.10. Let ψ :M → N be a C∞ function between smooth manifold M and N . Then
this induces two pullbacks on the de rham and singular cohomology groups: ψ∗

k : H
∗
DR(N) →

H∗
DR(M) and ψ∗

k : H
k(N ;R) → Hk(M ;R) which commutes with the kth De rham homomor-

phism on N and M .

Proof. This is a consequence of the calculation for k − form ω on N and a k−simplex σ in
M.

∫
σ
ψ∗ω =

∫
∆k σ

∗ψ∗ω =
∫
∆k(ψσ)

∗ω =
∫
ψσ
ω ■

7. DeRham’s Theorem

We now turn to a central theorem of this paper namely, DeRham’s theorem. In order
to do so, we shall first look at 3 important lemmas.

Lemma 7.1. If U ⊂ Rn and U is convex, then DR(U) is an isomorphism.

Proof. Because the de Rham and singular cohomolgy are homotopic invariants and U is
homotopy equivalent to {x}, from the theorem that Hq

DR({x}) and H
q
DR({x}) are isomorphic

to R when q = 0 and vanish when q ̸= 0, we have that the qthde rham and qth singular
cohomolgy groups vanish for q ̸= 0 and are isomorphic to R when q = 0. Now consider
the case when q = 0, in this case H0

DR(U) is a one-dimensional vector space of constant
functions on U since the only 0 − forms ω such that dω = 0 are the constant functions.
Similarly, the only 0−simplexes are the maps from {0} → U . Since by definition the integral
of a 0−form over a 0−simplex is just a value of the form at that point the simplex maps 0
into. We find that the de Rham homomorphism can’t be the zero map and hence must be
an isomorphism. ■

Before moving on to the second lemma, we shall briefly study partitions of unity:-

Definition 7.2. A partition of unity on M is a collection {ψi|i ∈ I} of C∞ functions on M
such that

• for each i ∈ I, ψi ≥ 0 on M .
• the collection of supports {suppψi|i ∈ I}is locally finite
•
∑

i∈I ψi(p) = 1∀p ∈M .

Theorem 7.3. For any smooth manifold M and any open cover {Uα} on M . There exists
a countable partition of unity {ψi|i ∈ I} subordinate to the open cover and for each i ∈ I,
supp(ψi) is compact.

We now proceed with the second lemma we wished to establish:-

Lemma 7.4. Let M be a smooth manifold. Given a basis B on M , there exists a countable
open cover {Ui} of M such that each Ui can be written as the finite union of basis elements
and if Ui ∩ Uj = ∅ then i ̸= j ± 1.
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Proof. Let {Vi} be an open cover of M and let ψi be a partition of unity subordinate to this
cover. Let us define a new C∞function called α onM by setting α =

∑∞
i=1 iψi. Now suppose

p ∈ M but p ̸∈ ∪Ni=1supp(ψi). Then α(p)
∑∞

i=1 iψi(p) =
∑∞

i=N+1 iψi(p) >
∑∞

i=N+1Nψi(p) ≥
N

∑∞
i=1 ψi(p) = N . Therefore, α−1([0, N ]) is compact for each N ∈ N. Because α is C∞, it

is continuous and so α−1(a, b) is open and must have compact closure for any open interval
(a, b). Define the sets Ai = α−1(i+1/4, i+7/4) and A′

i = α−1(i, i+2) for i = −1, 0, 1, 2, ...Now
for each pointx ∈ Ai, take a basis element Bx ∈ B that contains x but is contained in A′

i

and form the open cover {Bx} of Ai. Since Ai is compact,there is a finite sub collection of
{Bx} that covers Ai. Take Ui as the union of this finite sub collection and because we choose
each Bx to be contained within A′

i we find that Ai ⊆ Ui ⊆ A′
i. Therefore, if Ui ∩ Uj = ∅ ■

Lemma 7.5. Let M be a smooth manifold. Suppose M = ∪ki=1Ui where k ∈ N and Ui are
open. If DR is an isomorphismon each of the sets {Ui} and each finite intersection of theses
sets, then DR(M) is an isomorphism

Finally, we now have the DeRham Theorem :-

Theorem 7.6. Let M be any smooth manifold. Then DR(M) is an isomorphism

Proof. First we show that if DR(U) is an isomorphism for each U in some countable col-
lection, it is an isomorphism for the disjoint union. Let {Mj} be a countable collection of
manifolds where DR(Mj) is an isomorphism for each j. LetM = ΠjMj be the disjoint union
of these manifolds. Denote the inclusion maps by iJ :Mj →M . Then the map i = (i1, i2, ...)
includes isomorphisms between ⊕jH

k
DR and Hk

DR(M) as well as ⊕jH
k(Mj;R) and Hk(M ;R).

For each k,⊕jDRk(Mj) is an isomorphism between the direct product of the de rham and
singular co homology groups and so, DRk(M) must be an isomorphism. Now, given {Ui} be
an open cover, let Uodd = ∪U2k+1, Ueven = ∪U2k and Uint = ∪(Uk ∩ Uk−1) for k ∈ N. Notice
that Uodd ∩Ueven = Uint. So, if DR(Ueven), DR(Uodd) and DR(Uint) were isomorphic then so
would DR(M).Therefore we need only show that DR is isomorphic on each Ukand Uk∩Uk+1

since Uodd, Ueven, Uint are disjoint unions of these sets. It is sufficient to simply show that
M has a basis with the property that DR is isomorphic on each basis element and on each
finite intersections of basis elements. This is because each Ukcan be written as the union
of finitely many intersections of these basis elements and Uk ∩ Uk+1 can be written as the
union of finitely many intersections of these basis elements. This would imply that DR is an
isomorphism on these sets. If M is an open subset of Rn for some integer n. Then M does
have a basis with this property . Simply note that M would then have a basis of n − balls
and since the intersection of balls is still convex, DR is isomorphic on these intersections.
When M is a general smooth manifold of dimension n, we can simply take a basis of domain
charts. Each of these domains are diffeomorphic to an open subset of Rn and hence DR is
isomorphic on these intersections. When M is a general smooth manifold of dimension n,
we can simply take a basis of domain charts. Each of these domains are diffeomorphic to an
open subset of Rn and hence DR is isomorphic on this basis. ■
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9. Conclusion

To conclude, in this expository paper builds tools to understand 3 critical mathematical
results and tools namely; the generalized Stokes’ theorem, the De-Rham theorem and the
Mayer-Veitoris sequence.
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