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Abstract. This expository paper explains tessellations of the hyperbolic plane from a
differential–geometric viewpoint. We review the upper half–plane (H) and Poincaré disk
(D) models and the Cayley transform linking them. We prove that orientation–preserving
isometries are precisely PSL(2,R) acting by Möbius/Blaschke maps and show these maps
are conformal and hyperbolic isometries (hence length– and area–preserving). Using group
actions of discrete subgroups (Fuchsian groups), we construct tessellations from fundamental
domains; the modular group serves as a guiding example. Via Gauß—Bonnet and reflec-
tion/triangle–group constructions we derive the existence criterion for regular {p, q} tilings,
namely 1

p + 1
q < 1

2 , and relate angle defect to area. Throughout the article, we highlight

geodesics, curvature K ≡ −1, and the role of isometries in organizing hyperbolic tilings.

1. Introduction

Hyperbolic geometry emerged in the nineteenth century from the realization that Euclid’s
parallel postulate could be replaced, producing a logically consistent geometry of constant
negative curvature. This geometry exhibits phenomena entirely unlike those of the Euclidean
plane: triangles have angle sum less than π, circles grow exponentially in size with radius,
and infinitely many distinct regular tessellations are possible.
The paper begins with a review of the main models of the hyperbolic plane and the

algebraic structures underlying their isometry groups. We then introduce group actions,
followed by the role of discrete symmetries in generating tessellations. Finally, we present the
Gauss–Bonnet theorem and its application to regular tilings, before concluding with open
problems and possible extensions.

2. Preliminaries

2.1. Models of the Hyperbolic Plane. There are many models of the hyperbolic plane.
We define two that we use throughout.

Definition 2.1 (Upper Half-Plane). The upper half-plane H is the set of complex numbers
z = x+ iy such that ℑ(z) > 0.

Definition 2.2 (Boundary of H). The (ideal) boundary of H is ∂H := R ∪ {∞}.

In the upper half-plane model, hyperbolic geodesics are precisely the vertical Euclidean
lines and the Euclidean semicircles whose centers lie on R. Equivalently, they are exactly
those Euclidean lines and circles that intersect ∂H at right angles; note that not every curve
orthogonal to ∂H in the Euclidean sense is a geodesic.
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Definition 2.3 (Metric on H). The hyperbolic metric (first fundamental form) on H is

ds2 =
dx2 + dy2

y2
.

Remark 2.4. This metric is conformal to the Euclidean metric, so Euclidean and hyperbolic

angles agree. Its Gaussian curvature is constantK ≡ −1, and the area element is dAH =
dx dy

y2
.

For a region A ⊂ H,

AreaH(A) =

∫∫
A

dx dy

y2
.

Another common model is the Poincaré disk model of the hyperbolic plane.

Definition 2.5 (Poincaré Disk Model). The Poincaré disk model, denoted D, is
D = { z ∈ C : |z| < 1 },

the open unit disk in the complex plane.

The ideal boundary of D is the unit circle ∂D = { |z| = 1 }. Hyperbolic geodesics in D
are the Euclidean diameters and circular arcs that meet ∂D orthogonally; between any two
points in D there is a unique geodesic segment.

Definition 2.6 (Metric on D). The hyperbolic metric on D is

ds2 =
4 (dx2 + dy2)

(1− x2 − y2)2

In complex form, it can be represented as

ds2 =
4 |dz|2

(1− |z|2)2
.

This metric is also conformal and has K ≡ −1. The hyperbolic distance between z1, z2 ∈ D
is given by

cosh dD(z1, z2) = 1 +
2 |z1 − z2|2

(1− |z1|2)(1− |z2|2)
.

For polygons in either model, the area equals the angle defect; for a geodesic triangle with
interior angles α, β, γ one has Area = π − (α+ β + γ) (a special case of Gauß–Bonnet that
we use later). We prove this metric in the section on Connections to Differential Geometry.

2.2. Symmetry Groups, Projectivization, and the Cayley Map.

Definition 2.7 (Lie group). A Lie group is a smooth manifold G equipped with a group
structure such that the multiplication map G×G→ G and inversion map G→ G are smooth.
Lie groups serve as the bridge between algebraic symmetry (via groups) and geometric
structure (via manifolds).

Remark 2.8. Classical matrix groups such as GL(n,R) and SL(n,R) are Lie groups when
given the submanifold topology from Rn×n.

Definition 2.9 (General and special linear groups). The general linear group GL(2,R)
consists of all 2× 2 real matrices with nonzero determinant. The special linear group SL(2,R)
is the subgroup with determinant 1.
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Remark 2.10. Matrix multiplication makes GL(2,R) and SL(2,R) Lie groups. Elements of
SL(2,R) are linear transformations that preserve oriented area in R2.

Definition 2.11 (Projective linear groups). The projective linear group is

PGL(2,R) := GL(2,R)
/
{λI : λ ∈ R×},

and the projective special linear group is

PSL(2,R) := SL(2,R)
/
{±I}.

where I is the 2× 2 identity matrix.

Definition 2.12 (Real Möbius action on R̂ and H). A matrix A = ( a b
c d ) acts on R̂ = R∪{∞}

and on H by

A · z =
az + b

cz + d
,

whenever the right-hand side is defined, with the usual conventions at cz + d = 0 or z = ∞.

Proposition 2.13. The formula z 7→ az + b

cz + d
depends only on the class of A in PGL(2,R).

Its restriction to SL(2,R) descends to an injective homomorphism PSL(2,R) ↪→ Homeo+(H).

Proof. If A is replaced by λA with λ ̸= 0, the numerator and denominator are both multiplied
by λ, leaving the quotient unchanged; hence the action factors through PGL(2,R). If
A ∈ SL(2,R) acts trivially, then az + b = z(cz + d) for all z, forcing c = 0, a = d, and b = 0;
with detA = 1 this gives A = ±I, which is trivial in PSL(2,R). ■

Proposition 2.14. Every orientation-preserving isometry of H is given by

φ(z) =
a z + b

c z + d
,

(
a b
c d

)
∈ SL(2,R),

unique up to an overall sign.

Sketch. One checks directly that these fractional linear maps preserve the metric ds2 =
(dx2 + dy2)/y2 and that any orientation-preserving isometry arises in this way, modulo
±I. ■

Proposition 2.15 (Isometry group of the hyperbolic plane). The full isometry group of the
hyperbolic plane satisfies

Isom(H) ∼= PGL(2,R),
while the subgroup of orientation-preserving isometries is

Isom+(H) ∼= PSL(2,R) = SL(2,R)/{±I}.

Proof. Proof sketch ■

Definition 2.16 (Cayley transform). The Cayley map Φ : H → D and its inverse are

Φ(z) =
z − i

z + i
, Φ−1(w) = i

1 + w

1− w
.

Remark 2.17. Φ is a biholomorphism sending ∂H = R ∪ {∞} to ∂D = { |w| = 1 }; vertical
lines and semicircles orthogonal to R map to Euclidean diameters and circular arcs orthogonal
to ∂D.
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Proposition 2.18 (Cayley isometry). Φ is an isometry between (H, ds2H) and (D, ds2D), i.e.

Φ∗
(

4 |dw|2

(1− |w|2)2

)
=

|dz|2

ℑ(z)2
.

Proof. Compute Φ′(z) =
2i

(z + i)2
and 1− |Φ(z)|2 = 2ℑ(z)

|z + i|2
. Then

4 |Φ′(z)|2(
1− |Φ(z)|2

)2 =

4
4

|z + i|4(
2ℑ(z)
|z + i|2

)2 =
1

ℑ(z)2
,

which is the density of ds2H. ■

Corollary 2.19 (Conjugacy of isometry groups). Conjugation by Φ yields an isomorphism
of groups

PSL(2,R)
∼=−−→ Isom+(D), γ 7−→ Φ ◦ γ ◦ Φ−1.

3. Groups and Group Actions

3.1. Definition of Group Actions.

Definition 3.1 (Group Action). Let G be a group and X a set. A group action of G on X
is a map

G×X −→ X, (g, x) 7→ g · x,
such that for all g, h ∈ G and all x ∈ X:

(1) e · x = x, where e is the identity of G.
(2) (gh) · x = g · (h · x).

In our context, X will be one of the hyperbolic models H or D, and G acts by isometries.

3.2. Möbius Transformations.

Definition 3.2 (Möbius transformation). A Möbius transformation is a map

z 7→ a z + b

c z + d
,

(
a b
c d

)
∈ SL(2,R).

Let Mob(H) denote the set of all Möbius transformations of H.

Theorem 3.3. Let γ ∈ Mob(H). Then γ is conformal.

Proof. Let γ(z) =
az + b

cz + d
with a, b, c, d ∈ R and ad − bc = 1. Its complex derivative is

γ′(z) =
ad− bc

(cz + d)2
=

1

(cz + d)2
. If cz + d = 0 then z = −d/c ∈ R, which cannot occur for

z ∈ H. Hence γ′(z) ̸= 0 on H, so γ is holomorphic with nonzero derivative and therefore
conformal. ■

We now extend Möbius transformations to D.

Theorem 3.4. Every Möbius transformation of the Poincaré disk can be written uniquely as

f(z) = eiθ
z − a

1− a z
, a ∈ D, θ ∈ R.
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Proof. Use the Cayley transform ϕ : D → H given by ϕ(z) = i
1 + z

1− z
, with inverse ϕ−1(w) =

w − i

w + i
. Let γ(w) =

aw + b

cw + d
be a real Möbius transformation with ad− bc = 1. Define

f(z) = ϕ−1
(
γ(ϕ(z))

)
=

αz + β

β z + α
,

where

α =
a+ d

2
+
i

2
(c− b), β =

a− d

2
+
i

2
(b+ c),

which satisfy |α|2 − |β|2 = 1. Write α = reiϕ and set θ = 2ϕ, so α/α = eiθ. Let

a := − β

α

(
⇒ |a| = |β|

|α| < 1
)
.

Dividing numerator and denominator by α gives

f(z) =
α
α
z + β

α

β
α
z + 1

=
eiθz − eiθa

1− a z
= eiθ

z − a

1− a z
.

Uniqueness of a, θ follows from the uniqueness of the parameters α, β with |α|2−|β|2 = 1. ■

The formula above also makes it clear that these disk Möbius maps are conformal. We
now record metric invariance (and hence area invariance).

Theorem 3.5. Let A ⊂ D and let f(z) = eiθ
z − a

1− a z
. Then AreaD

(
f(A)

)
= AreaD(A),

equivalently f is an isometry of (D, ds2D) with

ds2D =
4 |dz|2

(1− |z|2)2
.

Proof. For w = f(z),

|f ′(z)|2 = (1− |a|2)2

|1− az|4
, 1− |f(z)|2 = (1− |a|2)(1− |z|2)

|1− az|2
.

Therefore
4 |f ′(z)|2

(1− |f(z)|2)2
|dz|2 =

4

(1− |z|2)2
|dz|2,

and so f ∗(ds2D) = ds2D. Thus f is an isometry, and by change of variables AreaD(f(A)) =
AreaD(A). ■

By a similar method (or via the Cayley map Φ), using the upper half–plane metric, one
proves the same result for H. In particular, the identity f ∗(ds2D) = ds2D shows f preserves
lengths and areas.

3.3. Fuchsian Groups.

Definition 3.6 (Fuchsian Group). A Fuchsian group Γ is a discrete subgroup Γ ≤ PSL(2,R)
acting properly discontinuously onH: for every compactK ⊂ H, the set {γ ∈ Γ : γK∩K ̸= ∅}
is finite.
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Definition 3.7 (Geodesic Arcs). Let a, b ∈ D ∪ ∂D. Then there exists a unique geodesic
passing through a, b. We call the part of this geodesic that connects a and b as an arc or
segment of a geodesic.

Definition 3.8 (Hyperbolic Polygons). A hyperbolic polygon is a region ∈ D bounded by a
sequence of points (v1, v2, v3, . . . , vn), with geodesic arcs connecting each vi → vi+1 (mod n).
A hyperbolic polygon is considered regular if all sides have equal hyperbolic length, all

interior angles are equal, and the polygon is cyclic. That is, there exists a hyperbolic isometry
which acts as a rotation mapping the polygon to itself.

Furthermore, note that the interior angles of hyperbolic polygons are measured within
the hyperbolic metric, not the Euclidean metric. We can now use this definition to define a
tessellation.

Definition 3.9 (Tessellation). A tessellation is a collection of hyperbolic polygons {Pi}
satisfying

⋃
i int(Pi) = D, int(Pi)∩ int(Pj) = ∅, for i ̸= j, and each Pi is a hyperbolic polygon.

Essentially, a tessellation is a collection of polygons that tile the whole plane with none
intersecting each other.

Definition 3.10 (Fundamental Domain). A fundamental domain for Γ is a closed region
D ⊂ H such that⋃

γ∈Γ

γ(D) = H, and the interiors of D and γ(D) are disjoint for γ ̸= e.

The images {γ(D) : γ ∈ Γ} then tessellate H.

Remark 3.11. Because Γ acts properly discontinuously, the translates {γ(D)}γ∈Γ are pairwise
interior–disjoint and cover H, hence form a tessellation. Since elements of PSL(2,R) are
hyperbolic isometries, geodesic edges of D map to geodesics, so tiles meet along geodesic arcs.
When D is a regular p–gon with interior angle 2π/q and side-pairings generate Γ, the orbit
{γ(D)} is called a regular {p, q} tessellation.

Example 3.12 (Modular Group). The subgroup PSL(2,Z) generated by

z 7→ z + 1, z 7→ −1/z

is a classic Fuchsian group. A standard fundamental domain is

D =
{
z ∈ H : |z| ≥ 1, |ℜz| ≤ 1

2

}
,

whose PSL(2,Z)-translates yield the well-known tessellation by ideal triangles.

Theorem 3.13 (Proper discontinuity of discrete subgroups). Let Γ ≤ PSL(2,R) be discrete,
then Γ acts properly discontinuously on H.

Proof. If γK ∩K ̸= ∅, pick z0 ∈ K and points p, q ∈ K with q = γp. The hyperbolic triangle
inequality gives dH(γz0, z0) ≤ dH(γz0, γp) + dH(q, z0) ≤ 2maxr∈K dH(r, z0) =: R. Thus γ lies
in the set ER := {g ∈ Isom+(H) : dH(gz0, z0) ≤ R}, which is compact (isometries moving a
point by ≤ R form a compact set since closed balls in (H, dH) are compact and the stabilizer
of z0 is compact). A discrete subgroup has only finitely many elements in a compact set, so
only finitely many γ satisfy γK ∩K ̸= ∅. ■
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Proposition 3.14 (Area of the quotient equals area of a fundamental domain). Let Γ ≤
PSL(2,R) be Fuchsian and D ⊂ H a fundamental domain. Then

Area(H/Γ) = Area(D),

where area is computed with the hyperbolic area form dA = dx dy
y2

.

Proof. Up to a boundary set of measure zero, H is the disjoint union of the translates γ(D),
γ ∈ Γ. Hyperbolic area is invariant under Γ, so for any nonnegative compactly supported f ,∫

H
f dA =

∑
γ∈Γ

∫
γ(D)

f dA =
∑
γ∈Γ

∫
D

f(γz) dA(z).

Taking f ≡ 1 and passing to the quotient identifies
∫
H/Γ

1 dA = Area(D). ■

4. Tessellations of the Hyperbolic Plane

4.1. Tessellations and Regular {p, q} Tilings. We now prove some theorems regarding
hyperbolic polygons which allow us to examine tessellations more rigorously.

Theorem 4.1. Let ∆ be a hyperbolic triangle with internal angles α, β, γ. Then, AreaD =
π − (α + β + γ).

Proof. We use a combination of Möbius transformations and Gauß–Bonnet. Let z0 be a
vertex of ∆. For any a ∈ D the disk-preserving Möbius transformation

γa(w) =
w − a

1− aw

sends a 7→ 0 (indeed γa(a) = 0), and the denominator 1 − aw never vanishes for w ∈ D
when |a| < 1. Taking a = z0 we obtain γ = γz0 ∈ Mob(D) with γ(z0) = 0. Moreover such
γ is an isometry for the hyperbolic metric on D. Let ∆′ = γ(∆). Since γ is an isometry,
AreaD(∆) = AreaD(∆

′).
Since we sent one of the vertices to 0, the edges of ∆′ meeting at that vertex are radial

segments. The three sides of ∆′ are geodesics, and so the geodesic curvature κg of each side
is 0. Thus, when we apply Gauß–Bonnet to ∆′,

∫
∂∆′ κgds = 0. Since K ≡ −1 in hyperbolic

space, ∫ ∫
∆′

−1dA+ 0 +
3∑

j=1

ψj = 2π,

where ψj are the exterior turning angles at the three corners. Without loss of generality,
ψ1 = π − α, ψ2 = π − β, ψ3 = π − γ. Thus, −Area(∆′) + (3π − α − β − γ) = 2π, and
Area(∆′) = π − (α + β + γ) = Area(∆). ■

Due to the Cayley Map Φ, this result also applies to H. We now generalize this to polygons.

Corollary 4.2. Let P be an n-sided hyperbolic polygon with vertices v1, v2, . . . , vn and internal
angles α1, α2, α3, . . . , αn. The area of this polygon is

(n− 2)π −
n∑

i=1

αi.

Sketch. This can be done by cutting up the region into triangles and applying the previous
theorem. ■
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Definition 4.3 ({p, q} tilings). A {p, q} tessellation means that each face is a regular p-gon
and that q faces meet at a vertex.

We now prove a way to easily say whether or not there exists a tessellation given p, q. We
split the theorem up into its two directions, as the length of each proof differs.

Theorem 4.4. There exists a {p, q} tessellation for a given p and q if and only if

1

p
+

1

q
<

1

2
.

Proof. We first prove the forward direction. Assume that there exists a tessellation. For a
hyperbolic p-gon, we know that Area = (p− 2)π− pα > 0 in hyperbolic space, where α = 2π

q
,

so

(p− 2)π − 2pπ

q
> 0

p− 2− 2pπ

q
> 0

1

p
+

1

q
<

1

2
.

We now prove the backwards direction. We prove the following lemmas.

Lemma 4.5. If α, β, γ ∈ (0, π) satisfy α + β + γ < π, then there exists a hyperbolic triangle
with interior angles of α, β, γ.

Proof. Let A,B ∈ H be two points at hyperbolic distance dH(A,B) > 0. At A and B,
construct geodesics on the same side as AB, which make interior angles α and β with segment
AB. If these geodesics meet at a point C, then we will have a triangle ABC whose angles
at A,B are α, β and whose angle at C will be denoted as φ(c) (it depends upon the chosen
base length c).
The hyperbolic law of cosines for angles applied to ABC is

(4.1) cosφ(c) = − cosα cos β + sinα sin β cosh c.

Note that the right-hand side is a continuous, strictly increasing function of cosh c, and hence
of c. Since arccos is strictly decreasing on (−1, 1), φ(c) is a continuous strictly decreasing
function of c on the domain where the right hand side lies in [−1, 1] (where a triangle exists).
Evaluate the limit as c→ 0. Since cosh c→ 1,

coshφ(0) = − cosα cos β + sinα sin β = − cos(α + β),

so
φ(0) = π − (α + β).

Because α + β + γ < π,
φ(0) > γ.

Let f(c) = cos(φ(c)). Note that f(0) = cos(π− (α+β)) = cos(φ(0)) < cos γ, and cos γ < 1
(as γ ∈ (0, π). Meanwhile,

lim
c→∞

f(c) = +∞,

so there exists a finite cmax > 0 such that f(c) ≤ 1 for 0 ≤ c ≤ cmax and f(c) > 1 for
c > cmax. On the interval [0, cmax], the right-hand side of 4.1 stays in [−1, 1] and so φ(c)
is well-defined with φ(c) ∈ (0, π]. Moreover, f is continuous and strictly increasing on that



GROUP ACTIONS AND MÖBIUS SYMMETRIES IN HYPERBOLIC TESSELLATIONS 9

closed interval and takes value from f(0) < cos γ to f(cmax) = 1 > cos γ. By the Intermediate
Value Theorem, since f is continuous on [0, cmax] and f(0) < cos γ < 1 = f(cmax), there
exists some c0 ∈ (0, cmax) such that f(c0) = cosφ(c0) = cos γ. Since φ(c0), γ ∈ (0, π), the
invertibility of cosine on that interval implies that φ(c0) = c. Thus a triangle with α, β, γ
exists. ■

Lemma 4.6. Let T ⊂ H be a geodesic triangle with vertices A,B,C and interior angles
α, β, γ ∈ [0, π/2] satisfying α + β + γ < π. Let a, b, c be the sides opposite A,B,C, and let
ra, rb, rc denote reflections in these sides. Let G = ⟨ra, rb, rc⟩ be the group generated by these
reflections. Then the images {g(T ) : g ∈ G} are pairwise interior-disjoint, meet only along
full edges or vertices, their interiors cover H, and G is a discrete subgroup of Isom(H).

Proof. Each reflection rs is an isometry, so reflecting T across any side produces a triangle
congruent to T sharing that side. Repeated reflections generate all triangles adjacent along
sides.

Let
M := {g(a), g(b), g(c) : g ∈ G}

be the set of all geodesics obtained from the sides by reflections in G, called mirrors. The
complement H \

⋃
M consists of open convex regions, each congruent to T ◦. Convexity

implies that any geodesic segment intersects each mirror at most once.
For points x, y ∈ H, define the crossing-number d(x, y) to be the number of mirrors

intersected by a geodesic segment from x to y. This number is independent of the segment
chosen: if γ0, γ1 are two segments from x to y, then each mirror separating x from y must be
crossed exactly once by any path between x and y within the union of regions, so γ0 and γ1
cross the same mirrors.
Suppose g1(T )

◦ ∩ g2(T )
◦ ̸= ∅. Let x be a point in the intersection. Then g−1

2 g1 fixes
g−1
2 (x) ∈ T ◦. Since each reflection moves points not on its mirror, no nontrivial composition
of reflections can fix a point in the interior of T , and thus g−1

2 g1 = id, so g1 = g2. Hence
interiors of distinct triangles are disjoint.
If closures of two triangles intersect along more than a vertex, the intersection must lie

in a mirror. Reflections map sides to sides, so intersections along sides are complete edges.
Triangles meet only edge-to-edge or at vertices.

For any y ∈ H, take a geodesic segment γ from a point x0 ∈ T ◦ to y, and let L1, . . . , LN

be the mirrors crossed in order. Reflecting successively across L1, . . . , LN produces a triangle
containing y. Therefore, all points of H lie in some triangle g(T ).
If a vertex, say A, is ideal (angle α = 0), the sides meeting at A are asymptotic to the

same point at infinity. Let s1, s2 be these sides. Consider the sequence of triangles obtained
by alternating reflections across s1 and s2. Each triangle is interior-disjoint from the previous
and lies strictly closer to the ideal point. The union of these triangles forms a full sector near
the ideal vertex. The same argument applies to any other ideal vertices.

Each triangle has positive area. If K ⊂ H is compact, only finitely many triangles intersect
K, since the sum of their areas cannot exceed the finite area of K. Therefore G acts properly
discontinuously and is discrete.
Hence the images of T under G form an edge-to-edge tiling of H by congruent triangles

with disjoint interiors, covering all of H, and G is a discrete subgroup of Isom(H). ■

Theorem 4.7. Suppose we have a hyperbolic triangle T whose interior angles are π/p, π/q, π/2
by Lemma 4.5, for positive integers p, q such that 1

p
+ 1

q
< 1

2
. Then, the index-2 subgroup



10 AADITYA BILAKANTI, PALAASH GANG, AND THANTHAM JITTHAM

G+ of the reflection group G (the subgroup fo the orientation-preserving isometries) acts on
H with fundamental domain a regular p-gon whose interior angle is 2π/q. The orbit of this
p-gon under G+ under G+ is a regular {p, q} tessellation.

Proof. Denote the reflection in the sides of T as rs1 , rs2 , rs3 . The composition of the two
reflections corresponding to the sides meeting at a vertex A is a rotation, ρpA = rsirsj about A
through an angle of 2π/p. Since ρpA = id, this rotation has order p. Similarly, the composition
of reflections in the sides meeting at vertex B gives a rotation ρB about B with order q,
ρqB = id.
The group G generated by the three reflections is discrete and acts properly on H by

Lemma 4.6. The orientation preserving subgroup G+ is generated by even-length words in
the reflections, in particular by ρA and ρB. Consider the union of images of T under ⟨ρA⟩,

P =

p−1⋃
k=0

ρkA(T ).

This set P is bounded by p geodesic edges of equal length meeting at angles equal by symmetry.
Around vertex B, since q triangles meet, the interior angle of P at the corresponding vertex
is 2π/q. Thus, P is a regular hyperbolic p-gon with interior angle 2π/q . The copies of P
under G+ fit together edge-to-edge, and exactly q such polygons meet at each vertex, so
the orbit G+(P ) is a regular {p, q} tessellation of H. This proves the backward direction of
Theorem 4.4.

■

We below state the Poincare Polygon Theorem. Its proof is out of the scope of this paper,
however, we encourage the reader to learn more about it in [Buc11].

Theorem 4.8 (Poincaré Polygon Theorem). Let P ⊂ H be a convex polygon whose sides are
paired by isometries {gi} such that:

(1) Each side of P is paired with exactly one other side via some gi ∈ Isom(H).
(2) For each vertex v of P , the product of the side-pairing isometries around v (in cyclic

order) is the identity or a rotation of finite order.
(3) The angles at vertices and the side pairings satisfy the angle condition: the sum of the

angles at each vertex divided by the order of the rotation equals 2π.

Then:

(1) The group G generated by the side-pairing isometries {gi} is discrete.
(2) The images {g(P ) : g ∈ G} tile H without overlaps (except along sides or at vertices).

5. Connections to Differential Geometry

5.1. Curvature in the Hyperbolic Plane.

Definition 5.1 (Sectional Curvature). Let (M,ds2) be a Riemannian manifold. The sectional
curvature K(σ) of a two-dimensional tangent plane σ ⊂ TpM measures how the metric deviates
from being flat along σ.

In the upper half–plane model ds2 = (dx2 + dy2)/y2, one computes via the Levi–Civita
connection that K = −1 everywhere. Geodesic curvature of a curve γ(t) with respect to ds2

likewise reflects this constant negative curvature.
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5.2. Geodesics and Metric Properties.

Definition 5.2. For (M, g), a Riemannian manifold, the Christoffel symbols of the Levi–
Civita connection in local coordinates are defined by

Γk
ij =

1

2
gkℓ

(
∂gjℓ
∂xi

+
∂giℓ
∂xj

− ∂gij
∂xℓ

)
,

where gkℓ denotes the inverse of the metric tensor gkℓ.

Definition 5.3. A smooth curve γ(t) in a Riemannian manifold (M, g) is a geodesic if its
velocity vector is parallel along itself i.e. Dγ̇/dt = 0.

In local coordinates, this condition is equivalent to the system γ̈k + Γk
ij γ̇

iγ̇j = 0, where Γk
ij

are the Christoffel symbols of the Levi–Civita connection.

Proposition 5.4. The geodesics in the upper half-plane model, when parametrized by constant-
speed curves, satisfy the system of second-order differential equations

ẍ− 2ẋ ẏ

y
= 0, ÿ +

ẋ2 − ẏ2

y
= 0.

Proof. The metric tensor on the upper half-plane model is

g =
1

y2

(
1 0
0 1

)
, g−1 = y2

(
1 0
0 1

)
.

The only non-zero derivatives of the metric components are ∂ygxx = ∂ygyy = − 2
y3
. Using the

Christoffel formula Γk
ij =

1
2
gkℓ (∂igjℓ + ∂jgiℓ − ∂ℓgij) , we find the non-zero components

Γx
xy = Γx

yx = −1

y
, Γy

xx = −1

y
, Γy

yy =
1

y
.

Let γ(t) = (x(t), y(t)). The geodesic equation γ̈k + Γk
ij γ̇

iγ̇j = 0 gives, for the x-component:

ẍ+ Γx
xyẋẏ + Γx

yxẏẋ = ẍ− 2

y
ẋẏ.

For the y-component:

ÿ + Γy
xxẋ

2 + Γy
yyẏ

2 = ÿ − 1

y
ẋ2 +

1

y
ẏ2 = ÿ +

ẏ2 − ẋ2

y
.

Therefore, γ is a geodesic if and only if

ẍ− 2ẋẏ

y
= 0, ÿ +

ẋ2 − ẏ2

y
= 0.

■

Proposition 5.5. Let (x1, y1) and (x2, y2) be two points in the upper half-plane model
H = {(x, y) ∈ R2 | y > 0}. The hyperbolic distance between these points is

dH
(
(x1, y1), (x2, y2)

)
= arccosh

(
1 +

(x2 − x1)
2 + (y2 − y1)

2

2y1y2

)
.
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Proof. The orientation-preserving isometries of (H, ds2) are the Möbius maps

z 7→ az + b

cz + d
, ad− bc = 1,

so distance is invariant under these maps. Geodesics in H are vertical lines and Euclidean
semicircles orthogonal to the boundary at y = 0. By invariance, we may send (x1, y1) and
(x2, y2) to points on a common vertical geodesic. Along a vertical geodesic, the length between
heights y1 and y2 is

L =

∫ y2

y1

dy

y
=

∣∣∣∣ln y2y1
∣∣∣∣ ,

so

coshL =
y21 + y22
2y1y2

.

For general points, an isometry straightens their geodesic to the vertical case; expressing
cosh d in the original coordinates gives

cosh dH
(
(x1, y1), (x2, y2)

)
= 1 +

(x2 − x1)
2 + (y2 − y1)

2

2y1y2
,

hence

dH
(
(x1, y1), (x2, y2)

)
= arcosh

(
1 +

(x2 − x1)
2 + (y2 − y1)

2

2y1y2

)
.

■

5.3. Comparison with Euclidean and Spherical Geometry. Hyperbolic geometry is
one of the three classical geometries of constant Gaussian curvature alongside Euclidean and
Spherical geometry. This section aims to provide a comparison for those and develop certain
connections to tessellations.
Curvature and Models. Euclidean geometry has K = 0. The canonical model is the flat plane
R2 with metric ds2 = dx2 + dy2. Spherical geometry has constant curvature K = 1/R2 > 0.
The canonical model is the sphere of radius R in R3 with the induced metric. Hyperbolic
geometry has constant curvature K = −1/R2 < 0. The upper half-plane model

H = {(x, y) ∈ R2 | y > 0}, ds2 =
dx2 + dy2

y2

is one of several equivalent models.
Geodesics. In Euclidean geometry, geodesics are straight lines. On the sphere, geodesics
are great circles (intersections of the sphere with planes through its center). In the upper
half-plane model of hyperbolic geometry, geodesics are vertical lines and semicircles orthogonal
to the boundary line y = 0.
Triangles and Angle Sums. In Euclidean geometry, the sum of the interior angles of a
triangle is exactly π. In spherical geometry, the sum of the angles exceeds π; the excess is
proportional to the area of the triangle. In hyperbolic geometry, the sum of the angles is
strictly less than π; the angle deficit π − (α + β + γ) is proportional to the triangle’s area.
Parallel Postulate. In Euclidean geometry, through a point not on a given line, there is
exactly one line parallel to the given line. In spherical geometry, there are no parallels: all
geodesics (great circles) eventually intersect. In hyperbolic geometry, there are infinitely
many geodesics through a point not on a given geodesic that do not intersect it.
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Growth of Circles. If C(r) and A(r) denote circumference and area of a circle of radius r,
then:

Euclidean: C(r) = 2πr, A(r) = πr2,

Spherical: C(r) = 2πR sin(r/R), A(r) = 2πR2
(
1− cos(r/R)

)
,

Hyperbolic: C(r) = 2πR sinh(r/R), A(r) = 2πR2
(
cosh(r/R)− 1

)
.

In hyperbolic geometry, both circumference and area grow exponentially with r, a fact directly
tied to the richness of possible tessellations.
These metric differences have direct combinatorial implications: in the Euclidean plane,

regular tessellations exist only for {3, 6}, {4, 4}, and {6, 3}, while in the hyperbolic plane,
infinitely many {p, q}-tessellations exist whenever 1

p
+ 1

q
< 1

2
.

5.4. Gauss–Bonnet Theorem and Area Formulas. The Gauss–Bonnet Theorem is a
cornerstone result connecting curvature, topology, and geometry.

Theorem 5.6 (Gauss–Bonnet). Let S be a compact oriented surface with piecewise smooth
boundary ∂S. Let K be the Gaussian curvature of S, and κg the geodesic curvature of ∂S
(with respect to the inward-pointing normal). If the boundary has vertices with interior angles
θ1, . . . , θn, then ∫

S

K dA+

∫
∂S

κg ds+
n∑

i=1

(π − θi) = 2πχ(S),

where χ(S) is the Euler characteristic of S.

Geodesic Polygons in Constant Curvature. If ∂S consists entirely of geodesic segments,
then κg ≡ 0, and the Gauss–Bonnet formula simplifies to:∫

S

K dA+
n∑

i=1

(π − θi) = 2πχ(S).

Spherical case (K > 0): For a geodesic triangle on a sphere of radius R,

K =
1

R2
, χ(S) = 1, ⇒ Area = R2

(
α + β + γ − π

)
.

The angle excess determines the area.
Euclidean case (K = 0): We obtain α + β + γ = π for triangles, recovering the classical fact
that Euclidean triangles have constant angle sum.
Hyperbolic case (K = −1): For a geodesic triangle,

−Area +
3∑

i=1

(π − αi) = 2π,

which rearranges to

Area = π − (α + β + γ).

The angle deficit directly measures the area.
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Implications for Tessellations. Consider a regular {p, q}-tessellation of the hyperbolic
plane: each face is a regular p-gon with q meeting at each vertex. The interior angle of each
polygon is α = 2π

q
. Applying the hyperbolic area formula for a regular p-gon with all sides

geodesic:

AreaH(p, q) = (p− 2)π − pα = π

(
p− 2− 2p

q

)
,

which is positive when 1
p
+ 1

q
< 1

2
, the classical condition for hyperbolic tessellations.

6. Future Directions

Despite the extensive development of hyperbolic geometry and tessellation theory, many
intriguing open questions remain. Below are several directions for further research:

6.1. Classification of Hyperbolic Tilings. While regular {p, q} tessellations are well
understood, the classification of semi-regular, aperiodic, or more general tilings in hyperbolic
space is far less complete. What broader families of tilings exist beyond the regular and
semi-regular cases?

Definition 6.1 (Uniform/semi-regular tiling and vertex type). A tiling of H (or D) is uniform
if its symmetry group acts transitively on vertices. If k faces meet at a vertex v, record their
regular face sizes cyclically as (p1, . . . , pk); this cyclic k–tuple is the vertex type at v. A tiling
is semi-regular if it is uniform and all tiles are regular polygons, possibly of different sizes.

Proposition 6.2 (Necessary angle inequality at a hyperbolic vertex). If a uniform hyperbolic
tiling has vertex type (p1, . . . , pk), then

k∑
i=1

1

pi
<

k − 2

2
.

Sketch. Let αi be the interior angle of the regular pi–gon in the tiling. In H, one has

αi <
(pi−2)π

pi
. Since the angles around a vertex sum to 2π, we get 2π =

∑
i αi <

∑
i
(pi−2)π

pi
=

π
(
k − 2

∑
i

1
pi

)
, which rearranges to the claim. ■

Corollary 6.3. The borderline
∑

i
1
pi

= k−2
2

corresponds to Euclidean uniform tilings, while∑
i

1
pi
> k−2

2
to spherical ones.

6.2. Growth Rates and Combinatorics. How does the number of tiles grow as a function
of hyperbolic distance from a fixed point? What combinatorial invariants distinguish different
tessellations?

Definition 6.4 (Tile-count growth). Fix a regular {p, q} tiling and a base point o ∈ H. Let
N(R) be the number of tiles that intersect the hyperbolic ball BH(o,R).

Proposition 6.5 (Exponential growth). There exist constants C1, C2, λ1, λ2 > 0 depending
only on {p, q} such that

C1e
λ1R ≤ N(R) ≤ C2e

λ2R (R ≥ 1).

In particular, N(R) grows exponentially in R.
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Sketch. Area(BH(o,R)) = 2π(coshR − 1) ≍ eR. In a {p, q} tiling, each tile has constant
hyperbolic area

Area(T ) = (p− 2)π − p · 2π
q

= π

(
p− 2− 2p

q

)
> 0.

Packing/covering ofBH(o,R) by tiles yields two-sided bounds comparingN(R) to Area(BH(o,R)).
■

Corollary 6.6. The exponential growth rate of tiles mirrors the exponential growth of
hyperbolic area; finer asymptotics depend on adjacency combinatorics of the {p, q} tiling.

6.3. Tessellations and Topology. What kinds of topological surfaces (e.g., compact
Riemann surfaces or surfaces with boundary) can be realized as quotients of the hyperbolic
plane by tessellations induced from Fuchsian groups?

Definition 6.7 (Hyperbolic quotient surface). Let Γ ≤ PSL(2,R) be torsion-free and discrete
(Fuchsian). Then S = H/Γ is a closed hyperbolic surface when Γ is cocompact; its Euler
characteristic satisfies Gauß—Bonnet Area(S) = −2π χ(S) = 2π(2g − 2), where g is the
genus of S.

Proposition 6.8 (Fundamental polygons and genus). If a fundamental polygon for Γ has 4g
sides with the standard opposite-side identifications producing a single vertex in the quotient,
then H/Γ is a closed surface of genus g and Area(H/Γ) = 2π(2g − 2).

Sketch. The side-pairings give a CW structure with one 2–cell, 2g 1–cells, and one 0–cell,
hence χ = 1− 2g + 1 = 2− 2g. Apply Gauß—Bonnet. ■

6.4. Connections to Group Theory. How do properties of tessellations reflect properties
of the corresponding Fuchsian or triangle groups? Can certain geometric features of a tiling
(e.g., curvature distributions or symmetry) be characterized algebraically?

Definition 6.9 (Triangle and reflection groups). For p, q, r ∈ N ∪ {∞} with 1
p
+ 1

q
+ 1

r
< 1,

the hyperbolic triangle group

∆(p, q, r) = ⟨x, y, z | xp = yq = zr = xyz = 1⟩
acts on H with fundamental triangle of angles (π/p, π/q, π/r). The Coxeter reflection group
[p, q, r] is generated by reflections in the sides of that triangle; ∆(p, q, r) is its index-2
orientation-preserving subgroup.

Proposition 6.10 (Tessellations from triangle groups). The group [p, q, r] tessellates H by
reflected copies of the generating triangle; ∆(p, q, r) acts with the same triangular fundamental
domain.

Sketch. Apply the Poincaré polygon theorem to the triangle with prescribed angles and
side-pairing reflections; the angle conditions encode the relations and ensure discreteness and
a global tiling. ■

Example 6.11 (Modular tessellation). PSL(2,Z) ∼= ∆(2, 3,∞) with fundamental domain
the ideal triangle bounded by { |z| = 1, |ℜz| ≤ 1

2
} in H; its translates tessellate H by ideal

triangles.
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