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Introduction

Lie groups were introduced by Sophus Lie to model continuous symmetries of differential
equations. Lie groups are groups that are simultaneously smooth manifolds. These groups
have group operations of multiplication and inversion which are smooth maps. Due to this
property, it is meaningful and useful to additionally study the tangent space of a Lie group at
its identity, which is called the Lie algebra. Main examples of a Lie group are matrix groups,
such as the group of invertible matrices over a field such as C, or the group of orthogonal
matrices. In this paper, we will primarily consider matrix groups. To give some insight for this
choice, it turns out that any compact Lie group is isomorphic to some matrix group and that
every finite-dimensional Lie group has a finite-dimensional Lie algebra that is a matrix algebra.
In this sense, matrix groups capture many important parts of Lie Theory while being more
accessible. Lie groups naturally arise when considering spatial symmetries, which frequently
appear in areas of quantum theory and computer vision/graphics, for example.

In section 1, we rigorously develop the notions of matrix norms and Banach spaces which we
will be using throughout the paper. In section 2, we introduce matrix groups and describe some
of their algebraic and topological properties. In section 3, we introduce the matrix exponential
and logarithm, which are crucial for the Lie group-Lie algebra correspondence, and described
how to practically calculate them. In section 4, we introduce Lie algebras and the exponential
and logarithmic maps between the Lie algebra and the Lie group. We conclude this section
with an interesting theorem pertaining to continuous maps between Lie groups. In section 5,
we introduce some representation theory which is then utilized in the subsequent section 6 on
the applications of Lie groups and representation theory to quantum theory. Finally, in section
7 we discuss applications to object tracking in computer vision.

Date: Spring 2022.
1



2 TRISTAN LIU, ARPIT MITTAL, AND MARK TAKKEN

We will assume knowledge of some group theory, linear algebra, and analysis (at the level
of a first course). Any results cited should be well-known and can be found in any standard
introductory text.

1. Matrix norms and Banach spaces

Definition 1.1. A metric space is a a set X with a distance function d : X × X → R such
that for all x, y, z ∈ X

• d(x, y) ≥ 0 with d(x, y) = 0 if and only if x = y (positive definite),
• d(x, y) = d(y, x) (symmetry),
• and d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Definition 1.2. A sequence xn in a metric space (X, d) converges to x if given ε > 0, there
exists N such that for all n > N , d(xn, x) < ε.

Definition 1.3. A sequence xn in a metric space (X, d) is a Cauchy sequence if given ε > 0,
there exists N such that for all n,m > N , d(xn, xm) < ε.

Metric spaces allow us to generalize the notion of convergence, which lets us prove general-
izations of many results that may be familiar from real analysis.

Definition 1.4. A metric space is complete if all Cauchy sequences are convergent.

Example. Rn and Cn are complete under the standard Euclidean metric.

Definition 1.5. A norm on a real/complex vector space is a real valued function || · || which
satisfies the following properties. For any vectors x, y and scalar α, we have

• ||x|| ≥ 0 with ||x|| = 0 if and only if x = 0,
• ||αx|| = |α| ||x||,
• and ||x+ y|| ≤ ||x||+ ||y||.

Proposition 1.6. A normed vector space is a metric space under the metric d(x, y) = ||x−y||.

Proof. The properties of a metric space are all easily inherited from the properties of a norm.

• We have ||x− y|| ≥ 0 with ||x− y|| = 0 if and only if x− y = 0, which is equivalent to
x = y.

• We have ||x− y|| = | − 1| ||y − x|| = ||y − x||.
• We have ||x− z|| ≤ ||x− y||+ ||y − z||. □

We will often implicitly consider a normed vector space as a metric space under this metric.

Remark 1.7. We will use K to denote either R or C.

Definition 1.8. We let Mn(K) denote the set of square n× n matrices over K.

Definition 1.9. The operator norm of an n× n matrix is

||A|| = max({||Ax||
||x||

: x ∈ Kn, x ̸= 0}).

Note that
||A(αx)||
||αx||

=
||Ax||
||x||
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for any scalar α, so we can assume vectors are normalized to have magnitude 1 and equivalently
define

||A|| = max({||Ax||
||x||

: x ∈ Kn, |x| = 1}.

This norm is well defined because {x : |x| = 1}, as a compact set, will have a compact image

under the continuous function ||Ax||
||x|| , and thus will have a maximum value.

Proposition 1.10. The operator norm is a norm.

Proof. By definition of ||A||, it is the maximum of nonnegative numbers, and thus must be
nonnegative. It is 0 if and only if ||Ax|| = 0 for all x, which would imply A = 0.

For a complex scalar α,

||αA|| = max({||αAx||
||x||

: x ∈ Kn, x ̸= 0}) = |α|max({||Ax||
||x||

: x ∈ Kn, x ̸= 0}) = |α|| |A||

as desired.
Lastly, ||A + B|| = max({ ||Ax+Bx||

||x|| : x ∈ Kn, x ̸= 0}) ≤ max({ ||Ax||+||Bx||
||x|| : x ∈ Kn, x ̸= 0}) ≤

max({ ||Ax||
||x|| : x ∈ Kn, x ̸= 0}) + max({ ||Bx||

||x|| : x ∈ Kn, x ̸= 0}) = ||A|| + ||B|| so the operator

norm satisfies the triangle inequality. □

Definition 1.11. The Hilbert Schmidt norm of an n× n matrix is

||A|| =
√ ∑

1≤i,j≤n

|aij|2.

Proposition 1.12. The Hilbert Schmidt norm is a norm.

Proof. As ||A|| is the sum of nonnegative numbers, we have ||A|| ≥ 0 and ||A|| = 0 if and only
if all the entries of A are 0, namely, if A = 0.

It is also clear that

||αA|| =
√ ∑

1≤i,j≤n

|αaij|2 =
√

|α2|
∑

1≤i,j≤n

|aij|2 = |α|
√ ∑

1≤i,j≤n

|aij|2 = |α| ||A||.

Lastly, we check the triangle inequality. We have the bound

||A+B|| =
√ ∑

1≤i,j≤n

|aij + bij|2 ≤

√ ∑
1≤i,j≤n

(|aij|+ |bij|)2 =

√ ∑
1≤i,j≤n

|aij|2 + 2
∑

1≤i,j≤n

|aij||bij|+
∑

1≤i,j≤n

|bij|2 ≤

√ ∑
1≤i,j≤n

|aij|2 + 2(
∑

1≤i,j≤n

|aij|2)1/2(
∑

1≤i,j≤n

|bij|2)1/2 +
∑

1≤i,j≤n

|bij|2 =
√ ∑

1≤i,j≤n

|aij|2+
√ ∑

1≤i,j≤n

|bij|2 =

||A||+ ||B||
by Cauchy-Schwarz. □
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Theorem 1.13. If we have two norms || · || and || · ||′ over a finite dimensional real/complex
vector space V , they define equivalent topologies. In particular, there exist constants A,B > 0
such that A||v||′ ≤ ||v|| ≤ B||v′||.

The proof of this is too involved to include, so we refer you to Keith Conrad’s paper [9] for
details.

Remark 1.14. This gives us a bound by a scalar multiple between any matrix norms. This
means if ||xn − x|| converges to 0 under one norm, it does under every norm. Thus a sequence
xn that converges to x under one matrix norm also converges to the same thing under any other
norm. This allows us to talk about convergence of matrix sequences by using any norm we like,
as all of them are effectively equivalent.

Definition 1.15. A Banach space is a complete normed vector space.

Example. Mn(K) is a Banach space because it is a normed vector space that is complete (as it

is isomorphic to the complete space Kn2
under the Hilbert Schmidt norm).

Definition 1.16. Let B be a metric space. A sequence of functions fn : A → B converges
pointwise to f : A → B if for all a ∈ A, the sequence fn(a) converges. A sequence converges
uniformly to f if for all ε > 0, there exists N such that for all n > N and a ∈ A,

d(fn(a), f(a)) < ε.

Uniform convergence is a stronger condition than pointwise convergence because given ε, we
use the same N independent of a ∈ A.

Definition 1.17. Let b(X, Y ) be the vector space of bounded functions from a set X to a
Banach space Y . We can define the sup norm on this space as ||f || = supx∈X ||f(x)||.
Remark 1.18. Convergence under the sup norm is equivalent to absolute convergence.

Proposition 1.19. The space b(X, Y ) under the sup norm is a Banach space

Proof. We verify b(X, Y ) is a vector space. Suppose f and g are bounded functions, say with
||f || = N1 and ||g|| = N2. Then for all x ∈ X, ||(f+g)(x)|| = ||f(x)+g(x)|| ≤ ||f(x)||+||g(x)|| ≤
N1 +N2 by the triangle inequality for the norm on Y . Furthermore the image of αf is just α
times the image of f . Because the f is bounded, αf must then also be bounded, in fact with
supremum |α|||f ||

This also shows that the sup norm satisfies the triangle inequality and that ||αf || = |α| ||f ||.
By definition it is clear ||f || = 0 if and only if f = 0. Thus our sup norm is in fact a norm.

Suppose fn is a Cauchy sequence under the sup norm. Then, for any fixed x ∈ X, fn(x) is a
Cauchy sequence in Y and must thus converge. For each x, we define f(x) to be the limit of the
sequence fn(x). We then have, by definition, that fn will converge pointwise to f . We now show
it converges uniformly. Let ε > 0. Choose N such that for any m,n > N, ||fm − fn|| < ε

2
. We

now show, for n > N and for arbitrary x ∈ X, ||fn(x)− f(x)|| < ε. By pointwise convergence,
we can find m > N such that ||fm(x)− f(x)|| < ε

2
. Thus,

||fn(x)− f(x)|| ≤ ||fn(x)− fm(x)||+ ||fm(x)− f(x)|| ≤ ε

2
+
ε

2
= ε

as desired. Thus fn converges to f under the sup norm, so b(X, Y ) is complete and a Banach
space. □

Definition 1.20. Let A and B be metric spaces. A function f : A→ B is continuous at a ∈ A
if for any ε > 0, there exists δ > 0 such that if d(a, x) < δ, then d(f(a), f(x)) < ε.
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Example. Polynomials in Cn are continuous.

Example. Matrices under the Hilbert Schmidt norm are isomorphic to Cn, and thus functions
that are polynomial in terms of the matrix entries are continuous. Namely, matrix products,
transposes, determinants, and traces, are continuous.

Theorem 1.21. If a sequence of continuous functions fn : X → Y converges uniformly to
f : X → Y , then f is continuous.

Proof. Let ε > 0. Consider an arbitrary x ∈ X. We show f is continuous at x. By uniform
convergence, we can find N such that d(fN(t), f(t)) <

ε
3
for all t ∈ X. We have fn is continuous

at x, so let δ be such that if |x− y| < δ, |fn(x)− fn(y)| < ε
3
.

If |x− y| < δ,

|f(x)− f(y)| < |f(x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− f(y)| < ε

3
+
ε

3
+
ε

3
= ε

as desired. Thus f is continuous. □

Definition 1.22. In a normed space, a series
∑∞

n=1 an is convergent if its partial sums converge
and is absolutely convergent if

∑∞
n=1 ||an|| converges.

Theorem 1.23. In a Banach space, every absolutely convergent series is convergent.

Proof. Let
∑∞

k=1 ||ak|| be convergent. We show the partial sums sn =
∑n

k=1 ak are Cauchy. Let
ε > 0. Because

∑∞
k=1 ||ak|| is convergent, we can find some N such that

∑∞
k=N+1 ||ak|| < ε. For

any m ≥ n > N , we have

||sm − sn|| = ||
m∑
k=1

ak −
n∑

k=1

ak|| = ||
m∑

k=n+1

ak|| ≤
m∑

k=n+1

||ak|| ≤
∞∑

k=N+1

||ak|| < ε

by the triangle inequality. Thus, the partial sums are Cauchy and the series converges. □

Theorem 1.24 (Weierstrass M-test). Let fn be a sequence of functions from a set X to a
Banach space Y . If there exists a sequence Mn such that ||fn(x)|| ≤ Mn for all x and n and∑∞

n=1Mn converges, then
∑∞

n=1 fn(x) converges absolutely and uniformly on the set.

Proof. We can think of the functions as being in b(X, Y ). We have
∑∞

n=1 ||fn(x)|| <
∑∞

n=1Mn

which converges, so
∑∞

n=1 fn(x) converges absolutely under the sup norm. Thus, it must con-
verge under the sup norm, which demonstrates uniform convergence. □

2. Matrix Groups

Definition 2.1. The general linear group, GLn(K) is the group of all matrices in Mn(K) with
nonzero determinant under matrix multiplication.

Remark 2.2. If A ∈ GLn(K), then we can consider(
A 0
0 1

)
to be a member of GLn(K) as well.

Remark 2.3. Alternatively, GLn(K) is the group of all invertible matrices in Mn(K) under
matrix multiplication.

Proposition 2.4. The general linear groups are groups.
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Proof. We can straightforwardly check all the group axioms. The product of two invertible
matrices in K is an invertible matrix in K. Matrix multiplication is associative, the identity
matrix is an identity for matrix multiplication, and all matrices with nonzero determinant are
invertible. □

Definition 2.5. Amatrix group is a closed subgroup of GLn(C). In other words, any convergent
sequence in the matrix group converges to an element of the matrix group or a noninvertible
matrix.

Example. GLn(C) and GLn(R) are matrix groups. They are both clearly subgroups of GLn(C)
and any sequence Am ∈ GLn(K) converges to a matrix in Mn(K), and thus must converge to a
matrix in GLn(K) or a noninvertible matrix.

Definition 2.6. The special linear group SLn(K) is the group of all matrices in Mn(K) that
have determinant 1.

Proposition 2.7. The special linear groups are matrix groups.

Proof. We first check the special linear groups are subgroups of GLn(C). They are clearly a
subset, and closure under multiplication and inverses both follow immediately from the multi-
plicativity of the determinant and the fact the products and inverses of matrices in K are in
K.

If a sequence of matrices with determinant 1 converges, it must converge to a matrix with
determinant 1 by the continuity of the determinant. Therefore the special linear groups are
closed.

We have shown that the special linear groups, as desired, are matrix groups. □

Proposition 2.8. If K = R or K = C, then GLn(K) ⊆ Mn(K) is an open subset, and
SLn(K) ⊆Mn(K) is a closed subset.

Proof. The determinant det :Mn(K) → K is a continuous function. Then

GLn(K) =Mn(K) \ det−1{0}
is an open set because {0} is closed in K. Similarly, we have that

SLn(K) = det−1{1} ⊆ GLn(K)

is closed because {1} is closed in K. □

Definition 2.9. The standard inner product on Cn is given by

⟨x, y⟩ =
n∑

i=1

x̄iyi.

The natural extension of the dot product from the reals to the complex numbers given by
⟨x, y⟩ =

∑n
i=1 xiyi does not work, as, if ⟨u, u⟩ > 0, then

⟨iu, iu⟩ = i2⟨u, u⟩ = −⟨u, u⟩ < 0,

contradicting positive definiteness.

Definition 2.10. The conjugate transpose (also called the adjoint or Hermitian conjugate) of

a matrix A is A∗ = AT .

Definition 2.11. A unitary matrix is a matrix U ∈Mn(C) such that U∗U = I

Theorem 2.12. The following conditions are equivalent:
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• U∗U = I
• The columns of U form an orthonormal set
• U preserves the inner product (ie for all x, y, ⟨x, y⟩ = ⟨Ux, Uy⟩)

Proof. If U∗U = I, then, for all i, j, we have that U∗
i∗ ·U∗j = δij where δij is the Kronecker delta

which equals 1 if i = j and 0 otherwise.
Because the rows of the transpose are the same as the columns of the matrix and that the

product with the conjugate transpose is the same as the inner product, this is equivalent to
saying that U∗i · U∗j = δij which is precisely the definition of an orthonormal set.
If U∗U = I, we have ⟨Ux, Uy⟩ = (Ux)∗Uy = x∗U∗Uy = x∗y = ⟨x, y⟩.
Conversely, if ⟨Ux, Uy⟩ = ⟨x, y⟩, we have ⟨Uei, Uej⟩ = ⟨ei, ej⟩ = δij for all i, j. Thus

e∗iU
∗Uej = δij for all i, j. Multiplying out e∗iMej for arbitraryM givesMij. Thus, (U

∗U)ij = δij
for all i, j, so U∗U = I.

□

Proposition 2.13. If U is unitary, | det(U)| = 1.

Proof. We have det(U∗) = det(UT ) = det(U). Complex conjugation distributes over the opera-
tions of addition, subtraction, multiplication, and division, and the determinant is a polynomial
with real coefficients in terms of its entries, so det(U∗) = det(U) = det(U).

Thus,

1 = det(I) = det(U∗U) = det(U∗) det(U) = det(U) det(U) = | det(U)|2.

So | det(U)| = 1 as desired. □

Definition 2.14. An orthogonal matrix is a matrix A ∈ Mn(R) with columns that form an
orthonormal set.

They are the restriction of Unitary matrices to real matrices. Accordingly, equivalent condi-
tions for A being orthogonal include AAT = I and A preserving the inner product on Rn.

Definition 2.15. The Unitary group U(n) is made of all the unitary n × n matrices. The
special unitary group SU(n)is the subgroup of U(n) with matrices of determinant 1. Similarly,
the orthogonal group O(n) is made of all n× n orthogonal matrices and the special orthogonal
Group SO(n) is the subgroup of O(n) with matrices of determinant 1.

Remark 2.16. The orthogonal group can be thought of as the group of rotations and reflections
in Rn while the special orthogonal group can be thought of as encoding just rotations.

Proposition 2.17. U(n), SU(n), O(n), and SO(n) are matrix groups.

Proof. Unitary matrices are clearly a subset of GLn(C) as | det(U)| = 1 for all U ∈ U(n). We
check they are closed under matrix multiplication and inverses. Let U1 and U2 be unitary. Then

(U1U2)
∗U1U2 = U∗

2U
∗
1U1U2 = U∗

2 (U
∗
1U1)U2 = U∗

2U2 = I,

so U1U2 is unitary as desired. Similarly, (U∗)∗U∗ = UU∗ = I, so U−1 = U∗ is unitary.
Closure easily follows from the continuity of the function M∗M , as any sequence of matrices

that satisfy M∗M = I must limit to a matrix that also satisfies M∗M = I.
The proofs for SU(n), O(n), and SO(n) are easily checked and essentially identical to those

for SLn(K) and GLn(R) and hence are omitted. □
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2.1. Semidirect product.

Definition 2.18. Let G be a group with H ≤ G and N ◁ G. Then we say G is a semidirect
product of H and N if G = HN and H ∩N = {I}, which is denoted by G = H ⋉N .

Definition 2.19. We define the n-dimensional affine group over K to be

Affn(K) =

{(
A t
0 1

) ∣∣ A ∈ GLn(K), t ∈ Kn

}
≤ GLn+1(K).

Definition 2.20. We define the translational subgroup of Affn(K) to be

Transn(K) =

{(
In t
0 1

) ∣∣ t ∈ Kn

}
≤ GLn+1(K).

Proposition 2.21. Transn(K) is a normal subgroup of Affn(K) and Affn(K) can be expressed
as the semidirect product

Affn(K) = GLn(K)⋉ Transn(K).

Proof. Given

(
I t
0 1

)
∈ Transn(K) and any

(
A 0
0 1

)
∈ Transn(K), we see that the conjugation

(
A 0
0 1

)(
I t
0 1

)(
A 0
0 1

)−1

=

(
A At
0 1

)(
A−1 0
0 1

)
=

(
I At
0 1

)
lies in Transn(K). Thus, Transn(K)◁ Affn(K). Furthermore,{(

A 0
0 1

)(
I t
0 1

)
=

(
A At
0 1

)
: A ∈ GLn(K), t ∈ Transn(K)

}
is in bijection with Affn(K), since A is an invertible matrix. Lastly, we have

Transn(K) ∩GLn(K) = 0

because non-trivial translations do not fix 0, while all elements of GLn(K) do. □

Definition 2.22. An isometry is a function f : Rn → Rn such that |f(a−b)| = |a−b| for all
vectors a,b ∈ Rn.

Definition 2.23. The group of isometries in Rn is denoted as

Isomn(R) = {f : Rn → Rn | f is an isometry}.

Proposition 2.24. Transn(R) is a normal subgroup of Isomn(R) and Isomn(R) can be expressed
as the semidirect product

Isomn(R) = O(n)⋉ Transn(R).

This is proven in the exact same way as the preceding proposition.
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3. Matrix Exponential

Definition 3.1. Let M be a square matrix. We define eM , also denoted exp(M), by the power
series

eM =
∞∑
n=0

Mn

n!
.

In order for this definition to make sense, we must check that eM in fact converges, and
consequently that this operation is well defined.

Lemma 3.2 (Submultiplicative matrix norm). For any n×n matrices A,B, ||AB|| ≤ ||A||||B||.

Proof (for operator norm). By definition of operator norm, we have ||A|| ||x|| ≤ ||Ax||. Thus,
for all x, we have

||ABx|| ≤ ||A|| ||Bx|| ≤ ||A|| ||B|| ||x||.
We then have ||AB|| ≤ ||A|| ||B|| as desired. □

Proposition 3.3. The series for eM converges for all M . Furthermore eM is continuous.

Proof. We have, under the operator norm, that ||Mn|| ≤ ||M ||n for n ≥ 0 (we use our lemma
for n ≥ 1 and note ||M0|| = 1 = ||M ||0), so

∞∑
n=0

||M
n

n!
|| ≤

∞∑
n=0

||M ||n

n!
= e||M ||.

Thus, eM =
∑∞

n=0
Mn

n!
converges absolutely for any M , and must thus converge for any M as

desired. Furthermore, these bounds satisfy the conditions of the Weierstrass M-test, so the
series converges uniformly. Each of the partial sums is a finite sum of matrix products, and
hence continuous. By uniform convergence, the limit is also continuous. □

Proposition 3.4. If A and B commute, eA+B = eAeB.

Proof. By definition, eAeB = (
∑∞

n=0
1
n!
An)(

∑∞
n=0

1
n!
Bn). We expand the product (which is al-

lowed by absolute convergence) to get
∞∑
n=0

n∑
k=0

1

k!(n− k)!
AkBn−k =

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
AkBn−k.

By the binomial theorem (which we can use because A and B commute), this just equals∑∞
n=0

1
n!
(A+B)n = eA+B as desired. □

Proposition 3.5. The derivative of eAt is AeAt

Proof. We have eAt =
∑∞

n=0
An

n!
tn. Because it is a power series, we can differentiate term by

term, so d
dt
eAt =

∑∞
n=1 n

An

n!
tn−1

□

Theorem 3.6. The system of differential equations given by d
dt
y = Ay with initial condition

y(0) = y0 where A is a constant matrix has the unique solution

y(t) = eAty0.

Proof. By the Picard-Lindelöf theorem, there exists a unique solution to the differential equa-
tion.

We have d
dt
eAty0 = AeAty0 and eA·0y0 = y0, so e

Aty0 must be our unique solution. □
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Proposition 3.7. For invertible A,

eABA−1

= AeBA−1

Proof. We have

eABA−1

=
∞∑
n=0

1

n!
(ABA−1)n =

∞∑
n=0

1

n!
ABnA−1 = A

(
∞∑
n=0

1

n!
Bn

)
A−1 = AeBA−1,

as desired. □

Lemma 3.8. Diagonalizable matrices are dense in Mn(C).

Proof. The coefficients of the characteristic polynomial p(λ) = cnλ
n+ · · ·+ c1λ+ c0 of a matrix

are polynomials in the entries of the matrix. Now, letting the roots of the polynomial be
r1, r2, . . . , rn, we define its discriminant as

D(p) = c2n−2
n

∏
i<j

(ri − rj)
2.

The product
∏

i<j(ri − rj)
2 is a symmetric polynomial in terms of the roots, so by the Funda-

mental Theorem of Symmetric Polynomials, it can be expressed as a polynomial in terms of
the elementary symmetric polynomials ek, where

ek(r1, r2, . . . , rn) =
∑

1≤j1<···<jk≤n

rj1rj2 . . . rjk .

The degree of this polynomial is equal to 2(n − 1), since the maximum power of each root
ri is equal to 2(n − 1). Furthermore, by Vieta’s formulas, we know that ek = (−1)k cn−k

cn
;

therefore, by multiplying the polynomial by c2n−2
n —yielding the discriminant,—we obtain a

polynomial in terms of the coefficients ci, which is also a polynomial in terms of the entries of
the matrix in question. Now, the discriminant is equal to zero if and only if all of the roots of
the characteristic polynomial are distinct, so if the discriminant is nonzero, then the matrix is
diagonalizable. Polynomials have roots only at isolated points, so there exists no open subset
of the entries of the matrix for which the matrix is always not diagonalizable. That is, the
diagonalizable matrices are dense. □

This lemma is very useful as it allows us to prove any continuous property of matrices by
proving it for diagonalizable matrices.

Theorem 3.9 (Cayley-Hamilton). If p(λ) is the characteristic polynomial of M , p(M) = 0.

Proof. Let M = PDP−1 be a diagonalizable matrix with characteristic polynomial p(λ) =∑n
k=0 ckλ

k. Then

p(M) =
n∑

k=0

ckM
k =

n∑
k=0

ckPD
kP−1 = Pp(D)P−1.
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Let D = diag(λ1, λ2, · · · , λm). Then

p(D) =
n∑

k=0

ckD
k

=
n∑

k=0

ckdiag(λ
k
1, λ

k
2, · · · , λkk)

= diag(
n∑

k=0

ckλ
k
1,

n∑
k=0

ckλ
k
2, · · · ,

n∑
k=0

ckλ
k
m) = diag(p(λ1), p(λ2), · · · , p(λm))

= 0,

as p(λi) = 0 for all i.
Thus, Cayley-Hamilton holds for any diagonalizable matrix. As diagonalizable matrices are

dense and p(M) continuously varies, p(M) must be 0 for all matrices. □

We now turn our attention to actually computing eM for a given matrix M . We split this
into three cases: where M is diagonalizable, where M is nilpotent, and where M is neither.

First, note that it is very easy to take the exponential of a diagonal matrix. If A =
diag(λ1, λ2, · · · , λn), then

eA =
∞∑
k=0

Ak

k!

=
∞∑
k=0

diag

(
λk1
k!
,
λk2
k!
, · · · , λ

k
n

k!

)

= diag

(
∞∑
k=0

λk1
k!
,

∞∑
k=0

λk2
k!
, · · · ,

∞∑
k=0

λkn
k!

)
= diag

(
eλ1 , eλ2 , · · · , eλn

)
.

Thus, for a diagonalizable matrix M = PDP−1, we can compute eM = PeDP−1.
For a nilpotent matrix N , Nk = 0 for some k so eN =

∑k−1
m=0

1
m!
Nm, which is a finite sum

that can be easily computed, as matrix multiplication is fast.1

All other matrices can be reduced to these two cases.

Lemma 3.10. All strictly upper triangular matrices are nilpotent. In particular, ifM ∈Mn(C)
is strictly upper triangular, then Mn = 0.

Proof. Let e1, · · · , en be the standard basis of Cn and let Ui be the span of the first i basis
vectors. Interpreting M as a linear transformation, ei is mapped into Ui−1 for all i. Thus,
MUi ⊆ Ui−1. Repeated application yields MnUn = U0. As Un is the whole of Cn and U0 is the
zero vector, we have that Mn maps every vector to the zero vector, and consequently Mn = 0
as desired.

Alternatively, the characteristic polynomial is tn, so by the Cayley Hamilton theorem, Mn =
0. □

Proposition 3.11 (Jordan-Chevalley decomposition). Any matrix M can be decomposed into
M = S +N where S is diagonalizable, N is nilpotent, and S and N commute.

1The Strassen algorithm runs in O(nlog2 7) time
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Proof. Let M = PJP−1 where J is in Jordan form.2 We can write J = D +N where D is the
diagonal part of J and N is the rest, which is strictly upper triangular and hence nilpotent.
Thus, M = P (D + N)P−1 = PDP−1 + PNP−1, which is a decomposition into two matrices
with the first diagonalizable and the second nilpotent.

We now show that D and N commute, which immediately implies that PDP−1 and PNP−1

also commute. The left action of D on N consists of scaling each row Ni∗ by the corresponding
diagonal element Dii, whereas the right action of D on N consists of scaling each column N∗j
by Djj. Now, D+N is in Jordan normal form, so each row/column of N consists of at most a
single 1 adjacent to and above the diagonal, and is otherwise uniformly 0. That means that such
a 1 in row i and column i+ 1 will be scaled by Dii under left-multiplication but by D(i+1)(i+1)

under right-multiplication. But Ni(i+1) = 1 precisely if Dii = D(i+1)(i+1)! Thus, any nonzero
entry in N will be scaled by the same factor under both left- and right-multiplication with D,
so D and N commute. □

For an arbitrary matrix M , let M = S +N , with S diagonalizable, N nilpotent, and S and
N commuting. We can thus compute eM = eS+N = eSeN both of which we already know how
to compute.

Example. Let

M =


3 1 0 1
−1 5 4 1
0 0 2 0
0 0 0 4

 .

Then we seek to compute exp(M). By finding the roots of the characteristic polynomial, we
find that the eigenvalues are 4, with algebraic multiplicity 3, and 2, with algebraic multiplicity
1. The eigenvectors corresponding to λ = 4 are ⟨1, 0, 0, 1⟩T and ⟨1, 1, 0, 0⟩T , so λ = 4 has
geometric multiplicity 2, and the eigenvector for λ = 2 is ⟨1,−1, 1, 0⟩T . We lack one dimension
in the space of eigenvectors, so we seek an additional generalized eigenvector for λ = 4. We do
this by squaring (M − 4I) and finding all solutions to (M − 4I)2v = 0 that are not already
solutions to (M − 4I)v = 0. In this way, we find the generalized eigenvector ⟨−1, 0, 0, 0⟩T , with
(M − 4I)⟨−1, 0, 0, 0⟩T = ⟨1, 1, 0, 0⟩T . Thus, the Jordan normal form of M is:


3 1 0 1
−1 5 4 1
0 0 2 0
0 0 0 4

 = XJX−1 =


1 −1 1 1
1 0 0 −1
0 0 0 1
0 0 1 0



4 1 0 0
0 4 0 0
0 0 4 0
0 0 0 2



1 −1 1 1
1 0 0 −1
0 0 0 1
0 0 1 0


−1

= X(S +N)X−1 = X



4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 2

+


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


X−1.

2For an accessible introduction to Jordan Normal form, see [4][5][6]
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We have that S is a diagonal matrix, N is a nilpotent matrix (in particular, N2 = 0), and S
and N commute. This allows us to calculate:

exp(M) = X exp(S +N)X−1 = X exp(S) exp(N)X−1

=


1 −1 1 1
1 0 0 −1
0 0 0 1
0 0 1 0



e4 0 0 0
0 e4 0 0
0 0 e4 0
0 0 0 e2



1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1



1 −1 1 1
1 0 0 −1
0 0 0 1
0 0 1 0


−1

=


0 e4 e2 + e4 e4

−e4 2e4 3e4 − e2 e4

0 0 e2 0
0 0 0 e4

 .

Remark 3.12. There is another way of calculating the matrix exponential of a non-diagonalizable
matrix: Since there exists a sequence of diagonalizable matrices D1, D2, . . . that converges to
the matrix in question, we can calculate limk→∞ exp(Dk). For example, let

M =

(
1 1
0 1

)
and Dk =

(
1 1
ε2 1

)
,

with ε2 = 1
k
. It is straightforward to calculate that the eigenvalues of Dk are 1 + ε, 1− ε with

corresponding eigenvectors
(
1
ε

)
,
(

1
−ε

)
. Then we calculate:

exp(Dk) =
1

2

(
1 1
ε −ε

)(
e1+ε 0
0 e1−ε

)(
1 1

ε
1 −1

ε

)
=

1

2

(
e1+ε + e1−ε e1+ε−e1−ε

ε
εe1+ε − εe1−ε e1+ε + e1−ε

)
,

which converges to

(
e e
0 e

)
as ε→ 0.

Proposition 3.13. If M is a complex square matrix, det(eM) = etr(M)

Proof. Consider an arbitrary diagonalizable matrixM = PDP−1 with eigenvalues λ1, λ2, · · ·λn.
Then

etr(M) = e
∑n

i=1 λi

and

det(eM) = det(PeDP−1) = det(P ) det(eD) det(P−1) = det(eD) =
n∏

i=1

eλi .

These two are clearly equal, as desired.
Any matrixM can be approximated arbitrarily well by a sequence of diagonalizable matrices,

An (by Lemma 3.8), each of which satisfies det(eAn) = etr(An). Each of these functions are
continuous and the composition of continuous functions is continuous, so taking limits, we have
det(eM) = etr(An) for any M as desired.

□

Corollary 3.14. If M is a complex square matrix, eM is an invertible matrix.

Proof. Because det(eM) = etr(M) ̸= 0, eM is invertible.
Alternatively, because A and −A commute, eAe−A = e0 = I, so e−A is the inverse of eA □
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Definition 3.15. The matrix logarithm of a square matrix M is defined as the power series

log(M) =
∞∑
n=1

(−1)n−1

n
(M − I)n

wherever this series converges.

Proposition 3.16. The matrix logarithm is defined and continuous for square matrices M with
||M − I|| < 1.

We proceed by a similar argument to the matrix exponential. We have
∞∑
n=1

∥∥∥∥(−1)n−1

n
(M − I)n

∥∥∥∥ ≤
∞∑
n=1

1

n
||M − I||n

which converges when ||M − I|| < 1. Thus the matrix logarithm absolutely converges, and
hence converges for ||M − I|| < 1.

This series converges uniformly by the Weierstrass M-test and has continuous partial sums,
so the logarithm is continuous on ||M − I|| < 1.

Proposition 3.17. The matrix logarithm is the inverse of the matrix exponent. Namely, if
∥M − I∥ < 1, elog(M) =M f, and if ∥M∥ < log 2, log eM =M .

Proof. First, suppose that the matrix M is diagonalizable. Write M = V ΛV −1, so M − I =
V ΛV −1 − I = V (Λ − I)V −1. Note that none of the eigenvalues may be zero, since otherwise
we would have ∥M − I∥ ≥ 1. It then follows that (M − I)n is of the form

(M − I)n = V

(λ1 − 1)n . . . 0
...

. . .
...

0 . . . (λm − 1)n

V −1.

If ∥M − I∥ < 1, then |λi − 1| < 1 for all i. In this case, therefore, we have

log(M) = V
∞∑
n=1

(−1)n−1 (λ1−1)n

n
. . . 0

...
. . .

...

0 . . . (−1)n−1 (λm−1)n

n

V −1

= V

log(λ1) . . . 0
...

. . .
...

0 . . . log(λm)

V −1.

Thus,

exp(log(M)) = V

exp(log(λ1)) . . . 0
...

. . .
...

0 . . . exp(log(λm))

V −1 = V

λ1 . . . 0
...

. . .
...

0 . . . λm

V −1 =M.

Conversely, if ∥M∥ < log(2), then

∥exp(M)− I∥ = ∥
∞∑
n=1

Mn

n!
∥ ≤

∞∑
n=1

∥M∥n

n!
= exp(∥M∥)− 1 < 1,

so log(exp(M)) converges. Decomposing M again into V ΛV −1 and making similar computa-
tions as when computing exp(log(M)), we find that it converges to M .
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If M is not diagonalizable, then because the diagonalizable matrices are dense within the
space of all matrices, there must exist a sequence of diagonalizable matrices D1, D2, D3, . . .
that converges to M . Since exp(log(Di)) = log(exp(Di)) = Di and the log and exp functions
are continuous, we must have exp(log(M)) = log(exp(M)) =M . □

Remark 3.18. This result also holds without the magnitude requirements for all nilpotent ma-
tricesM−I. First, the logarithm sum will be finite, so it will converge. Next, we can check that
the logarithm is still the inverse of the exponential with the same argument, that is, proving
that this is the case for a converging sequence of diagonalizable matrices. This is valid to do
because the eigenvalues of M will all be equal to 1 (since the eigenvalues of a nilpotent matrix

M − I must all be zero), so that the sum
∑∞

n=1(−1)n−1 (λi−1)n

n
will converge to log(λi) for λi

sufficiently close to 1. Furthermore, log(exp(M)) = M will still hold, as the exponential of a
nilpotent matrix remains nilpotent.

Remark 3.19. We can extend the definition of the logarithm to all invertible matrices M in the
following manner. First, suppose M is diagonalizable, so that M = V ΛV −1, with eigenvalues
λ1, λ2, . . . , λm. Then we define the matrix logarithm as

V

log(λ1) . . . 0
...

. . .
...

0 . . . log(λm)

V −1,

for a suitable branch cut for each of the logarithms (preferably a consistent one). If M is
not diagonalizable, then we can just use in its place a converging sequence of diagonalizable
matrices. Note that although we will certainly have exp(log(M)) =M for all invertible M , we
will not have in general have log(exp(M)) =M at or beyond a distance of 1 from the identity
due to the multi-valued nature of the complex logarithm.

We can practically calculate the logarithm of a nondiagonalizable matrix M in a similar way
to the case of the exponential. First, as just mentioned, we can approximate it arbitrarily well
with a diagonalizable matrix. Second, we can also decompose M into its Jordan normal form
M = XJX−1. Now, J can be expressed as S(N + I), where S is a diagonal matrix containing
the diagonal elements of J , and N is a strictly upper triangular and thus nilpotent matrix.
Now, log(S) is still a diagonal matrix, and log(N+I) =

∑∞
n=1(−1)n−1Nn

n
, where the nth matrix

in the sum has nonzero entries only at indices (i, i + n), with i such that Sii = S(i+n)(i+n).
Therefore, since left-multiplying log(N + I) by log(S) scales log(N + I)i(i+n) by log(S)ii and
right-multiplying scales it by log(S)(i+n)(i+n), log(S) and log(N+I) commute, so by Proposition
3.4, we have

log(XS(N + I)X−1) = X log(S(N + I))X−1 = X(log(S) + log(N + I))X−1.

Now, we know how to calculate log(S) because S is diagonal, and since N is nilpotent, log(N +
I) =

∑∞
n=1(−1)n−1Nn

n
is a finite sum that is easy to calculate. This allows us to calculate the

logarithm log(M).
Having the logarithm at our disposal allows us to prove the following proposition.

Proposition 3.20. If A and B are complex square matrices, then eA+B = limn→∞(eA/neB/n)n

Proof. Multiplying the power series of eA/n and eB/n, we see that

eA/neB/n = I +
A

n
+
B

n
+O

(
1

n2

)
.
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Now, eA/neB/n tends to I as n → ∞, so its logarithm as a power series is well-defined and
converges, so we calculate:

log(eA/neB/n) = log

(
I +

A

n
+
B

n
+O

(
1

n2

))
=
A

n
+
B

n
+O

(∥∥∥∥An +
B

n
+O

(
1

n2

)∥∥∥∥2
)

=
A

n
+
B

n
+O

(
1

n2

)
.

Taking the exponential of both sides gives us

eA/neB/n = exp

(
A

n
+
B

n
+O

(
1

n2

))
=⇒ (eA/neB/n)n = exp

(
A+B +O

(
1

n

))
.

Thus, by the continuity of the exponential, we have

lim
n→∞

(eA/neB/n)n = lim
n→∞

exp

(
A+B +O

(
1

n

))
= exp(A+B).

□

Lemma 3.21. There exists a constant c such that for all B ∈ Mn(K) with ∥B∥ < 1
2
,

∥log(I +B)−B∥ ≤ c∥B∥2.

Proof. We calculate:

log(I +B)−B =
∞∑
n=2

(−1)n−1B
n

n
= B2

∞∑
m=2

(−1)n−1B
n−2

m

=⇒ ∥log(I +B)−B∥ ≤ ∥B∥2
∞∑
n=2

(
1
2

)n−2

n
.

The lemma is proven by letting c =
∑∞

n=2

( 1
2)

n−2

n
. □

We now use this lemma to prove a very nice interpretation of the matrix exponential, which
is a generalization of the identity limn→∞(1 + x

n
)n = ex, with x ∈ C.

Proposition 3.22. Let A ∈ Mn(K) and Cn ∈ Mn(K) with Cn = O
(

1
n2

)
. Then

lim
n→∞

(
I +

A

n
+ Cn

)n

= exp(A).

Proof. The parenthesized expression tends towards I as n → ∞, so it is within the domain of
the logarithm for sufficiently large n. We can thus apply the logarithm to it, obtaining

log

(
I +

A

n
+ Cn

)
=
A

n
+ Cn + En,
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where En is an error term satisfying, by the preceding lemma, En = O
(∥∥A

n
+ Cn

∥∥2) = O
(

1
n2

)
.

We then have

I +
A

n
+ Cn = exp

(
A

n
+ Cn + En

)
=⇒

(
I +

A

n
+ Cn

)n

= exp(A+ nCn + nEn) = exp

(
A+O

(
1

n

))
,

which converges to exp(A) as n→ ∞. □

Definition 3.23. The commutator bracket is defined as [A,B] = AB −BA.

We know that if two matrices A and B commute, then log(exp(A) exp(B)) = A + B. The
following is a generalization of this result.

Theorem 3.24 (Baker-Campbell-Hausdorff formula). We have

log
(
exp(A) exp(B)

)
=

∞∑
n=1

(−1)n−1

n

∑
r1+s1>0

...
rn+sn>0

[A(r1)B(s1)A(r2)B(s2) . . . A(rn)B(sn)]∑n
j=1(rj + sj)Πn

i=1ri!si!
,

where the notation M (k) denotes composition of M with itself k times under the commuta-
tor operation—that is [M (k)A] = [M, [M (k−1)A]] with [M (1)A] = [M,A]—and the notation
[M1M2 . . .Mk] denotes [M1, [M2, . . . , [Mk] . . . ]]. This expression converges for sufficiently small
A and B. The first few terms of this sum are given by

log
(
exp(A) exp(B)

)
= A+B +

1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [B,A]] . . .

If A and B are sufficiently small, we sometimes make the approximation exp(A) exp(B) ≈
exp(A+B).

We omit the proof, although the interested reader can find multiple proofs at [16]. Note
in particular that log(exp(A) exp(B)) is completely determined by the commutators of A and
B, which is not obvious from simply expanding the power series. This will have important
implications when we study the Lie group-Lie algebra correspondence in the next section.

4. Lie Algebras

Definition 4.1. A Lie algebra over K is a vector space g with a Lie bracket [, ] : g × g → g
where for all x, y, z ∈ g and a, b ∈ K:

• [ax+ by, z] = a[x, z] + b[y, z] and [x, ay + bz] = a[x, y] + b[x, z] (billinear),
• [x, y] = −[y, x] (skew symmetric),
• and [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

Example. The vector space g = R3 under the cross product ([x, y] = x× y) is a Lie Algebra.

Definition 4.2. Let f(t) : R →Mn(K) be a matrix-valued function. Then the derivative at x
is

f ′(x) = lim
t→0

f(x+ t)− f(x)

t
.

Remark 4.3. This derivative behaves exactly as we would expect, following the product and
chain rule.
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Definition 4.4. The tangent space to a matrix group G at g is the set of all tangent vectors
at g for all paths γ that go through g.

Tg(G) = {γ′(0)|γ : (−ε, ε) → G differentiable with ε > 0 and γ(0) = g}
Proposition 4.5. The tangent space is a real vector subspace of Mn(K)

Proof. Let a, b be in the tangent space at g, with γ1 and γ2 be curves with γ′1(0) = a and
γ′2(0) = b. Let c be a real scalar.

We show a + b is also in the tangent space. Consider γ(t) = γ1(t)g
−1γ2(t) which is defined

on some open interval around 0. By the product rule, we have

γ′(0) = γ′1(0)g
−1γ2(0) + γ1(0)g

−1γ′2(0) = ag−1g + gg−1b = a+ b

so the tangent space is closed under addition.
We now show ca is in the tangent space. Consider γ(t) = γ1(ct) which is defined on some

open interval around 0. By the chain rule, γ′(0) = cγ′1(0) = ca as desired. □

Theorem 4.6. A matrix M is in the tangent space of G if and only if etM ∈ G for all t ∈ R.

Proof. If γ(t) = etM ∈ G for all t ∈ R, then γ′(0) = Me0M = M is the tangent space of G at
its identity. This completes the reverse direction.

We now show the converse. If M is in the tangent space of G at its identity, then there must
exist a curve γ : (−ε, ε) → G with γ(x) = I +Mx + O(x2) as x → 0. Replacing x with t

n
for

any t ∈ R, we have γ( t
n
) = I + Mt

n
+ O

(
1
n2

)
as n → ∞. Since γ( t

n
) ∈ G, we surely have γ( t

n
)n

for any n. Taking the limit as n→ ∞ yields

lim
n→∞

γ

(
t

n

)n

= lim
n→∞

(
I +

Mt

n
+O

(
1

n2

))n

= etM (by Proposition 3.22)

∈ G.

□

Proposition 4.7. Let G be a matrix group with Lie algebra g. If X and Y are elements of g,
then the following hold:

(1) AXA−1 ∈ g for all A ∈ G,
(2) XY − Y X ∈ g.

Proof. For the first point, we see that for all t ∈ R,
exp(t(AXA−1)) = exp(A(tX)A−1) = A exp(tX)A−1 ∈ G.

We now prove the second point. We use the product rule and Proposition 3.5 to compute

d

dt

(
etXY e−tX

)∣∣∣
t=0

= (XY )e0 + (e0Y )(−X)

= XY − Y X.

By the first point, etXY e−tX ∈ g for all t. Since we have already shown that g is a vector space,
it follows that

XY − Y X = lim
h→0

ehXY e−hX − Y

h
∈ g.

□

Proposition 4.8. The commutator bracket satisfies the properties of a Lie bracket.
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Proof. We can straightforwardly check each of the properties. Let c1, c2 be arbitrary scalars
and let A,B,C be arbitrary matrices. Then

[c1A+ c2B,C] = (c1A+ c2B)C − C(c1A+ c2B)

= c1(AC − CA) + c2(BC − CB)

= c1[A,C] + c2[B,C],

with [C, c1A+ c2B] following similarly. It is also clear

[A,B] = AB −BA = −(BA− AB) = −[B,A].

The last condition can be checked by fully expanding

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = [A,BC − CB] + [B,CA− AC] + [C,AB −BA]

= ABC − ACB −BCA+ CBA+BCA−BAC

− CAB + ACB + CAB − CBA− ABC +BAC

= 0,

as every term cancels once. □

Definition 4.9. The Lie Algebra g of a matrix group G is the tangent space at the identity
with the Lie bracket as the commutator bracket.

Remark 4.10. We have checked that g is a vector space (Prop 4.5), the commutator bracket is
well defined (Prop 4.7), and that the commutator bracket is a Lie Bracket (Prop 4.8), justifying
our definition.

Remark 4.11. We have checked that the tangent space is a vector space and that the commutator
satisfies the definition of a Lie bracket, but this definition is still not yet fully justified as we
must check the Lie Bracket is closed in g. We will verify this later.

Example. The Lie Algebra of GLn(C) is Mn(C).

Proof. For any matrix M and real t, etM is invertible, and thus must be in GLn(C). □

Example. The Lie Algebra of GLn(R) is Mn(R).

Proof. If M is a real matrix and t is real, etM is an invertible real matrix, and thus must be in
GLn(R).

For the converse, note that if etM is a real invertible matrix for all real t, M = d
dt
etM |t=0 must

be real. □

Example. The Lie Algebra of SLn(C) are the n by n complex matrices with trace 0. The Lie
Algebra of SLn(R) are the n by n real matrices with trace 0.

Proof. If M has trace 0 and t is real, we have det etM = etr(tM) = e0 = 1, so etM ∈ SLn(C for
all real t.

For the converse, if etM has determinant 1 for all real t,

tr(M) =
d

dt
ettr(M)|t=0 =

d

dt
det(etM)|t=0 =

d

dt
1|t=0 = 0

as desired.
The Lie Algebra of SLn(R) follows similarly. □
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Example. The Lie algebra of U(n) is the vector space of n by n complex matrices M with
M∗ = −M (skew Hermitian matrices). The Lie Algebra of SU(n) is the vector space of n by n
skew Hermitian complex matrices with trace 0. The Lie Algebra of O(n) is the vector space of
all real skew-symmetric matrices (MT = −M). The Lie Algebra of SO(n) is the vector space
of all real skew-symmetric matrices with trace 0.

Proof. A matrix U is unitary if and only if U∗ = U−1, so etX is unitary if and only if

etX
∗
= (etX)∗ = (etX)−1 = e−tX ,

which in turn is true for all real t if and only if X∗ = −X.
The Lie Algebras for SU(n), O(n), and SO(n) all follow similarly. □

Definition 4.12. If g, h are K Lie Algebras, a K-linear transformation Φ : g → h is a homo-
morphism of Lie algebras if for all x, y ∈ g,

Φ([x, y]) = [Φ(x),Φ(y)].

Definition 4.13. Suppose that G ⩽ GLn(K) and H ⩽ GLm(K) are matrix groups with a
continous map φ : G→ H. φ is a differentiable map if:

(1) For every smooth curve γ : (a, b) → G, φ ◦ γ : (a, b) → H is also differentiable.

(2) If there exist two differentiable curves γ, γ̃ : (a, b) → G such that γ(0) = ˜γ(0) and

γ′(0) = ˜γ′(0) then

(φ ◦ γ)′(0) = (φ ◦ γ̃)′(0).

A continuous homomorphism of matrix groups is a Lie homomorphism if it also a differen-
tiable map. To give some intuition for this definition, we should expect a derivative to be a
function between tangent spaces. We write dφ to be a homomorphism from a Lie algebra to a
Lie algebra as Lie algebras are the tangent spaces to a Lie group at the identity.

Theorem 4.14. Suppose that G and H are matrix groups with a differentiable homomorphism
φ : G→ H. Then, the derivative dφ : g → s is a Lie homomorphism.

We omit the proof for brevity.

5. Representation of Lie Groups

Definition 5.1. A representation (ρ, V ) of a group G over some vector space V is the group
homomorphism defined by ρ : G→ GL(V ).

In this definition, GL(V ) denotes the group of invertible linear maps from V to itself. To
see that this is the same as our previous definition of GL(V ), recall from linear algebra that
a linear map can be written as a matrix where the column vectors are the map applied to the
elements of a basis of V. Thus, it must be true that there exists an isomorphism such that
GL(V ) ≃ GLn(F ) where n = dim(V ) and is called the dimension of the representation ρ. Note
that this is only true when n is finite.

Let’s now discuss some types of representations. One kind of representation is a representa-
tion that preserves the Hermitian inner product on a space.

Definition 5.2. A representation (ρ, V ) where V is a complex vector space, is unitary if,

⟨ρ(g)v1, ρ(g)v2⟩ = ⟨v1, v2⟩
for all g ∈ G, and v1, v2 ∈ V, where ⟨., .⟩ is the Hermitian inner product on V
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Now, let us consider representations where the group is a Lie group, G. Then, we only consider
the ρ which along with being a valid representation, are also differentiable maps. Thus, for a
representation (ρ, V ) with the domain being a Lie group, the codomain in this case, GLn(C),
is isomorphic to Cn2

, without the non-invertible matrices. We will now classify some common
representations into certain categories.

Definition 5.3. An irreducable representation is a representation ρ, for which there there are
no nonzero subspaces S ⊂ V, such that (ρ, S) is a representation.

Definition 5.4. An reducable representation is a representation ρ, for which there there are
nonzero subspace(s) S ⊂ V, such that (ρ, S) is a representation.

Consider combining two representations.

Definition 5.5. Suppose that ρ1 and ρ2 are the representations of dimensions n1 and n2

respectively. Then, there exists a representation with dimension n1 + n2, the direct sum of the
two aforementioned representations, denoted by ρ1 ⊕ ρ2. The direct sum is defined by

(ρ1 ⊕ ρ2) : g ∈ G→
[
ρ1(g) 0
0 ρ2(g)

]
Proposition 5.6. Every unitary representation can be expressed as the direct sum of irreducible
representations.

Proof. Suppose that ρ is an reducible representation of G on V. Then, by the definition of an
reducible representation, there is some subspace W ⊂ V such that (ρ|W ,W ), where ρ|W is the
representation limited to group elements corresponding with elements of W, and the equation

(ρ, V ) = (ρ|W ,W )⊕ (ρ|W⊥ ,W⊥)

is satisfied. Recall that unitary representations preserve the Hermitian inner product. This
then implies that (ρ|W⊥ ,W⊥) is a subrepresentation. To decompose ρ into the desired direct

sum of irreducible representations, we can continue applying this method to W and W⊥. □

A classical result of representation theory is Schur’s lemma. In this text, we will present and
prove only the second part as that is the part of the lemma which will be utilized in the further
section on quantum theory.

Lemma 5.7 (Schur’s Lemma). Let V be a vector space and ρ : G→ GLn(C) be an irreducible
representation. All linear maps L : V → V for which L(ρ(g)(v)) = ρ(g)(L(v)) where v and g
are elements of V and G respectively, are scalar multiples of 1.

Proof. The eigenvalues λ of L are the solutions to det(L− λ1) = 0. Thus the eigenspaces of L
can be written as ker(L−λ1). Because L commutes for all ρ(g), ρ(g)(v) ∈ ker(L−λ1) if v is an
element of the kernel of L− λ1. This implies that (ρ| ker(L−λ1), ker(L− λ1)) is a representation
of G. If V is irreducible, we must have that ker(L− λ1) is either 0 or V and is V because λ is
an eigenvalue, implying the result. □

Remark 5.8. The lemma is only true for complex vector spaces V as the eigenvalues λ of L are
not the solutions of det(L− λ1) = 0 for a real vector space.

The following result directly follows from the definition of an abelian group and Schur’s
lemma.

Corollary 5.9. All irredudible representations of an abelian group have dimension 1.
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Consider the points on the complex unit circle. This is the group of all complex numbers
with absolute value one. Each point can also be written as eiθ for angle of rotation θ. This
group of points is denoted as S1 and is sometimes called the circle group. Now, note that each
point eiθ can be expressed as a 1 by 1 matrix,

P =
[
eiθ
]
.

It is also true that
P ∗P =

[
eiθ
] [
e−iθ

]
= I.

Furthermore if M = [z] has the property M∗M = I, then z̄z = 1, so |z| = 1. Thus, any
matrix in U(1) must be of the form [eiθ] for some θ. Henceforth the group of complex numbers
with absolute value 1 is the unitary group U(1). Since U(1) is abelian, Corollary 5.9 implies
that all irreducible representations of it has dimension one.

Proposition 5.10. Each representation of U(1) is unitary and can be written as

ρk : e
iθ ∈ U(1) → eiθk ∈ GL1(C)

where k ∈ Z.

Proof. Let each representation ρk be in terms of a rotation angle θ ∈ R. We then have the
following properties of ρk :

(1) ρk(0) = 1 = ρk(2π)
(2) ρk(θ1 + θ2) = ρk(θ1)ρk(θ2)

Now consider representations which are differentiable maps of the form f : U(1) → GL1(C)
that are also in terms of θ and thus also have the aforementioned properties. By the definition
of the derivative,

f ′(θ) = lim
h→0

f(θ + h)− f(θ)

h
= lim

h→0

f(θ)f(h)− f(θ)

h
= f(θ)f ′(0).

Because f(0) = 1, f(θ) = ef
′(0)θ and condition one implies that f = ρk, one of the representa-

tions of U(1). □

6. Quantum Theory

There are many applications of Lie groups and Lie algebras to the field of quantum theory.
This is due to Lie groups being able to model the symmetric phenomena in quantum theory.
We begin with the Dirac-von Neumann axioms. A system in quantum theory is essentially
a collection of relevant structures. A system includes states, observables, and a law for its
dynamics. One interpretation of the state of a quantum system is a vector in the space of
solutions to some equation for motion [14].

Axiom 6.1. The state of a system is a non-zero vector, v in a complex vector space H in which
there is a Hermitian inner product ⟨· , ·⟩.

Observables are quantities in a system that can be ”observed”. One important observable in
a quantum state is the Hamiltonian, H, which is used for finding how states can change over
time. The Hamiltonian is an operator that provides the total energy of the system at some
time t.

Axiom 6.2. The observables of a system are given by self-adjoint linear operators on H.

As per bra-ket notation, a state vector ψ ∈ H is written as |ψ⟩.
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Axiom 6.3. Let |ψ(t)⟩ ∈ H be the state of the system at time t. Then, the time evolution of
states is given by the operator H, where

H∥ψ(t)⟩ = d

dt
|ψ(t)⟩ℏi

in which ℏ is Planck’s constant and i is the imaginary number
√
−1

Planck’s constant, h, is theoretically equal to the energy of a photon divided by its frequency.
Experimentally, h is approximately equal to 6.626 J

Hz
, J and Hz denoting joules (energy) and

hertz (frequency) respectively. The reduced Planck constant, ℏ, can be expressed as

ℏ =
h

2π
= 1.055× 10−32J · s.

As per [14], ℏ depends on the units it is expressed in, so units can be chosen such that ℏ = 1,
which can simply many computations. The Dirac-von Neumann axioms of quantum theory
have some limitations, including their limited viability to larger-scale systems. Suppose that
some group G is acting on a quantum system. Then, the state space H must have a unitary
representation of G. This fact is useful, as it is mentioned in [14] that each physical system
with a group acting on it has a representation of the group. Recall from the definition of a
representation that ρ(g) ∈ GLn(C).

If we have g ∈ G which is “close” to the identity e ∈ G, and some ρ(g) ∈ GLn(C), then it is
true that ρ(g) = eA for some matrix A that is “close” to the zero matrix. It can also be shown
that the conjugate transpose of A is −A, and the conjugate transpose of iA is iA. Thus, it is
clear that some representation ρ from G on H gives corresponding self-adjoint operators on H.

Example. Let’s see an example of this phenomenon from [14]. Let our group G be translations
in time. Using the aforementioned facts, there is a unitary representation of G on H defined by

t ∈ G→ ρ(t) ∈ GL(H) = e−
Hit
ℏ .

Consider the representation of U(1) on the state space H. If ρ is irreducible, it must be one-
dimensional and have the form (ρk,C). It is also true that H = Hk1 ⊕Hk2 ⊕ · · · ⊕ Hkn where
n = dim(H) and the Hkj are isomorphic to C and correspond to the representation ρkj . Recall
that because H is the representation of a Lie group, there exists an associated linear operator
on H. This is denoted as Q and is named the charge operator.

Definition 6.4. The charge operatorQ is the self adjoint linear operator which acts by multipli-
cation of by kj on the irreducible sub-representation Hkj . This is defined for the representation
of U(1) on H denoted by ρ.

We may also write Q as a matrix A ∈ Mn(Z) where Aj,j = kj for all qj. All other elements
of A are 0. It is possible to obtain this operator from the group action of U(1) on H defined by

ρ1(e
iθ) = eiQθ.

Taking the matrix exponential gives the matrix

eiQθ =


eik1θ 0 . . . . . . 0
0 eik2θ . . . 0 . . .
. . . 0 0 . . .
. . . . . . . . . 0
0 0 . . . 0 eiknθ


which is obviously an element of U(n).
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Theorem 6.5 (Noether). In a quantum system with a continuous symmetry property, there
exist some quantities of whose values are conserved throughout time.

The values of these quantities remain constant as the time t changes. One example of this
theorem is the charge operator Q. Using the formal definition of a state, and other physical
concepts which are out of the scope of the paper, one can mathematically show that

|ψ(t)⟩ = e−itH |ψ(0)⟩

when H is time-independent. It is common to let U(t) = e−itH and this is commonly called the
time evolution operator.

Since we may express operators as matrices, we can use the previously defined commutator
bracket on two operators. Suppose that the Hamiltonian H and the charge Q commute. This
implies that e−itH must also commute with Q so we get

[U(t), Q] = 0 =⇒ U(t)Q = QU(T ).

Using this equation, now note that

Q|ψ(t)⟩ = QU(t)|ψ(0)⟩ = U(t)Q|ψ(0)⟩ = U(t)kj|ψ(0)⟩ = qj|ψ(t)⟩

assuming that kj is well-defined at time 0. This equation implies that kj will not change through-
out time. Because U(t) and Q commute,

U(t)ρ1(e
iθ) = ρ1(e

iθ)U(t).

Thus, the representation ρ1 of U(1) on H commutes with the time evolution law.
This example of the conservation of Q motivates the following concept.

Principle 6.6. If an observable O and the Hamiltonian observable H commute, one can obtain
a conservation law from the relation.

7. Motion Detection

Tuzel et al [13] develop an interesting application of Lie groups to object tracking. We are
given the pixel values of a reference image of some object, such as a car, that is constrained
within the unit square about the origin. Suppose we are also given an image containing that
car. Now, the pixel values of the car in the actual image won’t correspond necessarily to those in
the reference image, since the perception angle may be different. However, there is some affine
transformation M that approximately maps the reference image to the affine region containing
the car in the actual image. In particular, M is of the form

M =

(
A b
0 1

)
,

for any matrix A, and the image coordinates (ximg, yimg) are related to the object coordinates
(xobj, yobj) by ximg

yimg

1

 =M

xobjyobj
1

 .

An illustration is shown below [13].



LIE THEORY 25

As the object moves, however, M will change. At each time-step t, therefore, we update the
transformation matrix by right-multiplying by an estimated difference matrix: Mt =Mt−1∆Mt.
We thus seek to estimate ∆Mt at each time step.

In order to lower the dimensionality of the reference image for our models, we convert its raw
pixel values into a grid of orientation histograms. For example, after discarding the outer 10%
of the reference image (because the borders of the reference image are usually contaminated by
the background), we divide what remains into a 6×6 grid of tiles. For each tile, we compute the
gradient of each pixel, whose direction is discretized to be one of the eight compass directions,
and create a histogram of the gradient directions weighted by the gradient magnitudes. This
lowers the dimensionality of the input to 36 · 8 = 288 dimensions. Given an affine transfor-
mation matrix M , we denote the corresponding unit-square reference image as I(M−1) and its
orientation histogram as o(M−1). We thus seek to learn a regression function f such that at
each time step, we have

∆Mt = f
(
o(M−1

t−1)
)
.

At time 0, the reference image of the object and the initial transformation matrix M0 are
given. We generate an initial training dataset as follows. First, we generate n random affine
transformation matrices {∆M i

1 : i ∈ [1, n]} around the identity matrix (according to, for
instance, a matrix normal distribution). The predictors of the dataset are then given by {oi

0 :
i ∈ [1, n]} with oi

0 = o
(
[∆M i

1]
−1M−1

0

)
, and the labels are simply the transformation matrices

M i
1 themselves. See an illustration below [13]:

A meaningful error function of the predicted and actual labels is the sum of the squared geodesic
distances:

Jg =
n∑

i=1

ρ2(f(oi
0),∆M

i
1).



26 TRISTAN LIU, ARPIT MITTAL, AND MARK TAKKEN

By the Baker-Campbell-Hausdorff formula, we can approximate the geodesic distance between
two matrices M1 and M2 as

ρ(M1,M2) = ∥log(M−1
1 M2)∥

=
∥∥∥ log ( exp (− log(M1)

)
exp

(
log(M2)

))∥∥∥
=
∥∥ log(M2)− log(M1) +O(| log(M1), log(M2)|2)

∥∥
≈ ∥log(M2)− log(M1)∥.

Therefore, we can rewrite the error function as the squared difference between the Lie algebras:

Ja =
n∑

i=1

∥log(f(oi
0))− log(∆M i

1)∥2.

The approximation is accurate enough because all of the transformations are within a sufficiently
small neighborhood of the identity. This motivates reexpressing the regression function as
f(o) = exp(g(o)). That is, we are now learning a function g which estimates the tangent vector
of ∆Mt on its Lie algebra. g must be evaluated in real-time as the object is moving, so it must
be relatively simple and fast to evaluate. A reasonable choice is therefore to model g as a linear
function, that is,

g(o) = oTΩ,

where Ω is a matrix of the appropriate dimensions. Now, let X be the matrix containing the
predictors as its rows and Y be the matrix containing vectorized labels as its rows, that is,

X =

[o1
0]

T

...
[on

0 ]
T

, Y =

log(∆M1
1 )

T

...
log(∆Mn

1 )
T

 .

Then we equivalently express the error function as

Ja = tr[(XΩ− Y )(XΩ− Y )T ].

Because we will be updating the regression function in real time, we must keep n low; Tuzel et
al suggest n = 200. Since the number of data points is smaller than the dimension of the data
(200 < 288), the solution minimizing the error function will be underdetermined and thus will
be prone to overfitting. In order to avoid the overfitting, we add a regularization constant to
the loss function, giving us

Jr = tr[(XΩ− Y )(XΩ− Y )T ] + λ∥Ω∥2,

for some hyperparameter λ. The minimizer of this loss function can be explicitly expressed as

(XTX + λI)XTY,

where I is the identity matrix. As the object moves, however, we should update g based on
more recent data. To this end, Tuzel et al propose generating s = 2 random observations at
each time frame according to the same method that the initial dataset was produced. Every
p = 100 time frames, we aggregate an updated dataset, denoted by Xu and Yu, consisting of
the sp total observations from the last p time frames. Then, letting Ω′ denote the previous
model parameters and λ and γ be hyperparameters, we update the parameters of the model to
minimize the loss

Ju = tr[(XuΩ− Yu)(XuΩ− Yu)
T ] + λ∥Ω∥2 + γ∥Ω− Ω′∥2.
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That is, we now additionally penalize differing from the previous parameters. The minimum is
achieved at

Ω = (XT
uXu + (λ+ γ)I)−1(XT

u Yu + γΩ′).

We now address how to identify a particular object in the first place. Suppose we wish to
identify a face. Then given a dataset of reference images of faces, we apply random affine
transformations [∆M i]−1, the logarithms of whose inverses constitute the labels of the dataset,
to each image and convert the resulting unit-square areas to orientation histograms, which
become the predictors of the dataset. We can, as before, train a linear model on the dataset;
however, since this learning can be done offline (as opposed to online, that is, in real time),
we are also free to use more complex models. In particular, Tuzel et al propose using bagged
trees (see ¡citation¿ for more details). Once such a model is trained, we apply it to a grid of
overlapping tiles in the image. We multiply each tile by the predicted transformation matrix
and then evaluate the resulting region using an established face detector, such as the Viola and
Jones face detector [13]. The following figure [13] illustrates this method:
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