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1. Introduction

A Riemannian manifold is a special type of manifold equipped with a positive-definite
inner product on its tangent space. With just this condition, however, one can achieve
some striking results. In particular, the Hopf-Rinow theorem makes a connection between
completeness as a metric space, geodesic completeness, and compact sets on the manifold.
This paper, which will prove a number of results building up to the Hopf-Rinow theorem, is
based loosely off of [1] and [2]. The figures in this paper are taken from [1].

2. Riemannian manifolds

Definition 2.1 (Riemannian metric). A Riemannian metric g is a smooth positive-definite
function (technically, a covariant tensor field) on a manifold M such that for all p ∈ M and
v, w ∈ TpM :

(1) gp(v, w) = gp(w, v).
(2) gp(v, v) > 0 for v ̸= 0.

A manifold coupled with a Riemannian metric is referred to as a Riemannian manifold, the
set of which is denoted by M . Because g is a tensor, it is bilinear on TpM , and therefore it
is an inner product that we will hereafter denote as ⟨v, w⟩, and correspondingly, the norm

of some v ∈ TpM is |v| =
√

⟨v, v⟩.

A coordinate chart, or a map ϕ : U → V where U is an open set of M and V is an
open set of Rn, is denoted by (U, xi). In any given coordinate chart, the Riemannian metric
is denoted by g = gijdx

i ⊗ dyi. Because g is smooth, its component functions are smooth
(a universally true fact of tensor fields), and because g is positive definite (Definition 2.1.2),
(gij) is an invertible matrix which is also smooth.

Example. A simple example of a Riemmanian manifold is Rn. Its corresponding metric is
just g = δijdx

i ⊗ dyi where

δij =

{
0 if i ̸= j

1 if i = j
,

which works out to the typical distance metric in Rn.

In addition, we can use these basic definitions to express the induced covariant derivative of
a smooth curve α, which can be written as

(2.1) Z ′ =

(
dZk

dt
+ ZiΓk

ij(α
′)j
)
∂k|α.
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The full derivation for Z ′ can be found in [2]; it is not worth including. Generally, however,
we will not have to work with technical objects such as tensor fields and coordinate charts
in this paper; most concepts from differential geometry carry over to Riemannian manifolds
and will suffice for our purposes. With preliminary definitions out of the way, in the rest
of this section, we proceed to prove uniqueness and existence for geodesics using two brief
lemmas.

Lemma 2.2. For each v ∈ TpM , there is an open interval I about 0 and a unique geodesic
γ : I → M such that γ′(0) = v.

Proof. Setting Z = γ′ in Equation 2.1, we have

γ′′ =

{
d2γk

dt2
+

d2γi

dt

d2γj

dt
Γk
ij

}
∂k.

Taking the case where γ′ = 0, we obtain a system of second-order ODEs, from which the
result follows based on the existence and uniqueness theorems for ODEs. □

Next, we must prove some facts about the uniqueness and congruence of geodesics.

Lemma 2.3. Given two geodesics α, β : I → M , if α′(a) = β′(a) for a ∈ I, then we must
have a ≡ b.

Proof. Suppose there is some t0 ∈ I such that α(t0) ̸= β(t0). WLOG, suppose that t0 > a.
Let b denote the greatest lower bound of the set {t ∈ I : t > a, α(t) ̸= β(t)}. We want to
show that α′(b) = β′(b); assume that b > a. Since α = β on (a, b), so do their velocities;
because velocity of a smooth curve is continuous, we have α′(b) = β′(b).

Now, suppose b ∈ I. Because t 7→ α(b + t), t 7→ β(b + t) are geodesics (and have equal
velocity at t = 0), 2.2 says that they agree on some interval about b; however, this contra-
dicts the definition of b as a greatest lower bound. In the case that b is a right endpoint of I,
we have b = t0; therefore, α

′(b) = β′(b), so we must have α(t0) ̸= β(t0), a contradiction. □

From the previous two lemmas, we can prove the following theorem about constructing a
maximal geodesic for each v in the tangent plane of a point.

Theorem 2.4. For each v ∈ TpM there is a unique geodesic γv : Iv → M such that γ′
v = v

and for any other geodesic η : I → M with η′(0) = v, we have I ⊂ Iv and η = γv|I.

Proof. Suppose G is the set of all geodesics with initial velocity v. By Lemma 2.3, η1, η2
agree on the intersection of their domains. If Iv is the union of the domain of all geodesics
in G, there exists a well-defined curve γv(t) such that γv(t) = ηi(t) for all η ∈ G. γv is a
geodesic with initial velocity v because the differential and induced covariant derivative act
locally. □

The maximal geodesic and its domain are denoted by γv and Iv respectively.

Next, we will introduce the exponential map, which relates the tangent plane of p to the
manifold M itself.
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2.1. The Exponential Map.

Definition 2.5 (The Exponential Map). Let D = {v ∈ TM : 1 ∈ Iv} and Dp = D ∩ TpM
for p ∈ M . Then the exponential map exp : D → M is defined by exp(v) = γv(1).

The exponential map is well-defined by Theorem 2.4. D and Dp are the largest subsets of
TM on which exp and expp are defined.

Lemma 2.6. Let E : D → M × M be defined as E(v) = (π(v), exp(v)). Then, for each
p ∈ M , there exists a neighborhood U of 0p ∈ TM such that E is a diffeomorphism on U .

We will not prove the lemma, but the proof can be found in [2].

Remark 2.7. Note that the exponential map locally carries straight lines on TpM on
geodesics through p. See Figure 1 for a diagram demonstrating this.

Figure 1. Exponential function

The next section introduce an important concept called the radial geodesic, which relates
the exponential map to other notions of completeness found later in the paper; in particular,
we will show that geodesics on manifolds are analogous to the notion of straight lines in
vector spaces.

We will also need the concept of a normal neighborhood:

Definition 2.8. A neighborhood U of p ∈ M is called normal if Ũ , a neighborhood of
0 ∈ TpM such that expp|Ũ is a diffeomorphism, is starshaped.

2.2. Radial Geodesics.

Proposition 2.9. Given p ∈ M and U a normal neighborhood of p, there exists a unique
geodesic σ : [0, 1] → U connecting p with each q ∈ U , where σ′(0) = exp−1

p (q).
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Proof. Define v = exp−1
p (q) ∈ Ũ ⊂ tpM and ρ(t) = tv for t ∈ [0, 1] and v ∈ U . Then,

σ = expp ◦ρ is a geodesic from p to q in U ; this proves existence. Also, because expp ◦ρ(t) =
expp(tv) = γv(t), σ

′(0) = v, as claimed.

For uniqueness, let τ be some other geodesic connecting p and q in U , and let w = τ ′(0).
Then, w ∈ Dp and τ(t) = expp(tw), since these geodesics have the same initial velocities,
and we must show that w = v, which will imply that τ = σ.

First, we will show that w ∈ Ũ (if it is not, then t 7→ tw will leave Ũ). So, there is
some t0 ∈ [0, 1] for which expp(t0w) ∈ U \ τ([0, 1]); however, this contradicts the definition
of τ .

Since w ∈ Ũ , we have
expp(w) = τ(1) = q = expp(v),

and because the exponential map is injective, w = v, completing the proof. □

Remark 2.10. A subset of a Riemannian manifold M is convex if it is a normal neighbor-
hood of each of its points. For any points p, q in a convex set, there exists a unique geodesic
η defined on [0, 1] joining them.

Example. A simple example of a convex set is Rn; Rn \ 0, on the other hand, is not convex:
there is no geodesic connecting (1, 0, . . . , 0) to (0, . . . , 0,−1).

Example. S2 is not convex: there are infinitely many great circles (which are geodesics)
joining any two points on the sphere.

3. Arc Length, Distance, and Completeness

This section relates arc length and distance to radial geodesics and introduces the radius
function.

3.1. Arc Length.

Definition 3.1. Given a smooth curve α : [a, b] → M , its length is

L(α) =

∫ b

a

|α′(t)| dt,

which should not come as a surprise; this integral is always defined because α′ and the norm
are both continuous on TM .

Similarly to what has been discussed in class, length is also independent of monotone
reparametrization, and unit-speed reparametrizations exist for curves on M .

3.2. Radius Function. In particular, the radial geodesics have special properties relating
to length in a normal neighborhood U of p ∈ M .

Definition 3.2. The radius function on U is defined as r(q) = |exp−1
p (q)| for q ∈ U .

See Figure 2 for a visual representation of what the radius function looks like; it is a sort of
sphere on the manifold, and this diagram represents r = δ on the sphere. This definition of
the radius function also leads us to the following proposition.
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Figure 2. Radius function

Proposition 3.3. Suppose U is a normal neighborhood of p ∈ M . If q ∈ U and σ : [0, 1] → U
is the radial geodesic from p to q, r(q) = L(σ).

Proof. Because σ is a geodesic, its speed is constant. Furthermore, σ′(0) = exp−1
p (q), so

L(α) =

∫ 1

0

|σ′(t)|dt =
∫ 1

0

|σ′(0)|dt =
∫ 1

0

|exp−1
p (q)|dt = r(q).

□

We will also state, but not prove, the following necessary proposition:

Proposition 3.4. For a normal neighborhood U of p ∈ M , the radial geodesic σ : [0, 1] → U
from p to q is distance-minimizing and unique up to monotone reparametrization.

Next, we will define Riemannian distance, which establishes the Riemannian manifold as a
metric space.

3.3. Riemannian Distance.

Definition 3.5. Suppose M is a connected Riemannian manifold. Then, the Riemannian
distance between two points p, q on M is a function d : M ×M → R, defined as

d(p, q) = inf{L(α) : α ∈ Ω(p, q)},
where Ω(p, q) is the set of all piecewise smooth curves connecting p and q. Hereafter, we will
assume that M is connected; Riemannian distance may not be defined for two given points
on a disconnected manifold.

We can also define an open ball around p:

Bε(p) = {q ∈ M : d(p, q) < ε}.
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Figure 3. The largest ε-neighborhood of a point on the cylinder

Proposition 3.6. This open ball is normal for sufficiently small ε; in this case, we refer to
it as an ε-neighborhood.

Proof. Suppose that U is a neighborhood of p ∈ M and Ũ ⊂ TpM , so that expp : Ũ → U is a
diffeomorphism. Then, for small enough ε, the open ball of radius ε of TpM is starshaped and

contained in Ũ . Therefore, N = expp(Be) is a normal neighborhood: for each x inN , there
exists v ∈ TpM such that |v| < ε and x = expp(v). Then, r(x) < ε so x ∈ {x ∈ M |r(x) < ε}.

Then, by Proposition 3.4, r(x) = d(p, x) for any x ∈ N , meaning Nε is a normal neigh-
borhood. □

As a corollary, each point has a normal neighborhood, given by the ε-neighborhood with
suitably small ε.

Example. The largest ε-neighborhood of a point p on a cylinder is shown in Figure 3; it can
be thought of as a circle centered at p wrapped around the cylinder.

We will also consider minimizing curves, which, intuitively, are curves that realize the lower
bound of the distance.

Proposition 3.7. Given an ε-neighborhood B of a point p ∈ M , the radial geodesic from p
to a point q ∈ B is the unique shortest path in M connecting the two:

L(σ) = r(q) = d(p, q).

The significance of this proposition is that ε-neighborhoods are stronger than normal neigh-
borhoods, because they admit unique minimizing curves between two points, and because
no other minimal curves lie anywhere else in the manifold.

Proof. From Proposition 3.4, we have that σpq, the radial geodesic connecting p and q, is the
unique shortest curve connecting them in B. Also, L(σpq) = r(q) < ε (because q is in the
ε-neighborhood of p).

Next, consider a curve α connecting p and q that leaves B. If α leaves B, then for all
ρ < ε, there is some tρ such that

r(α(tρ)) = ρ.

Because α(tρ) ∈ B, we have

L(α) > L(αρ) = r(α(tρ)) = ρ,
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where αρ is the shortest path connecting p and α(tρ). As this is true for all ρ < ε, L(α) ≥ ε,
so if α leaves B, it must not be minimal. □

The next task is to show that Riemannian distance together with a manifold M forms a
metric space.

Proposition 3.8. A manifold M , coupled with the Riemannian distance, is a metric space
(M,d).

Proof. We must show that for p, q, r ∈ M :

(1) d(p, q) ≥ 0
(2) d(p, q) = 0 ⇐⇒ p = q
(3) d(p, q) = d(q, p)
(4) d(p, r) ≤ d(p, q) + d(q, r)

The first 2 conditions are obvious from the definition of the Riemannian metric. The third
condition, symmetry, is also obvious since any piecewise smooth curve α ∈ Ω(p, q) can be
reversed to obtain an identical curve in Ω(q, p).

Lastly, we must show that the triangle inequality is upheld. By the definition of distance,
for ε > 0, we have α ∈ Ω(p, q) and β ∈ Ω(q, r) such that

L(α) ≤ d(p, q) + ε

and
L(β) ≤ d(q, r) + ε.

Joining these two curves to form a curve γ ∈ Ω(p, r) yields

d(p, r) ≤ L(γ) = L(α) + L(β) ≤ d(p, q) + d(q, r) + 2ε,

which satisfies the triangle inequality as ε → 0. □

Proposition 3.9. Every point admits a convex neighborhood.

Proof. The proof of this fact is long, technical, and out of the scope of this paper, so we omit
it. □

Definition 3.10. A geodesic γ : [a, b) → M is continuously extendible if it has a continuous
extension to a curve on [a, b]; it is geodesically extendible if it has an extension to a geodesic
defined on [a, c) with c > b.

The following corollary to Proposition 3.9 unites the two notions.

Corollary 3.11. A geodesic γ : [0, b) → M is geodesically extendible iff it is continuously
extendible.

Proof. If γ is geodesically extendible, it is obviously continuously extendible by definition.
For the other direction, suppose that γ is continuously extendible to a function γ̃ : [0, b] → M .
Let U be a convex neighborhood (according to Proposition 3.9, each point admits one). Be-
cause γ is continuous, there exists 0 ≤ a < b such that γ̃([a, b]) ⊂ U .

Now, let p = γ(a) and v = exp−1
p (γ̃(b)) (this exists because U is a normal neighborhood of p).

Because exp−1
p (U) is open, there exists t0 > 1 such that t0v ∈ exp−1

p (U). Since the radial geo-
desic is unique, γ|[a, b) is equal to the geodesic η mapping t to expp((t−a)v(b−a)), restricting
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t to [a, b). However, this geodesic is defined on the interval [a, c) where c = t0(b− a)+ a > b;
therefore, adjoining it to γ|[0,a] is a geodesic extension of γ. □

4. the hopf-rinow theorem

Riemannian manifolds have two types of completeness. On one hand, they can be complete
in the sense of metric spaces.

Definition 4.1. A metric space M is complete if every Cauchy sequence of points in M is
convergent; in the case of Riemmanian manifolds, we use the Riemannian distance metric.

Alternatively, a Riemannian manifold can be geodesically complete.

Definition 4.2. A Riemannian manifold is geodesically complete if every maximal geodesic
is defined on all of R.

The Hopf-Rinow theorem, which is the main result of this paper, unites these two notions
of completeness.

Theorem 4.3. If M is a connected Riemannian manifold, then the following statements are
equivalent:

(1) M is a complete metric space.
(2) M is geodesically complete.
(3) There exists a point p ∈ M such that Dp = TpM .
(4) Closed and bounded subsets of M are compact.

We present two lemmas required in the proof of the theorem, and then prove the theorem.

Lemma 4.4. Suppose γ1 : [a, b] → M is a geodesic from p to q and γ2 : [b, c] → M is a
geodesic from q to r, where both γ1 and γ2 have the same speed. If the curve γ : [a, c] → M
obtained by adjoining γ1 and γ2 has length d(p, r), then γ is a geodesic.

Proof. Suppose U is a convex neighborhood of q. Then, there is some d ∈ [a, b) and some
e ∈ (b, c] such that γ1|[d,b] and γ2|[b,e] are both in U . Now, adjoin these two curves together
to get a curve γ from d to e. γ|[d,e] must be length-minimizing, or else p and r could be
connected by a shorter curve, a contradiction.

Because U is a normal neighborhood of γ(d), Proposition 3.4 means that γ|[d,e] is a mono-
tone reparametrization of a radial geodesic. γ1 and γ2 are both geodesics and have the same
speed, so this reparametrization must be linear and γ|[d,e] is a geodesic. We also know that
γ′′ = 0 except for possibly at γ(b); however, since b ∈ [d, e], and γ|[d,e] is a geodesic, γ is a
geodesic. □

Lemma 4.5. If there exists a p ∈ M such that Dp = TpM , then for any q ∈ M there is a
minimal geodesic segment connecting p and q.

Proof. The proof uses the previous lemma (which is why it was included), but it is long and
technical, so we leave it to [2]. □

Proof. (1) → (2). We may show this by proving that a unit-speed geodesic γ : [0, b) → M
is geodesically extendable, from Corollary 3.11. Suppose (tn) is a sequence in [0, b) con-
verging to b. Then, γ(tn) is a Cauchy sequence converging to some point p: we have
d(γ(tn), γ(tm)) ≤ |tn − tm|.
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Also, for any other sequence (sn) in the same interval approaching b, γ(sn) also converges to
p since d(γ(tn), γ(sn)) ≤ |tn − sn|. Therefore, setting γ(b) = p yields a continuous extension
of γ; by Corollary 3.10, γ is also geodesically extendable.

(2) → (3). By the definition of geodesic completeness, γv is defined on R for each v ∈ TpM ;
in particular, it is defined on 1, so v ∈ Dp.

(3) → (4). M is a metric space, so any compact set is immediately closed and bounded. For
the other direction, letting A ⊂ M be closed and bounded, we have by Lemma 4.5 that for
each q ∈ A, there is a minimizing geodesic segment σq : [0, 1] → M connecting p and q.

Because A is bounded, |σ′
q(0)| = L(σq) = d(p, q) are bounded above by the triangle in-

equality, say by some value R depending on q. So, each σ′
q(0) lies in the compact ball

BR = {v ∈ TpM : |v| ≤ R}. If q ∈ A, we have expp(σ
′
q(0)) = q, so A ∈ expp(BR), which is

compact; since A is also closed, A is compact.

(4) → (1). Suppose (xn) is a Cauchy sequence, or a sequence such that for any given
small positive δ, all but finitely many terms of the sequence have a distance less than δ from
the next term. The set of terms {xn} is bounded; therefore, its closure is compact and (xn)
has a convergent subsequence. It is also Cauchy, so it must converge to the limit of the
subsequence.

This completes the proof in all directions. □
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