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Abstract
In this expository paper we will introduce the theory of minimal surfaces. In the chapter
on Geodesics (Week 7), we considered the problem of finding the shortest distance between
two points. In this paper we investigate the higher dimensional analogue of this, where we
find ways to construct a surface of “minimal” area with a given boundary. Such surfaces can
be represented by soap films, where the surface tension of the film ensures that it attains a
shape with the minimal surface area. Minimal surfaces can be found in anything from the
event horizons of black holes, to biomolecules for drug delivery, to the designs of roofs.

1 Overview

In 1762, Lagrange considered the problem of finding the surface z = z(x, y) with the least
area with a given boundary. In doing so, he derived the Euler-Lagrange equation for the
solution and showed that a “minimal surface” would satisfy
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Lagrange pointed out that the plane would be a trivial solution to the equation but made
no further investigations to see what other possibilities existed.

In 1744 Euler discovered the catenoid, the first non-planar minimal surface. This surface is
readily realised by a soap film, spanning coaxial circular bounding wires. The film shrinks
under the action of its surface tension, forming the minimal surface.

An example of a soap film which
looks like a Möbius strip.

Another soap film, which is a piece of the
catenoid (the frames are circles).

Jean-Baptiste Meusnier found, in 1776, a further non-trivial solution to (1.1), the helicoid.
The helicoid is the surface swept out by a line that always intersects a fixed axis at right
angles and that rotates uniformly as its point of intersection moves uniformly along the
axis. The helicoid is the only ruled minimal surface other than the plane built up entirely of
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straight lines, i.e. a ruled surface (Catalan 1842, do Carmo 1986) and the catenoid is the only
minimal surface of revolution. These surfaces are related through the Bonnet transformation.

The Bonnet transformation from the catenoid to the helicoid

The Bonnet rotation. The helicoid, ϕ, and the catenoid, ϕ̃ are related through the
Bonnet rotation, σθ, which is the weighted sum of the two minimal surfaces:

σθ = (cos θ)ϕ+ (sin θ)ϕ̃.

In a Bonnet rotation every surface element maintains its normal vector but rotates a
given angle in its tangent plane. If and only if the surface is a minimal surface, then
the surface elements all fit together again. The Bonnet rotation is an isometry of the
surface.

Meusnier, in 1776, established a link between curvature and minimal surfaces. He proved
that (1.1) implies that the mean curvature is zero everywhere on a minimal surface. In his
own words: “ la surface de moindre étendue entre ses limites a cette propriété, que chaque
elément a ses deux rayons de Courbure de signe contraire & egaux”.

This is the defining property of a minimal surface: For a minimal surface, the principal
curvatures are equal, but opposite in sign at every point. The Gaussian curvature is then
always non-positive, and the mean curvature is zero.

For the rest of this paper, we will not use the area property of minimal surfaces. In fact,
a minimal surface only needs to be a local minimum to the area function. The fact that
minimal surfaces have zero mean curvature is what concerns us here.

The main point of this paper is the Weierstrass-Enneper representation, which gives a feasible
method of constructing minimal surfaces. But before we get to that, we should first formally
define minimal surfaces.

2 What are minimal surfaces, really?

The notion of surface we will use in this paper may be slightly different from the one we
have used thus far.
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Definition 2.1. A regular parametrized surface is a differentiable map ϕ : U → R3, such
that for any p ∈ U the vectors ϕu(p) and ϕv(p) are linearly independent.

So we will consider (images of) local parametrizations which are not necessarily injective.
For example, the figure below is the image of a regular parametrized surface.

The Whitney umbrella, ϕ(u, v) = (uv, u, v2).

Minimal surfaces can be thought of as saddle surfaces. This picture can be described math-
ematically with the following definition.

Definition 2.2. A minimal surface is a surface M with the mean curvature H = 0 at all
points p ∈M .

That is, at each point the bending upward in one direction is matched with the bending
downward in the orthogonal direction.

3 Examples of minimal surfaces.
The following surfaces are minimal. We will only justify this later.

1. The helicoid, given by

ϕ(u, v) = (u cos v, u sin v, v)

We saw this in [6, Parametrized Surfaces, Week 3, Problem 3].

2. The catenoid, given by

ϕ(u, v) = (coshu cos v, coshu sin v, u)

If a heavy flexible cable is suspended between two points at the same height, then
it takes the shape of a curve that can be described mathematically by the function
y = cosh(x). Such a curve is called a catenary from the Latin word that means
“chain”. A catenoid is generated by rotating a catenary on its side about the z-axis.
We saw this in [6, The First Fundamental Form, Problem 5].

3. Enneper’s minimal surface, discovered by Alfred Enneper in 1864, and given by

ϕ(u, v) =
(
u+ uv2 − 1

3
u3, v + u2v − 1

3
v3, u2 − v2

)
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The Enneper surface is a minimal surface formed by bending a disk into a saddle
surface. We saw this in [6, The First Fundamental Form, Problem 7].

The helicoid. The catenoid. Enneper’s surface.

4. Scherk’s doubly periodic surface, given by

ϕ(u, v) =
(
u, v, ln

cosu

cos v

)
This is an example of a minimal surface that is the graph of a function.

The plane, the catenoid, the helicoid, and Scherk’s doubly periodic surface are examples of
boundaryless (complete) surfaces that have no self-intersections (embedded). However, the
Enneper surface is not embedded, because it has self-intersections as its domain increases.

Example. It is easy to see that the helicoid is a minimal surface: If a straight line on a
surface is a symmetry line, then the mean curvature along this line is automatically zero,
because rotating about the line changes the direction of the normal, thus the sign of the
Weingarten map, thus the sign of the mean curvature. For the helicoid, all its straight lines
are symmetry lines, so its mean curvature must vanish everywhere.

The mean curvature can be expressed in terms of the coefficients of the first and second
fundamental forms, (cf. [6, Principal Curvatures, Corollary 1.3]),

H =
LG− 2MF +NE

2(EG− F 2)
,(3.1)

We will use (3.1) to show that a surface with a specific parametrization is minimal.

Example. Recall that a catenoid can be parametrized by

ϕ(u, v) = (coshu cos v, coshu sin v, u)

In [6, Week 4], we compute E = G = cosh2 v and F = 0. In [6, Week 6, Problem 2], we
computed L = −1, M = 0, and N = 1. Substituting these values in (3.1), we get

H =
LG− 2MF +NE

2(EG− F 2)
=
−G+ E

2(EG− F 2)
= 0.

And so the catenoid is a minimal surface.

For the surface z = f(x, y), we computed in [6, Principal Curvatures, Problem 1], that

H =
(1 + f 2

y )fxx − 2fxfyfxy + (1 + f 2
x)fyy

2(1 + f 2
x + f 2

y )3/2
.
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Example. Scherk’s doubly periodic surface has the parametrization

ϕ(u, v) =
(
u, v, ln

cosu

cos v

)
Using the formula above, with f(x, y) = ln(cos y)− ln(cosx), we get

H =
sec2 x(1 + tan2 y)− sec2 y(1 + tan2 x)

2(1 + tan2 x+ tan2 y)3/2
= 0.

And so Scherk’s doubly periodic surface is a minimal surface.

4 Constructing Minimal Surfaces

Our goal here is to describe a method of constructing minimal surfaces. As we have seen, de-
termining if a surface is minimal basically involves solving second order differential equations.
Since we have yet to set up our framework, we have some degree of freedom to choose certain
objects. For example, we have for our surfaces the freedom to choose a parametrization. One
way we could use this freedom is to try to find a parametrization that would simplify the
underlying differential equations. It turns out we can do so if we choose a specific type of
parametrization known as an isothermal parametrization.1

4.1. Isothermal parametrization.
We start with the definition.

Definition 4.1. A parametrization ϕ is isothermal if E = ϕu · ϕu = ϕv · ϕv = G and
F = ϕu ·ϕv = 0.

Indeed, isothermal parameters do exist locally for all minimal surfaces.2 We refer to [4,
Lemma 4.4], for a proof. Isothermal parametrizations preserve angles, i.e. angles in the
parameter plane are mapped conformally to angles on the surface. Recall that E, F , and G
describe how lengths on a surface are distorted as compared to their usual measurements in
R3. So if F = ϕu · ϕv = 0 then the vectors ϕu and ϕv are orthogonal and if E = G, then
the amount of distortion is the same in these two orthogonal directions. Thus, we can think
of an isothermal parametrization as mapping a small square in the domain to a small square
on the surface.

An isothermal parametrization maps small squares to small squares.
1Named by Gabriel Lamé in his 1833 study of heat transfer. The reason is, for a thermally isolated surface

of heat conduction, the constant coordinate lines are isotherms if and only if the coordinates are isothermal.
2Theorem. Every minimal surface in R3 has an isothermal parametrization.
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Example. The parametrization

σ(u, v) = (coshu cos v, coshu sin v, u)

for the catenoid is isothermal, because we computed3 E = cosh2 u = G and F = 0.

Example. We saw in [6] that the mapping σ 7→ σ̃ from the catenoid to the helicoid

σ̃(u, v) = (u cos v, u sin v, v)

is a local isometry. Since σ is isothermal, it follows that σ̃ is isothermal too.

We will use the property of isothermal parametrization to give us a necessary and sufficient
condition for a surface to be minimal. This condition is very important and useful. It will
come as a corollary to the following theorem, which gives a simple formula for the mean
curvature, H.

Lemma 4.2. If ϕ : U → R3 is an isothermal surface with E = G =: λ2, normal vector N,
and mean curvature H then we have

ϕuu +ϕvv = 2λ2HN.

Proof. We have
ϕu ·ϕu = ϕv ·ϕv, and ϕu ·ϕv = 0.

Upon differentiating, we get
ϕuu ·ϕu −ϕvu ·ϕv = 0,

ϕvv ·ϕu +ϕvu ·ϕv = 0

Adding, we get (ϕuu+ϕvv) ·ϕu = 0, and by symmetry, (ϕuu+ϕvv) ·ϕv = 0. Thus ϕuu+ϕvv
is perpendicular to both ϕu and ϕv, so it is parallel to N. On the other hand, (3.1) gives

H =
LG− 2MF +NE

2(EG− F 2)
=
L+N

2λ2

which implies
2λ2H = L+N = N · (ϕuu +ϕvv)

and finishes the proof. �

The Laplacian of a function f : U → R is ∆(f) = fuu + fvv.

Definition 4.3. A function f : U → R is harmonic if

∆(f) = fuu + fvv = 0.

A straightforward consequence of Lemma 4.2 is the following.

Theorem 4.4. A surface M with an isothermal parametrization

ϕ(u, v) = (ϕ1(u, v),ϕ2(u, v),ϕ3(u, v)),

is minimal if and only if ϕ1, ϕ2, ϕ3 are harmonic.

3cf. [6, First Fundamental Form, Problem 5]
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It is important to understand the significance of this result. Once we have an isothermal
parametrization for our surface (remember, every minimal surface in R3 has an isothermal
parametrization), this result tells us we will have a minimal surface if and only if the coordi-
nate functions of that parametrization are harmonic functions. This will provide us another
way to create and to prove that a surface is minimal.

Proof. If M is minimal, then H = 0 and so by Lemma 4.2, ϕuu + ϕvv = 0, and hence the
coordinate functions are harmonic. Now suppose ϕ1, ϕ2, ϕ3 are harmonic. Then ϕuu+ϕvv =
0. So by Lemma 4.2, we have that 2(ϕu · ϕu)HN = 0. But N 6= 0 and E = ϕu · ϕu 6= 0.
Hence H = 0 and so M is minimal. �

It is not an easy task to produce three functions ϕ1(u, v),ϕ2(u, v),ϕ3(u, v) which are all
harmonic and such that ϕ = (ϕ1,ϕ2,ϕ3) is regular. The task will become more handy if we
use tools from complex analysis.

4.2. A Review of Complex Analysis.
Let C be the complex plane. A continuous function f : C → C defined on a domain D is
said to be holomorphic if the derivative

f ′(z) := lim
h→0

f(z + h)− f(z)

h

exists for all z ∈ D. If f(z) = x(u, v) + iy(u, v) is holomorphic, then the Cauchy–Riemann
equations hold for f . That is,

xu = yv, xv = −yu.
In such a case, y is called the harmonic conjugate of x. Also, if f is holomorphic, then

f ′(z) = xu + iyu.

If f : U → R is differentiable, we denote

fz := 1
2
(fu − ifv).

If ϕ : U → R3, with ϕ(u, v) = (ϕ1(u, v),ϕ2(u, v),ϕ3(u, v)), we define ϕz : U → C3 as

ϕz := (ϕ1
z,ϕ

2
z,ϕ

3
z).

Remark. Note that if ϕ is isothermal

|ϕz|2 =

∣∣∣∣∂ϕ1

∂z

∣∣∣∣2 +

∣∣∣∣∂ϕ2

∂z

∣∣∣∣2 +

∣∣∣∣∂ϕ3

∂z

∣∣∣∣2
=

1

4

(
3∑

k=1

(
∂ϕk

∂u

)2

+
3∑

k=1

(
∂ϕk

∂v

)2
)

=
1

4
(ϕu ·ϕu +ϕv ·ϕv) =

1

4
(E +G) =

1

2
E.

We want |ϕz|2 6= 0 because otherwise all the coefficients of the first fundamental form
are zero and M degenerates to a point. Similarly, we want |ϕz|2 to be finite.
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4.3. The Weierstrass–Enneper Representation.
As per the preceeding remarks, we assume, in the following discussion, that all surfaces, ϕ,
will have |ϕz|2 6= 0 and |ϕz|2 be finite.

Proposition 4.5. Let M be a surface with parametrization ϕ = (ϕ1,ϕ2,ϕ3).

Then ϕ is isothermal ⇐⇒ (ϕz)
2 = (ϕ1

z)
2 + (ϕ2

z)
2 + (ϕ3

z)
2 = 0.

If ϕ is isothermal, then M is minimal ⇐⇒ each ϕkz is holomorphic (analytic).

Before we prove Proposition 4.4, let’s look at applying it to a specific example to help us
better understand what the proposition is saying.

Example. Suppose we have the parametrization

ϕ = (ϕ1,ϕ2,ϕ3) = (z − 1
3
z3,−i(z + 1

3
z3), z2).

Then

ϕ1
z =

∂ϕ1

∂z
= 1− z2,

ϕ2
z =

∂ϕ2

∂z
= −i(1 + z2), and

ϕ3
z =

∂ϕ3

∂z
= 2z.

Notice that
(ϕz)

2 = (1− z2)2 + (−i(1 + z2))2 + (2z)2 = 0.

Thus, by the proposition, the parametrization ϕ is isothermal. Also, each ϕkz is a polynomial
and hence holomorphic. So ϕ is a parametrization of a minimal surface (in fact, it is
Enneper’s surface).

We are now ready for the following proof.

Proof. Taking partial derivatives and then squaring the terms, we have

(ϕkz)
2 =

(
∂ϕk

∂z

)2

=

[
1

2

(
∂ϕk

∂u
− i∂ϕ

k

∂v

)]2
=

1

4

[(
∂ϕk

∂u

)2

−
(
∂ϕk

∂v

)2

− 2i
∂ϕk

∂u

∂ϕk

∂v

]
.

Also recall that ϕu ·ϕu =
∑3

k=1

(
∂ϕk

∂u

)2
and similarly ϕv ·ϕv =

∑3
k=1

(
∂ϕk

∂v

)2
. Hence,

(ϕz)
2 = (ϕ1

z)
2 + (ϕ2

z)
2 + (ϕ3

z)
2

=
1

4

[(
∂ϕk

∂u

)2

−
(
∂ϕk

∂v

)2

− 2i
∂ϕk

∂u

∂ϕk

∂v

]
=

1

4
(E −G− 2iF ).

Thus, ϕ is isothermal ⇐⇒ E = G,F = 0 ⇐⇒ ϕ2
z = 0. Now suppose ϕ is isothermal. Then

∂2ϕk

∂u∂u
+
∂2ϕk

∂v∂v
= 4

(
∂

∂z

(
∂ϕk

∂z

))
= 4

(
∂

∂z

(
ϕkz
))

.

Thus ϕkz is holomorphic ⇐⇒ ϕk is harmonic. By Theorem 4.3, we are done. �
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Conversely, we have

Proposition 4.6. Let ψ1, ψ2, ψ3 : U → C be holomorphic functions such that

(ψ1)
2 + (ψ2)

2 + (ψ3)
2 = 0 and |ψ1|2 + |ψ2|2 + |ψ3|2 6= 0. (†)

If U is simply connected then there exists a regular minimal isothermal surface ϕ = (ϕ1,ϕ2,ϕ3) :
U → R3 such that ϕkz = ψk for k = 1, 2, 3. More precisely,

ϕk = Re

∫
ψk(z) dz, for k = 1, 2, 3.

Simply connected space. An open subset U of R2 is said to be simply-connected if
every simple closed curve in U can be shrunk to a point staying inside U . Intuitively,
this means that U has no ‘holes’.

Simply–connected Not simply–connected

Proof. We need to solve ψk = ∂ϕk

∂z
for ϕk since the parametrization of the surface is given as

ϕ = (ϕ1,ϕ2,ϕ3). Since ϕk is a function of two variables u and v, we can write

dϕk =
∂ϕk

∂u
du+

∂ϕk

∂v
dv.(4.1)

Since dz = du+ idv, we get

ψk dz =
∂ϕk

∂z
dz =

1

2

(
∂ϕk

∂u
− i∂ϕ

k

∂v

)
(du+ idv)

=
1

2

[
∂ϕk

∂u
du+

∂ϕk

∂v
dv + i

(
∂ϕk

∂u
dv − ∂ϕk

∂v
du

)]
,

ψk dz =
∂ϕk

∂z
dz =

1

2

(
∂ϕk

∂u
+ i

∂ϕk

∂v

)
(du− idv)

=
1

2

[
∂ϕk

∂u
du+

∂ϕk

∂v
dv − i

(
∂ϕk

∂u
dv − ∂ϕk

∂v
du

)]
.

Adding these two equations yields
∂ϕk

∂u
du+

∂ϕk

∂v
dv = ψk dz + ψk dz = 2 Re(ψk dz).(4.2)

Combining (4.1) and (4.2), we have dϕk = 2 Re(ψk dz). Therefore, upto a translation and
scaling factor, neither of which affects the geometric shape of the surface, we have

ϕk = Re

∫
ψk dz. �
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We are especially interested in the following aspect, described in the above proposition: if
U is simply connected, we can construct minimal surfaces from U to R3 by picking a triple
of holomorphic functions ψ1, ψ2, ψ3 satisfying (†), integrate each of them and take each
time the real part: the three resulting functions are components of a minimal surface, call it
ϕ : U → R3.

Bonnet rotation (reprise). It is interesting to note that if ψ1, ψ2, ψ3 satisfy (†), then
for any θ ∈ R, the triple eiθψ1, eiθψ2, eiθψ3 satisfies (†) as well; if we integrate the new
triple and take the real parts, we obtain a new minimal surface, call it ϕθ : U → R3.
We obviously have ϕ0 = ϕ. The family {ϕθ}θ is called the associated family of ϕ.
The surface ϕ̃ := ϕπ

2
is the conjugate of ϕ. Note that in fact the latter is given by

ϕ̃k = −Im
∫
ψk(z) dz.

We can easily check that the coefficients of the first fundamental form of ϕθ are
independent of θ: we say that {ϕθ}θ is an isometric deformation of ϕ.
It is, in fact, the Bonnet rotation that we saw earlier.

The following theorem is the main result of the paper.

Theorem 4.7 (The Weierstrass Representation Theorem). Let U be simply connected
and h, g : U → C two holomorphic functions with h(z) 6= 0 everywhere on U . Then ϕ =
(ϕ1,ϕ2,ϕ3) : U → R3 given by

ϕ1 := Re

∫
1

2
h(z)(1− g(z)2) dz

ϕ2 := Re

∫
i

2
h(z)(1 + g(z)2) dz

ϕ3 := Re

∫
h(z)g(z) dz

is a isothermal minimal surface.

Proof. The functions

ψ1(z) = 1
2
h(z)(1− g(z)2),

ψ2(z) = i
2
h(z)(1 + g(z)2),

ψ3(z) = h(z)g(z)

satisfy equations (†): the first equation is obvious; for the second one, we note that

|ψ1(z)|2 + |ψ2(z)|2 + |ψ3(z)|2

= 1
4
|h(z)|2

(
|1− g(z)2|2 + |1 + g(z)2|2 + 4|g(z)|2

)
= 1

2
|h(z)|2(1 + |g(z)|2)2.

Here we have used the identity

|1− w2|2 + |1 + w2|2 + 4|w|2 = 2(1 + |w|2)2,
where w is any complex number. We now use Proposition 4.5. �
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The theorem is telling us how to produce minimal surfaces out of two holomorphic functions
h and g. We will do a few examples.

5 Examples of Weierstrass Representation

Example 1. (The catenoid) Take

h(z) = −e−z and g(z) = −ez.
The corresponding minimal surface ϕ has

ϕ1(u, v) = 1
2

Re

∫
(e−z + ez) dz

= 1
2

Re(e−z + ez)

= 1
2

Re
(
e−u(cos v − i sin v) + eu(cos v + i sin v)

)
= coshu cos v.

Similarly,

ϕ2(u, v) = 1
2

Re

∫
i(−e−z − ez) dz

= 1
2

Re
(
i(e−z − ez)

)
= −1

2
Im
(
e−u(cos v − i sin v)− eu(cos v + i sin v)

)
= coshu sin v

ϕ3(u, v) = Re

∫
1 dz = Re(z) = u.

So
ϕ(u, v) = (coshu cos v, coshu sin v, u)

which describes the catenoid.

Example 2. (Enneper’s Surface) Take

h(z) = 1, and g(z) = z.

The corresponding minimal surface has

ϕ1(u, v) = 1
2

Re

∫
(1− z2) dz

= 1
2

Re
(
z − 1

3
z3
)

= 1
2
(u− 1

3
u3 + uv2),

ϕ2(u, v) = 1
2

Re

(
i

∫
(1 + z2) dz

)
= 1

2
Re
(
i(z + 1

3
z3)
)

= 1
2
(−v + 1

3
v3 − u2v),

ϕ3(u, v) = Re

∫
z dz = 1

2
Re(z2) = 1

2
(u2 − v2).
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This is Enneper’s surface, up to the factor 1
2
. We saw in [6], The First Fundamental

Form, Problem 7, that the parametrization
ϕ(u, v) =

(
u+ uv2 − 1

3
u3, v + u2v − 1

3
v3, u2 − v2

)
is conformal, hence isothermal.

Example 3. (Costa’s Surface)

Costa’s minimal surface

We choose

h(z) = ℘(z), and g(z) =
2
√

2πe

℘′(z)

where ℘(z) is (a certain choice of) the Weierstrass elliptic function. We will not
display the parametrization of the surface resulting via Theorem 4.6. The figure
above is intended to give you a (vague) idea of what the surface looks like. In
particular, it has no self-intersections.

Remark. It is in general hard to decide if for given h and g the resulting minimal surface
is with or without self-intersections (that is, ϕ is injective or not). The catenoid and the
helicoid are without self-intersections, but Enneper’s surface is not. In fact, minimal surfaces
with no self-intersections are very rare. That’s why the surface discovered by Costa in 1984
was a surprise for the specialists.
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6 Appendix

Parametrizations for some minimal surfaces

Surface Parametrization σ(u, v)

The plane: (u, v, 0)

The Enneper surface:
(
u− 1

3
u3 + uv2, v − 1

3
v3 + u2v, u2 − v2

)
The catenoid: (coshu cos v, coshu sin v, u)

The helicoid: (sinhu cos v, sinhu sin v, u)

Scherk’s doubly periodic surface:
(
u, v, ln

cosu

cos v

)
Scherk’s singly periodic surface:

(
arcsinh(u), arcsinh(v), arcsin(uv)

)
Catalan surface:

(
1− cos(u) cosh(v), 4 sin(u

2
) sinh(v

2
), u− sin(u) cosh(v)

)
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