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1 Introduction

Differential forms provide an elegant way to state results from vector calculus and physics.
They are a natural extension of standard 1-dimensional calculus to not only higher dimen-
sions, but to non-Euclidean spaces.

2 m-forms

2.1 Tangent Spaces and 1-forms

Let S be a surface. We will use the familiar notation of 7,5 to denote the tangent space of
S at the point p.

We begin with a discussion on 1-forms. A 1-form is a linear map from a vector in a
tangent space, say 7,5, to a scalar value. For these tangent vectors to S at p, we describe
them as vectors independent of the tangent point p.

For now, we shall assume that this surface S is R", and so the tangent space 7,5 must
also be R™ for all p € R".

Let w be a 1-form. Because it is a linear map mapping every vector v = (x1, T, ..., T,) €
T,S onto R, it ought to be represented as w(v) = a;x1 + asxs + - - - + a,z, (where a; are
constants), as in linear algebra. With differential forms, this is written with the fundamental
1-forms.

In 7,8, dxy,dxs, . .., dx, are the fundamental 1-forms, where for all v = (21,29, ..., 2,),

dx;(v) = z;

Then, for every 1-form w, we may represent w as

dw = i a;dx;
i=1

Here, a; are constant coefficients.

Ezample. For example, in T,R?, w = 2dx + 3dy + 5dz would be a 1-form. It is important to
remember that differential forms are all maps of some sort, and we can calculate the value
of dw given a vector, say v = (1,3,2):

w(v) = 2dz(v) + 3dy(v) + 5dz(v) = 2(1) + 3(3) + 5(2) = 21
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Because 1-forms are linear, any 1-form w must satisfy w(cjv; + covg) = ciw(v1) + cow(ve)
for vectors vy, vo and scalars ¢y, co. Also, as one may expect, 1-forms may be added together
or multiplied by a scalar.

2.2 Wedge Operator

We shall now introduce the wedge operator, written A, which generalizes the 1-form to higher
dimensions. Generally, the wedge operator takes in m 1-forms and spits out an m-form.

Let wy and ws be two 1-forms, which map 7,5 into R. Then, w; A wy is a 2-form, which
is a function that maps 2 vectors in T,,S into R. Specifically, given vy, v, € 1,5, then

ot =i (0] )

More generally, given m 1-forms wy,ws, -+ ,wWm, then wy A ws A -+ A w,, is an m-form
mapping m vectors 7,5 into R. To compute this function, we have that

wi(vy) o wp(v)
(Wi Awa A+ Awp)(v1, 02, - ) = det

w1 (V) o Win(Um)

Note that A is associative. Now, we may define any general m-form as a linear combina-
tion of these wedge products. In other words, if w is an m-form, then
w = Z ailig---imdxil A\ diCiQ N A d.fll'im

1<ii<ia<---<im<n

where a7 are constant coefficients.

Ezample. In T,R®, w = 3dx A dy + 2dy A dz is a 2-form. Recalling that w takes in 2 3-
dimensional vectors, let v; = (1,2,3) and vy = (0,4,5). Then,

w(vy,v9) = 3dx A dy(vy, ve) + 2dy A dz(vy, va)
1 2 2 3
= 3det (0 4) + 2det <4 5)
— 3(4) +2(~2) =8

The wedge operator need not only operate on 1-forms. Say a = dz;, A dxg, A--- Adx;,
and 8 = dxj, ANdxj, N\--- Ndzj,. Then,

aAB=dry Ndry, N--- Ndxg, Ndxj Ndzg, A ANdag,,

as one may expect. Furthermore, A is distributive, which allows us to wedge together any
two general m-forms.
There are a couple key properties for A.



Theorem 2.1. Let ¢, d be scalars, let o be a p-form and let 3 be a q-form. Then, we have
that
ca NdfS = cd(aNp).
aNp=(-1)PpAa.
aNa=0
Ezample. Let us work through an example in T,R* with components z,y, z,w. Let w; =
dx N dw + 3dy N dw and wy = 3dx + 2dy. Then,

w1 Awy = (4dx A dw + 3dy A dw) A (3dz + 2dy)
=4dx N\ dw A 3dz + 4dz A dw A 2dy + 3dy N\ dw A 3dz + 3dy N dw A 2dy

Any term containing two of the same fundamental 1-form becomes 0, as w A w = 0. For
exaple, 4dx A dw A 3dx = —12(dx A dx) A dw = —12(0) A dw = 0. Thus, our above sum
becomes

wi Awo = 4dx A\ dw A 2dy + 3dy A dw A 3dx
= —8dx N dy N\ dw + 9dx A dy N dw
=dx Ndy N dw

Note our use of the anticommutative property.

We may note that all m-forms make up a vector space themselves, with a basis of the
m-forms dz;, dx;, - - - dx;,, for iy < iy < -+ < 4,,. This vector space is denoted A\™, with
dimension (:L)

2.3 Differential Forms

So far, we have talked about m-forms, but we have not yet touched on the “differential”
aspect. A differential form is an m-form, but instead of constant value coefficients, the
coefficients are smooth functions of the tangent point p. For example, if S = R3, then
xy’dx A dy is a differential 2-form. Note xy? refers to the z and y components of the
tangency point p, and not of the tangent vector.

Generally, we may write that

W= Z fr(p)dx;
T=(i1 - im)

We indulge here in some abuse of notation, where we use the multi-index [ instead of
writing out 1, i, ..., %, all the time.

Evaluating a differential form is exactly the same as our previous forms, except that we
must now know the tangency point as well.
Ezample. In T,R?, let us evaluate w = xy*dx A dy at the tangent point p = (1,3) and with
two tangent vectors vy = (2,3),v9 = (—1,—2). At this p, our differential form becomes
(1)(3)%dxz A dy = 9dx A dy. Then, since we know the tangent vector, we may evaluate this

2-form like before, which gives 9 det (_21 _32) =9.

Finally, note that differential 0-forms exist and are simply scalar functions that take in
as an input the point of tangency p.



3 Calculus on Forms

3.1 Integrating Forms

One of the uses of differential forms is to be integrated. To integrate a differential m-form,
you must integrate it over some m-dimensional manifold S.

In general, the m-dimensional manifold may be parameterized as some o : U — R",
where U is some open subset in R™. For example, space curves are functions v : [0,1] — R3,
and surfaces are functions o : R? — R3,

To integrate w over this manifold o, we will integrate over U. For every p € U, note that
o (p) will be some point on the manifold. This point will be our tangency point.

Then, with the parameterization o, we will use the m partial derivatives (which, as we
recall, are tangent vectors that form a basis for 7,5) as inputs to our differential m form. In
other words, we define

/S w = /U Wo (p) (T a1 (P)s Oy (D), + 0, (p))dV

Here, dV is dzydxg - - - dx,, (which are standard differentials from vector calculus and not
differential forms).

Example. Let us integrate w = ydx over the half-circle  : [0, 7], where () = (cost,sint).

[o=] T 0)dt = [t ((—sint,cos )
_ /W(sint)d:v((—sint,cost})dt

0

_/ _sin?tdt = —2
; 2

Note that integrating 1-forms over curves is exactly just a line integral. In other words,
if w = fdx, then fvw = fvf dx.
3.2 The Exterior Derivative

Now that we have the integral, it is only natural that we must have a derivative. The ezterior
derivative d is a linear operator that operates on a differential form. For every 0-form (recall
that O-forms are just functions) f,

df = fo, 21+ fe,ta+ -+ fo, 0

Note that this is a differential 1-form that closely resembles the gradient of f. Then, for

any differential m-form fdxy,
d(fdxyr) = (df) N dx;

Ezample. Let us compute dw for w = zydz + zdy in T,R>.

dw = (ydz + xdy) Ndz + (dz) Ndy = —xdx A dy — dy A\ dz



An important property of the exterior derivative is that, for any differential form w,
d*w =0

The proof is due to the symmetry of second derivatives and the anticommutativity of A.
Moreover, d satisfies some version of the product rule. Given that « is a differential
m-form and [ is a differential k-form, then

dlaNp)=danB+(=1)"aAdp.

4 The Hodge Operator

An interesting thing to note is that in R*, A™ and A"~ have the same dimension. Motivated
by this, the Hodge operator is a linear operator denoted * that maps differential m forms to
differential n — m forms.

For any form dz;, xdx; is the unique form such that

dr; Nxdx; = dxy Ndxo A -+ Ndxy,

Ezample. In R3, xdx = dy Adz because dv Axdx = dv AdyAdz. Meanwhile, xdy = —dz Adz,
since dy A xdy = dy N\ —dx ANdz = dx N dy N dz.

Note that applying the Hodge operator twice on w returns w, up to a sign. If w is a
differential m-form, then

*x W = (—1)m("’m)w

With the Hodge operator, it is possible to concisely represent the gradient, divergence
and curl.

Given a function f, we have already seen that if we treat f as a differential 0-form then
df becomes analogous to the gradient.

gradf = df

Now, let f be a vector field in R? with f = Pi+Qj + Rk. Instead of writing it this way,
let us write it as a differential 1-form, as f = Pdx + Qdy + Rdz. We claim that

curl f = xdf
This is because

*df = *(—=Pydx Ndy — P,dz Ndz+ Qudz Ndy — Q.dy N\ dz + Rydx AN dz + R,dy A dz)
= —P,dz + P.dy + Q.dz — Q.dx — R,dy + R,dx
= (R, — Q.)dz + (P, — R;)dy + (Q. — P,)d=
= curlf

Furthermore, we claim that

divf = xd* f



*dx [ =*d(Pdy A\ dz — Qdx N\ dz + Rdx N dy)
= x(Ppdx Ndy Ndz+ Qudx AN dy ANdz + R.dx A dy N dz)
=P, +Q,+R,=divf

4.1 Stoke’s Theorem, Generalized

A generalization of Stoke’s theorem may be found with differential forms. In R", let C be
an orientable manifold with boundary 0C'. Given an (m — 1)-form w, we have that

/w—/dw
aC c

When C is a 2-dimensional surface embedded in R3, then w is some 1-form w = Pdx +
Qdy + Rdz. Note that dw = * x dw = xcurl(w). Then, we have that

/ Pdx + Qdy + Rdz = / xcurl(w)
ac c

This is exactly the statement of the Stoke’s theorem from vector calculus. Moreover,
the formula generalizes not only Stoke’s Theorem but also the fundamental theorem of line
integrals (when w is a O-form) as well as the divergence theorem (when using xw instead of
w).
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