SPHERE EVERSION
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ABSTRACT.
We cover the proof behind sphere eversion, as well as a general description of which
surfaces and curves can be turned inside out.

1. CURVES AND SURFACES

Before we can get into any details about eversions, we need to first rigorously define a
curve and a surface.

Definition 1.1. Let a smooth continuous curve v be the image of some map f : [a, b] — R?
for a,b € R. We call f a parametrization of ~.

The main curve that we will be looking at in this paper is a circle, which is parametrized
by ~(t) = (cost,sint).

Definition 1.2. Let X CR™ and Y C R”. X and Y are said to be homeomorphic if there
exists a function f : X — Y such that f is a continuous bijection whose inverse is also
continuous. We call f a homeomorphism.

Definition 1.3. A surface is a subset S C R? such that for every point p € S, there exist
open subsets U C R? and W C R? containing p such that SN W and U are homeomorphic.
A homeomorphism o : U — SN W is called a surface patch or parametrization of S NW.

Definition 1.4. We call a smooth map f : S — Sy a diffeomorphism if it is bijective
with a smooth inverse. If a diffeomorphism exists between S; and S, we say that these are
diffeomorphic. Similarly, two curves 7, and ~y, are diffeomorphic if there exists a bijective
function f : vy, — 7, with a smooth inverse.

Here we note that diffeomorphic surfaces can be obtained from each other via a continuous
deformation, and so can diffeomorphic curves.

Definition 1.5. A curve is a simple closed curve if it is diffeomorphic to a circle.

In other words, if we can bend our curve without creating any holes or creases into a circle,
then the curve is considered simple and closed.

Theorem 1.6 (Jordan). All simple closed curves split the plane into two regions Ry and Ry,
such that Ry U Ry =R? and Ry N Ry = O.

While we will not provide a proof of this here, a proof is provided in [Hal07]. This theorem
allows us to establish the idea of orientability of simple closed curves, or that every simple
closed curve has a distinct inside and outside. With this, we can establish the notion of the
interior and exterior of a circle.
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It is difficult to understand what the inside and outside of a two dimensional curve would
look like, so in order to understand what this would look like, we can instead consider a
surface which is the vertical extension of the curve. However, it is important to note that
the curve is still a two dimensional object.

2. HOMOTOPIES

Definition 2.1. A homotopy is a map F from X x [0, 1] to Y where X and Y are topological
spaces and for which which both parameters are continuous.

Intuitively, we can think of a homotopy as a movie which maps the movement of a curve
or surface, so homotopic surfaces and curves can be obtained from each other via some
continuous deformations. In the case of the circle, we have X = 4 and Y = R2. Similarly,
the sphere satisfies X = S and Y = R?.

Definition 2.2. Define an immersion to be a nonsingular map f : X — Y between manifolds
X, Y such that for every point p € X, the derivative is an injective linear transformation.

This means that at every point in the domain, the map appears to be the inclusion map,
up to diffeomorphisms of the tangent space. In other words, we have no creases, holes, or
tears.

Definition 2.3. A homotopy is said to be regular if it is an immersion at every stage.

Thus we find that any two surfaces for which a regular homotopy exists between them can
be obtained from each other without creating a hole, tear, or crease. It remains to find out
which surfaces and curves are regularly homotopic.

3. EVERSIONS

First, we consider a smooth continuous curve «v. We wish to find some invariant such that
all curves «,; which « can be mapped to via some regular homotopy.

Definition 3.1. Let f : X — Y be a map between oriented n-dimensional manifolds X, Y.
Let p € X be some point such that D, : T, X — T,Y is a linear isomorphism between
oriented vector spaces, where T, is the tangent space. We let o(Dp) = 1 if D, preserves

orientation, and we let «(Dp) = —1 if D}, reverses orientation. We define the degree of f to
be
d(f;y) = Z a(Dp).
PEf(Y)

Here we note that the choice of y does not affect the degree, so we denote the degree of a
map f as d(f).

In other words, for every point p which is mapped to y by f and gets turned inside out by
the map, we subtract one from the degree, and we add one to the degree otherwise. It turns
out that the degree of a map is invariant with respect to manifolds which can be obtained
from each other via a regular homotopy. We start by introducing a few lemmas that will
help us with our proof.

Lemma 3.2. If f: X — Y extends to a smooth map F : Z — Y, then d(f;y) = 0 for every
Y.
We will take this lemma for granted, although a proof is provided in [Mil65].
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Lemma 3.3. Consider a regular homotopy F : [0,1] x X — Y between maps f, g satisfying
f(z) = F(0,2) and g(x) = F(1,x). For any common value y, d(g;y) = d(f;y).

Proof. Orient the manifold [0,1] x M™ as a cartesian product. Then the boundary will
consist of 1 x M"™ and 0 x M"™. We note that 1 x M" represents points for which the map

is orientation preserving, and 0 x M™ represents points for which F' is orientation reversing.
Then

d(F[0([0,1] x M");y) = d(g;y) — d(f;y) =0
by Lemma 3.2} so

as desired. |
Theorem 3.4. If two maps f and g are regularly homotopic, then d(f) = d(g).|Mil65|
Definition 3.5. Letting (¢) = (z(t), y(t)), we define the turning number ¢, to be
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Theorem 3.6. The turning number of a simple closed curve ~ is equivalent to that of all
simple closed curves vy, which can be obtained via reqular homotopies of =.
Proof. This follows from Theorem [

Theorem 3.7. There is no regular homotopy between the circle v(t) = (cost,sint) and
~,(t) = (cost, —sint).

Proof. Consider the turning numbers of the circle and the eversion of itself. We find that
the turning number of the circle is equal to

1 2 _: 2t+ 2t 1 27
1 reitideostt 1T
2r Jo  sin“t + cos?t 27 Jo
1
= — 27
2
=1,

while the turning number of its eversion is

1 27r_ . 21(:_ 2t 1 21
Lottt 1T,
2r Jo  sin®t 4+ cos?t 21 Jo
1 2m
=—— 1dt
2m Jo
=—1.

Since the two turning numbers are not equal, we find that there is no regular homotopy
between v and ;. [ |

Remark 3.8. This proof is equivalent to showing that the circle cannot be turned inside out
without creating a hole, tear or crease.
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For curves, the direction varies solely based on one parameter ¢. This allows us to establish
the turning number, which in the case of the circle easily allows us to show which curves can
be obtained from each other via regular homotopies. This allows us to connect the degree
of a map to a much simpler invariant, which we can calculate easily. In the case of surfaces,
finding an invariant proves to be a much more difficult task.

Definition 3.9. Consider a surface patch o (u,v), and consider the set U of points p such
that o(p), = 0. If a neighborhood exists such that the partial derivatives all have the same
sign, we let

and we let
a(p) = -1
otherwise. We then define the turning number of the surface patch o to be

g=">_ alp)

peU

We let the turning number of a surface S be the sum of the turning numbers of its surface
patches.

Theorem 3.10. Two surfaces S and Sy are reqularly homotopic if and only if theiwr turning
numbers are the same.

Instead of providing a formal proof, we provide some intuition as to why this should be
true. First of all, like the turning number for a curve, the turning number for a surface is a
measure of the change in direction of a map. As we perform a regular homotopy, it appears
that for each point we observe such that a(p) = 1 (visually a dome or a bowl), some other
point emerges such that a(p) = —1 (a saddle). The way that these figures interact with
each other makes the invariance of the turning number plausible. However, a formal proof
of this theorem required enough detail and technicality that mathematicians thought it was
incorrect for multiple years after it was published. The proof is available at [Sma59|.

Theorem 3.11. The everted sphere Sy is reqularly homotopic to the sphere Sy.

Proof. We can simply use the turning number to prove this fact; we notice that there are
no saddles in either Sy or Sy, so both have turning number 2 (as both the north and south
poles of the sphere contibute one to this value). [ |

4. CONCLUSION

We explored eversions of curves and surfaces, with a focus on the sphere and circle. We
finally proved that the circle is not regularly homotopic to an eversion of itself, but the sphere
is. As the proof that the sphere can be everted is extremely complicated, the subject of how
to evert the sphere has been much more well studied. Multiple methods exist, including the
tobacco-pouch eversion, minimax eversion, and others. More information and visualizations
of eversions of the sphere can be found in [Lev94].
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