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1 Introduction

In this paper, we are motivated by soap films. We will introduce the topic
of differential geometry and then dive into minimal surfaces. We will end by
solving two problems in minimal surfaces.

2 Soap Films

Anyone who has played with soap films will know they take on interesting
shapes. We are motivated in this paper to use the tools of differential geometry
to explain and explore the shapes of soap films. Sometimes, they form flat
sections of the plane, like in figure 1. Sometimes they form spirals like in figure
3. Sometimes they form a curve between two rings like in figure 2.

3 Differential Geometry Topics

Before we can discuss minimal surfaces, we must establish some definitions.
If the reader is already familiar with differential geometry, feel free to skip to
section 4.

3.1 Surfaces

A surface is any subset of R3 that looks like the plane at every point. Informally,
if you imagine the plane as a sheet of rubber, a surface is any shape you can
form by bending or stretching the rubber, and a surface can be made up of
multiple patches. We can formalize this.

Definition 3.1. A surface patch is any function σ : R2 → R3 from an open
subset U ∈ R2 in R2 to R3 that is a homeomorphism, i.e. σ is continuous
and its inverse σ−1 is continuous.

For example, to see how the surface path σ(u, v) = (u, v, u2 + v2) acts on
the open subset U = {(u, v) ∈ R2| − 5 < u < 5,−5 < v < 5}, look at figure 4.
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Figure 1: A Section of the Plane

Figure 2: A Curve Between Two Rings
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Figure 3: A Sprial

Figure 4: The surface patch σ(u, v) = (u, v, u2 + v2) acts on an open subset of
the plane
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Figure 5: Spherical Coordinates

Figure 6: A surface patch of a sphere

Definition 3.2. A subset S of R3 is called a surface if every point p ∈ S is
contained in a surface patch.

Example 1. A sphere is a surface because if we take the surface patch

σ(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ),−π

2
< θ <

π

2
, 0 < ϕ < 2π

The reasoning behind this parameterization is to give the sphere in terms of
spherical coordinates, see 5. If we do this, we get a sphere with a slice left out.
We cannot cover the sphere in just 1 patch because Each subset of U ∈ R2 must
be open by the definition, but a sphere is closed. In fact we often use multiple
surface patches to cover a surface. The second surface patch could be the same
as the first, just with the missing slice moved so that it does not intersect and
they both cover the entire sphere.

Example 2. A cylinder is a surface because it can be parametrized by the surface
patch

σ(u, v) = (cosu, sinu, v), 0 < u < 2π

just like the sphere, this patch leaves a slice uncovered. See 7

We can find a plane tangent to a surface at a point. We call this plane
the tangent plane. The tangent plane is spanned by the derivative of σ with
respect to u, which we denote as σu, and the derivative of σ with respect to v,
which we call σv. To see an example, look at figure 8.
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Figure 7: A surface patch of a cylinder

Figure 8: σu and σv on a sphere
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Figure 9: A unit normal vector drawn of a cylinder

3.2 Unit Normal Vector

Definition 3.3. The unit normal vector to a surface is defined as the vector
at a point that is tangent to the tangent plane at that point. It can be calculated
as

N =
σu × σv

∥σu × σv∥
For an example of the unit normal vector, look at figure 9.

Example 3. To see how to find the normal in figure 9, let

σ(u, v) = (sinu, cos v, u)

Then we have that

σu = (cosu,− sinu, 0),σv = (0, 0, 1)

We can calculate that

N =
σu × σv

∥σu × σv∥
= (sinu, cosu, 0).

This makes intuitive sense: the normal is contained in a disk around the cylinder.

3.3 Curvature

From intuition, we know that a plane is not curved, but a sphere is curved. To
formalize this, we will introduce the notion of mean curvature.

Definition 3.4. The Gauss Map is defined as a function G : S → S3 sends
every point p on a surface to it normal vector. A normal vector can be though
of as a point on a unit sphere, so the Gauss map sends every point on a surface
to a point on the unit sphere

Definition 3.5. The Weingarten Map is defined as the derivative of the
Gauss map. You can think about it as asking: when a point on a surface moves
from p1 to p2 how much does its normal change from N1 to N2? Look at figure
10.
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Figure 10: The Weingarten Map

Just like all derivatives, the Weingarten map is a linear operator, so we can
represent it as a 2 × 2 matrix. The Weingarten map is also symmetric, so we
can represent it as

W =

(
a b
b a

)
3.4 Mean Curvature

Definition 3.6. The Mean Curvature of a surface is defined as half the
trace of the Weingarten map, or

H =
1

2
tr(W)

Definition 3.7. The Principle Curvatures are defined as the eigenvectors
of the Weingarten map (since the Weingarten map is a matrix), i.e.

W(t1) = κ1t1, W(t2) = κ2t2

We call them κ1 and κ2

To see the principle curvatures, look at figure 11. The principle curvatures
can alternatively be thought of as the directions of most and least curvature.
For example, in figure 11, κ2 is the direction of most curvature and κ1 is the
direction of least curvature.

Example 4. See 12 to see the principle curvatures on a cylinder. κ1 goes up
the cylinder, and it has the least curvature of all directions because it has 0
curvature. κ2 goes around the circle, and it has the maximum curvature.

Theorem 3.8. The principle curvatures are always perpendicular.

Theorem 3.8 is a result of the Spectral Theorem (see [Hal63]) which says
that a self-adjoint operator has an ortho-normal basis.

In addition to definition 3.6, we can calculate H using the First Fundamental
Form.
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Figure 11: The Principle Curvatures

Figure 12: The Principle Curvatures on a Cylinder
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Theorem 3.9. For a surface where the first and second fundamental forms are,
respectively,

Edu2 + Fdudv +Gdv2, Ldu2 +Mdudv +Ndv2

The mean curvature can be calculated as

H =
LG− 2MF +NE

2(EG− F 2)

This theorem will be used later.

4 Minimal Surfaces

To mathematically model soap films, we use the definition of minimal surfaces.
In soap films, there is potential energy in the inter-molecular attractions be-
tween adjacent soap molecules. The potential energy is minimized when the
soap molecules are as close together as possible, which is when surface area is
minimized. This means that soap films seek to minimize surface area.

To formalize this notion of “minimizing surface area” we have the following
definition.

Definition 4.1. A minimal surface is defined as a surface where H = 0
everywhere.

We use this definition because it is formal, but now let us prove that this
definition minimizes surface area.

Theorem 4.2. A minimal surface has the minimum surface area among all
surfaces with the same boundary.

Proof. Let π be a simple closed curve and let int(π) be the area in the interior
of π. Let τ be a small variation in the surface patch σ. Let A(τ) be the surface
area. The area is

A(τ) =

∫
int(π)

dA =

∫
int(π)

∥σu × σv∥dudv =

∫
int(π)

N · (σu × σv)dudv

In calculus, a function is minimize when its derivative is 0, so let us find Ȧ.

Ȧ =

∫
int(π)

N · (σu × σv)dudv

Through a lot of algebra (if you want to see the full algebra go to [Pre10]) we
get

Ȧ(0) = −2

∫
int(π)

H(EG− F 2)
1
2αdudv

in this case when H = 0. This means the surface area is minimized when
H = 0
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Figure 13: a helicoid

Figure 14: The graph of the catenary y = 2 cosh x
2

4.1 Examples of Minimal Surfaces

Let us give some examples of minimal surfaces.

Example 5. Any open subset of the plane is a minimal surface.

This statement is pretty obvious, so I will not prove it. We saw this before in
figure 1. If you have a wire spiral and a wire rod going through the center, the
surface formed by a bubble mix is called a helicoid. Alternatively, a helicoid
is the shape swept out by the propeller of a plane as the plane flies along. We
saw a helicoid before in figure 3 The surface patch of a helicoid is

σ(u, v) = (u cos(v), u sin(v), av)

for some constant a. To see a helicoid, look at figure 13.

Example 6. The helicoid is a minimal surface. The first and second fundamental
forms are, respectively

(a2 + v2)du2 + dv2,
a√

a2 + v2
dudv

By theorem 3.9, we get

H =
LG− 3MF +NG

2(EG− F 2)
= 0

so the helicoid is a minimal surface.

The graph y = a cosh x
a is called a catenary (see figure 14). If we rotate

y = a cosh x
a about the x-axis, we get a surface called a catenoid (see figure

15).
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Figure 15: The graph of the catenoid σ(u, v) = (cosu cosh v, sinu cosh v, v)

Example 7. If you have 2 rings and dip them in soap, the film will form a
catenoid, as we saw in figure 2. The catenoid is a minimal surface. It is defined
by

σ = (cosu cosh v, sinu cosh v, v)

To prove that it is a minimal surface, use theorem 3.9,

H =
LG− 2MF +NE

2(EG− F )2
=

− cosh2 u+ cosh2 u

2 cosh4 4
= 0.

4.2 Theorems about Minimal Surfaces

Now that we have seen minimal surfaces, let’s prove some theorems about them.

Theorem 4.3. All surfaces of revolution that are minimal are either a catenoid
or an opens subset of the plane

Proof. The surface patch of a surface of revolution is

σ(u, v) = (f(u) cos v, f(u) sin v, g(u))

where f is the function being rotated and ḟ2 + ġ2 = 1. We can calculate that

H =
1

2

(
ḟ g̈ − f̈ ġ +

ġ

f

)
so

ff̈ = 1− ḟ2

Let h = ḟ , then

fh
dh

df
= 1− h2

and we integrate to get∫
hdh

1− h2
=

∫
df

f
=⇒ h =

√
a2f2 − 1

af

where a is some constant. Let h = df
du and integrate to get

f =
1

a

√
1 + a2u2.
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We computer au as
au = sinh a(g − c))

so we finally get

f =
1

a
cosh a(g − c)

This shape is a catenary, so the proof is done.

Theorem 4.4. If the Gaussian curvature of a minimal surface is not 0, then
the Gauss map is a diffeomorphism.

Proof. Let S be a minimal surface where the Gaussian curvature is 0 nowhere
(for example, a catenoid). Let σ : U → R3 be a surface patch of a S containing
a point p. Let p = σ(u0, v0). We can write

Nu ×Nv = Kσu × σv.

There is an open subset W of U containing (u0, v0) such that the restriction of
the mapN toW is injective. Then σ(W ) is an open subset of S containing p and
the restriction of G to σ(W ) is injective. This means it is a diffeomorphism.

5 Parker’s Problem

Question 5.1. In a talk (See [Par19]) , Matt Parker asks at what point a
catenoid of soap film becomes two disks when two rings are slowly moved apart.

Let’s assume for symmetry that the radius of the disks is 1, and one of the
disks is centered at the origin. See this graph for a 2d image https://www.

desmos.com/calculator/bbc8wbajjt. Let d be the distance between the 2
rings. If we imagine the 2-dimension case, in order for the catenary to pass
through the second ring, we must have

1 = a cosh
d

2a

We are going to calculate the area of the catenoid and the area of the disks.
The catenoid will be preferred by the soap film when it has the smaller area.
The area of the 2 disks is 2π. The area of any region R defined by a surface
patch σ(u, v) is ∫

R

∥σu × σv∥dudv

The surface patch of a catenoid is

σ = (a cosu cosh
v

a
, a sinu cosh

v

a
, a)

so

∥σv × σv∥ = a cosh
v

a

2
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This gives the total area of the catenoid as∫ d

0

∫ 2π

0

∥σv × σv∥dudv = aπ(d+ a sinh
d

a
)

We set the area of the disks equal to the area of the catenoid to get

2π = aπ(d+ a sinh
d

a
)

For the catenoid to be favored, we must have that the catenoid has less surface
area than the 2 disks, so

2 > ad+ a2 sinh
d

a
So we solve the system of equations

1 = a cosh
d

2a
, 2 = ad+ a2 sinh

d

a
First, I solved it numerically to get

d = 1.0553947939251433, a = 0.8255174536525105

We have answered Parker’s question: the catenoid will collapse into 2 disks
when the distance between the disks is greater than 1.05539. My experimental
data backs this up. I had two rings of radius each 4cm that formed a catenoid.
I confirmed that the catenoid collapsed when the rings were approximately 4cm
apart.

Later I came back to the problem and solved it exactly as

a = sech

(
1

2

(
W

(
1

e

)
+ 1

))
, d =

(
W

(
1

e

)
+ 1

)
sech

(
1

2

(
W

(
1

e

)
+ 1

))
where W is the product log function (also called the Lambert W function). To
learn more about the product log, see [Wei02].

Question 5.2. In response Parker’s Problem, I pose a related question. I ask,
imagine we have two rings forming a catenoid, but one ring is growing at a
constant rate. At what point does the soap film collapse into two disks?

Let x be the radius of the growing ring, and let the radius of the other ring
be 1. The area of the catenoid is∫ 2π

0

∫ cosh−1x

−cosh−11

coshu2dudv = π(x
√

−1 + x2 + cosh−1x)

and the area of the disks is
π(1 + x2)

so we have

1 + x2 = x
√
−1 + x2 + cosh−1x =⇒ x = 2.403624734253787165.

I’m not sure if this solution is correct.
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