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Abstract. In this article we will discuss calculus of variations. We will go over the basic
theory of calculus of variations. We will cover and prove the Euler-Lagrange Equations.
Finally, we will go over many applications of calculus of variations both in math and physics.

1. Introduction

First, we must define a functional.

Definition 1.1. A functional is any function that maps a function to a real number.

Next, we will go over examples of functionals.

Example. Take the functional F (y) =
∫ 1

0
y(x)dx.

We have F (y = x) =
∫ 1

0
xdx = 1/2

F (y = ex) =
∫ 1

0
exdx = e

Example. Two important functionals are the arclength functional, C, and the action, S.

C(f) =
∫ a

b

√
1 + ḟ(x)2dx, and S =

∫ t2
t1

L(t)dt, where in physics L = T − V is known as the

Lagrangian, where T and V are the kinetic and potential energies of the system respectively.
The Principle of Stationary Action states that a system will always move in such a way
between times t1 and t2 that has a stationary value of the action. This will be useful later
on.

Now we define informally what calculus of variations is.
Calculus of Variations is the branch of mathematics dealing with the optimization of func-
tionals using variational methods. Now, we will define the functional derivative.
First, consider an ordinary function f(y1, y2, . . . , yn). The total derivative of f is df =∑n

i=1
∂f
∂yi

∂yi. Now we consider a functional F (L(x)), and let L(x) be defined on [a, b]. While

f depends on the set {yi|i ∈ [n]}, F depends on the uncountably-infinite set {L(x)|x ∈ [a, b]}.
So out total derivative analogy would look something like

∑
δF

δL(x)
δL(x), with x continuously

ranging from a to b. We can turn this into the integral
∫ b

a
δF

δL(x)
δL(x)dx. And so our derivative

analogy for functionals should be δF
δL(x)

, leading us to the following definition.

Definition 1.2. The functional derivative of F is δF
δL(x)

with F and L(x) defined in the

previous section.

The functional derivative can be thought of as a directional derivative in the following
way. If we take η(x) to be an arbitrary function, and take the directional derivative of F in
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the direction of η(x), we get

lim
ϵ→0

F (L(x) + ϵη(x))− F (L(x))

ϵ
=

∫
δF

δL(x)
dx

We also see that δL(x) = η(x). So at a high level, a functional derivative is the change in a
functional when the function argument it takes is perturbed slightly.
Now we will go over a calculation of the functional derivative, and in the next section show
a simple way to calculate it using the Euler-Lagrange Equations.

Example. Consider the functional F (y(x)) =
∫ 1

0
y(x)2dx. In order to calculate the functional

derivative, let’s calculate F (y + δy) for a small change in y, δy:

F (y + δy) =

∫ 1

0

(y(x) + δy(x))2dx

=

∫ 1

0

y(x)2 + 2y(x)δy(x) + δy(x)2dx

= F (y(x)) +

∫ 1

0

2y(x)δy(x)dx+

∫ 1

0

δy(x)2dx

The last term goes to 0, and computing δF = F (y(x)+δy(x))−F (y) gives δF =
∫ 1

0
2y(x)δy(x)dx

This resembles our integral
∫ b

a
δF

δL(x)
δL(x)dx, and we can see that our functional derivative

δF
δy(x)

= 2y(x).

We can see that if the functional derivative of F (y(x)) with respect to y is 0, then a
perturbation in y won’t produce a first-order change in the functional. So we can think of y
as producing an extrema for F (y(x)). In calculus of variations, we optimize functionals, and
so calculus of variation problems are mostly concerned with our functional derivative being
0.

2. Euler-Lagrange Equations

The Euler-Lagrange equations are immensely important for calculus of variations prob-
lems, and make computing certain functional derivatives much easier:

Consider F (y(x)) =
∫ b

a
L(x, y, ẏ)dx. The Euler-Lagrange Equation states δF

δy(x)
= ∂L

∂y
−

d
dx

∂L
∂ẏ
.

Example. Let’s find the functional derivative of F (y(x)) =
∫ 1

0
= x3e−ydx. Taking L = x3e−y,

we have
δF

δy(x)
=

∂L

∂y
− d

dx

∂L

∂ẏ

=
∂x3e−y

∂y

= −x3e−y(x)

Now, we move onto the proof:
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Proof. Consider F (L) =
∫ a

b
Ldx. If we change L to L̃ = L+ ϵη, we have

L̃(x, ỹ, ˙̃y) = L(x, y, ẏ) + ϵ

(
η
∂L

∂y
+

dη

dx

∂L

∂ẏ

)
+O(ϵ2)

If we take limϵ→0
F (L̃)−F (L)

ϵ
to first-order in ϵ, we have

lim
ϵ→0

F (L̃)− F (L)

ϵ
=

∫ a

b

η
∂L

∂y
+

dη

dx

∂L

∂ẏ
dx

Now if we integrate the second term using integration by parts, we get

u =
∂L

∂ẏ

dv =
dη

dx
dx

And so our second term becomes

−
∫ a

b

η
d

dx

∂L

∂ẏ
dx

Now substituting this into our original integral gives

lim
ϵ→0

F (L̃)− F (L)

ϵ
=

∫ a

b

η

(
∂L

∂y
− d

dx

∂L

∂ẏ

)
dx

But using

lim
ϵ→0

F (L̃)− F (L)

ϵ

= lim
ϵ→0

F (L+ ϵη(x))− F (L)

ϵ
=

∫
δF

δL
ηdx

We see that
δF

δL
=

∂L

∂y
− d

dx

∂L

∂ẏ

proving the statement.
■

3. Applications

With the Euler-Lagrange Equation, we are ready to start solving important calculus of
variations problems.

Example. We first start with a standard mechanics problem:
Consider a point-mass m on a moving in a circle on a frictionless table with a massless
string attached to it. The string extends to the center of the table, where it drops down a
small hole. Underneath the table, it connects to a second point-mass M. Assume the string
remains taut with length l. Find the radius of the circle in which m rotates.

First, we can calculate the lagrangian of the system,

L = T − V =
1

2
Mṙ2 +

1

2
m(ṙ2 + r2θ̇2) +Mg(l − r)
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Using conservation of angular momentum, L, we can see

L2

2mr2
=

1

2
mr2θ̇2

Using the stationary action principle, we see that the functional derivative of our action, S,
must be zero, and using the Euler-Lagrange Equation we see

∂L
∂r

=
d

dt

∂L
∂ṙ

We can plug in T − V for L and see that

(M +m)r̈ =
L2

mr3
−Mg

During circular motion r̈ = 0, and thus our radius of motion is r0 = L2/Mmg. We can also
use our equation to do other things, like calculate the period of oscillation of our system
if we perturbed the rotating mass slightly in the radial direction. This method of solving
physics problems is known as the Lagrangian Method.

Example. Next we prove a classic statement: the shortest path between two points is a line.
Consider our functional

C =

∫ a

b

√
1 + ẏ2dx

We use the Euler-Lagrange Equation to see that

0 =
d

dx

ẏ√
1 + ẏ2

This implies ẏ√
1+ẏ2

= c for some constant c. Rearranging our equation gives ḟ 2 = c2

1−c2
, and

so f is clearly a line, proving the statement.

Example. In our final example, we consider a famous problem. Consider two points, and
the paths between them. The problem is to find the path such that a point-mass going
through each path under uniform gravitational acceleration starting at rest from one point
will take the least time to get to the other point. First, consider our time functional T (x) =∫ y0
0

dy
√
1+ẋ2√
2gy

=
∫ y0
0

Ldy. The Euler-Lagrange equations give

δT

δx
= 0− d

dy

∂L

∂ẋ
= 0

If ∂L
∂ẋ

= C = 1
2gy

ẋ√
1+ẋ2 , we can solve for x(y) =

∫
dy y√

2ay−y2
where a = 1

4C2g
. We can

evaluate this integral and use boundary conditions to find

x(y) = −
√
2ay − y2 + a cos−1 a− y

a
which is the equation of a cycloid, solving the problem.
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