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Abstract

In the first section we focus on the machinery needed for generalized
stokes’ in Rn a powerful higher dimensional analogue of the Fundamental
Theorem of Calculus, Green’s Theorem, Stokes’ Theorem, and Divergence
Theorem over a much more general type of space. Among the machinery
it introduces are that of tensors and differential forms. We finish off the
first section with a generalization of Gauss-Bonnet to all even-dimensional
hypersurfaces. The theory of tensors is used to introduce the reader to
exterior algebras, and we discuss various aspects of the wedge product.
The paper concludes with a reformulation of Maxwell’s laws as a single
equation.
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1 Generalized Stokes’

A note before we begin:
The proofs will be omitted because for them to be clear and not overly concise
would require them to be several pages in length. However, the proofs along
with more detail can be found in a few books. Our goal for this section is to
cover Generalized Stokes’ in Rn, and our main source for the Rn case is [8]
with [10] also being very helpful. [7] and [5] in particular were useful for the
definitions associated with manifolds.
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1.1 Manifolds and Orientation

We’re used to working in euclidean space, however, many things that work on
it work on locally euclidean space as well. So we don’t actually need euclidean
space, we just need something that is locally resembles it. That is essentially
what a manifold is. For example the earth is a manifold. Now, maps exist, this
should be pretty uncontroversial. So even though the earth isn’t actually flat,
we can still describe portions of it on a flat surface with negligible distortion to
reality. We will soon use this to describe something called charts and atlases.
Adding some additional structure can allow us to talk about smooth manifold
and do calculus on it. While we won’t actually venture beyond Euclidean space
here, manifolds provide us a very useful tool that eventually lets us generalize
many of the familiar theorems of calculus. The only type of manifold we will
consider here is a smooth manifold.

Before we do so, we define what is a topological manifold.

Definition 1 (Hausdorff). Let M be a topological space. M is Hausdorff if for
all distinct p, q ∈ M , there exists disjoint open subsets U, V ⊆ M , such that
p ∈ U and q ∈ V .

Definition 2 (Second-Countable). Let M be a topological space. M is second-
countable if there exists a countable basis of M .

Definition 3 (Locally Euclidean). Let M be a topological space. M is locally
Euclidean of dimension n if each point of M has a neighbourhood that is home-
omorphic to an open subset of Rn.

Definition 4 (Topological Manifold). Let M be a topological space. M is a
topological k-manifold ifM is Haussdorf, second-countable, and locally Euclidean
of dimension k.

Since we are only considered with the Rn case, then we only need to ever
worry about the Hausdorff condition since every subset of Rn is second-countable
and locally Euclidean of dimension n.

Now, we define a chart. What we are essentially doing here is cutting off
pieces of the manifold.

Consider the following problem. If we can only use flat pieces of paper, how
do we accurately map the earth? Now that might be kind of hard since the
earth is not flat(hopefully you were taught this) and so we can’t really make
a single flat map of the earth in all of its details without seriously distorting
it. However, every part of the earth, if you zoom in close enough, is relatively
flat. So what we can do is make a map of each small part of the earth(chart),
then collect them together to form an atlas, which can describe each part of
the earth pretty well with very little distortion. If you actually took each piece
and physically stitched them together, you’d get a rough approximation of the
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earth. And if we allow for a bit of stretching and bending then we get several
perfect maps of the earth. In fact, you could cover a globe with parts of the
atlas. So then we take this idea and run with it, although it might seem to get
a bit lost in a sea of terminology.

Definition 5 (Chart). Let M be a topological k-manifold. A chart on M is
a pair (U, ϕ) where U is an open subset of M and ϕ : U → Û = ϕ(U) is a
homeomorphism. By definition of a topological manifold, each point p ∈ M is
contained in the domain of some chart (U, ϕ). We say the chart is centred at p
if ϕ(p) = 0. Note that we can obtain a chart centred at p by subtracting from ϕ
the constant vector ϕ(p). We will sometimes write ϕ in terms of its component
functions as (x1, · · · , xn) which we will call local coordinates. You may also
sometimes see these written in superscript elsewhere instead of subscript.

There’s a specific type of topological manifolds called smooth manifolds
which is the kind with which we will be working with. To define them, we
will need to define what smoothness means for maps in general. The definition
of C∞ you are probably familiar with is the one that says it is smooth if it has
continuous partial derivatives of all orders. However, we encounter a problem
when the domain of a mapping is not open, then there are points on which the
partial derivative is not defined, and so we extend this definition a bit. We only
need the mapping to be able to be extended locally to a smooth map on open
sets, which yields the following definition.

Definition 6 (Smooth Maps). A function f : X → Rm where X ⊆ Rm is called
smooth if for each x ∈ X, there exists an open set x ∈ U ⊆ Rn and a smooth
map F : U → Rm such that F = f on U ∩X.

We now define a more convenient homeomorphism called a diffeomorphism.

Definition 7 (Diffeomorphism). A smooth function f : U → V is called a
diffeomorphism if it has a smooth inverse and is bijective.

Note: For our purposes, all charts will be diffeomorphisms.

Now that we can slice off parts of the manifold with coordinate patches, we
need a way to collect them all, which we will an atlas, now there’s actually a
specific type of atlas we’re looking for called a smooth atlas which is used to
define a smooth manifold.

Definition 8 (Transition Map). LetM be a topological manifold. If (U, ϕ), (V, ϕ)
are two charts such that U ∩ V ̸= ∅, ψ ◦ ϕ−1 is called the transition map from
ϕ to ψ.

Definition 9 (Smoothly Compatible). We call two charts (U, ϕ), (V, ψ) smoothly
compatible if either U ∩ V = ∅, or the transition map is a diffeomorphism.

Definition 10 (Smooth Atlas). Let M be a topological manifold. We define an
atlas A of M to be a collection of charts whose domains cover M . We call A a
smooth atlas if any two charts in A are smoothly compatible.
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Definition 11 (Maximal Atlas). Let M be a topological manifold. A smooth
atlas A on M is maximal if is not a proper subset of another smooth atlas.
Sometimes this is referred to as a complete atlas instead of a maximal atlas.

Definition 12 (Smooth Structure). Let M be a topological manifold. A smooth
structure on M is a maximal smooth atlas.

Definition 13 (Smooth Manifold). Let M be a topological manifold. A smooth
manifold is a pair (M,A), where M is a topological manifold and A is a smooth
structure on M .

We now make a distinction. There is a definition of boundary you are prob-
ably familiar with, the one that says any neighbourhood containing a boundary
point of a set will contain points from both the set and its complement. This is
not to be confused with the definition we’ll be using here.

Definition 14 (Upper Half Space). The subset Hk of k-tuples (x1, · · · , xk) ∈
Rk, such that xk ≥ 0 is called the upper half plane of Rk. Hk

+ is the set of all
k-tuples(x1, · · · , xk) ∈ Rk, such that xk > 0

Definition 15 (Topological Manifold with Boundary). A k-dimensional topo-
logical manifold with bounday is a second-countable Hausdorff space M in which
every point has a neighbourhood homeomorphic to an open subset of Rk or a
relatively open subset of Hk.

This is a more general definition than the one we gave before of a manifold,
and so we will adjust our existing definitions to be compatible with this one.

Definition 16 (Chart, again). An open subset U ⊆ M combined with a map
ϕ : U → Rn that is a homeomorphism onto an open subset of Rn or Hn is called
a chart for M .

The rest of the terms needed for manifolds are defined analogously(e.g.
Smooth Manifold With Bounday)

Note: We will only be working with Smooth Manifolds with boundary

Definition 17 (Boundary and Interior of Manifold). Let M be a k-manifold
with boundary in Rn, let α : U → V be a coordinate patch about the point
p ∈M .

1. If U is open in Rk, then p is an interior point of M .

2. If U is open in Hk and if p = α(x0) for xo ∈ Hk
+, then p is an interior

point of M .

3. If U is open in Hk and p = α(x0) for x0 ∈ Rk−1 × 0, then p is a boundary
point of M .
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The set of all boundary points is called the boundary of a manifold and is denoted
∂M , not to be confused with Bd M

Here’s a nice little lemma that becomes useful.

Lemma 1. Let M be a manifold with boundary in Rn, and let α : U → V be
a coordinate patch on M . If U0 is a subset of U that is open in U , then the
restriction of α to U0 is also a coordinate patch on M

The other definitions are analogous as we switch from manifold to manifold
with boundary. For example, a smooth structure is still defined as the maximal
smooth atlas, and M along with the smooth structure is called a smooth man-
ifold with boundary, and so on.

The next topic to be discussed is orientation, which can be a bit confusing.
Orientation of manifolds comes into play later on once we get to integration on
manifolds, it’s like a generalization of how flipping around the order of integra-
tion in an integral will flip the sign.

Definition 18 (Orientation Preserving). We call a diffeomorphism α orien-
tation preserving if det(Dα) > 0. For two diffeomorphisms αi : Ui → Vi and
αj : Uj → Vj, if Vi ∩ Vj is nonempty, then the transition map is defined as
αj ◦ α−1

i

Definition 19 (Orientable Manifold). We call an atlas an oriented atlas if for
any two overlapping charts (Ui, αi) and (Uj , αj), the transition map is orienta-
tion preserving. If there exists an oriented atlas for a manifold M , then we call
call M an orientable manifold.

Definition 20 (Orientation). We call a maximal oriented atlas of a manifold
its orientation

Definition 21 (Oriented Manifold). Let M be an orientable manifold. M ,
together with an orientation of M is called an oriented manifold.

On a curve, it’s possible to the reverse the direction of travel and thus the
orientation, so we define something similar for this version of orientation.

Definition 22 (Reflection Map). Let r : Rk → Rk be the reflection map
r(x1, x2, · · · , xk) = (−x1, x2, · · · , xk)

Definition 23 (Reverse/Opposite Orientation). LetM be an oriented k-manifold
in Rn. If αi : Ui → Vi is a coordinate patch on M belonging to the orientation
of M , let βi be the coordinate patch

βi = αi ◦ r : r(Ui) → Vi
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We can check that βi is not part of the same orientation as αi.

det(Dα−1
i ◦ βi) = det(Dα−1

i ◦ αi ◦ r)

= det


−1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .

0 0 0 · · · 1


= −det(In)

= −1

Furthermore, as it so happens, each βi forms an orientation as well, which we
call the reverse(or opposite) orientation to that given by αi.

Now, if you look at enough manifolds you might realize something interest-
ing, if the manifold has a nonempty boundary, then the boundary itself is a
manifold, just in one less dimension. We state this in the following theorem.

Theorem 1. Let M be a k-manifold in Rn, of class Cr. If ∂M is non-empty,
then ∂M is a k-1 manifold without boundary in Rn of class Cr

You may have noticed that we’ve defined orientation for manifolds, and not
manifolds with boundaries. This is not the same for every book, in particular [8]
and [10] define the induced orientation to compensate whereas [7] simply extends
the definition. Since we are mostly following [8], we will take their approach.
Now that we know that the boundary is a manifold, is it also orientable? As
it turns out, yes it is. However we first need a method of finding coordinate
patches to cover ∂M .

Definition 24 (Restricting Coordinate Patches to ∂M). Let U0 be the open
set of Rk−1 such that U0 × 0 = U ∩ ∂Hk If x ∈ U0, we define α0(x) = α(x, 0).
By our definition of boundary point, α0(x) must be a boundary point. It then
follows from lemma 1 that α0(x) is a coordinate patch on ∂M .

Theorem 2. Let k > 1. If M is an orientable k-manifold with non-empty
boundary, then ∂M is orientable.

While we won’t explicitly mention it here, there is a choice of a ”natural
orientation”, and as it turns out, every manifold has at last two orientations.
The natural orientation and its reverse orientation. Connected manifolds have
exactly two orientations.

Definition 25 (Induced Orientation). Let M be an orientable k-manifold with
nonempty boundary. Given an orientation µ of M , the corresponding induced
orientation of ∂M is defined as follows. If k is even, it is the orientation obtained
by restricting(recall definition 24) coordinate patches belonging to the orientation
of M . If k is odd, it is the opposite of the orientation of ∂M obtained in this
way
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1.2 Differential Forms

Differential forms involve a lot of abstraction and it’s hard to see the point at
times. Here we do not present a picture of what they represent, but rather why
they exist, and why the abstractions. The definition of a differential form is, as
was put here, something that can be integrated. The weird part is that these
layers of seemingly endless abstraction give way to a very elegant generalization
of all the fundamental theorems of calculus in any number of dimensions, called
Generalized Stokes’(GS). It lends itself to many more purposes beyond GS but
GS will be the focus of this section. We will stick to the real numbers here
as the technicality increases massively in generalizations. We will primarily be
using [8] and to a lesser extent [10] here. Check out [7] if you are interested in
a much more general discussion.

To start, we first introduce a generalization of a linear map called a tensor,
which uses the same idea.

Definition 26 (Tensor). Let V be a vector space and vi ∈ V for all i ≤ k. A k-
tensor is a function f : V k → R that is linear in each variable. In other words,
if c1 and c2 are scalars, then for all i ≤ k, f(v1, · · · , c1vi1 + c2vi2 , · · · vk) =
c1f(v1, · · · , vi1 , · · · , vk) + c2f(v1, · · · , vi2 , · · · , vk). We denote the space of all
k-tensors on V by Lk(V ).

Tensors are the first thing we generalize. A 0-tensor is a scalar, a 1-tensor is
a linear map, a 2-tensor is a bilinear map(e.g. inner product), and so on. Notice
that a linear map has a matrix representation of a vector when it has only 1
variable as input. So then a tensor field, depending on the degree of the tensor,
could either be a scalar field, a vector field, a field of matrices, and of multilin-
ear maps in general. This idea becomes important later, as you might be able
to see. Instead of having to integrate a function over a loop or a vector field
over a surface, you only need a tensor field. However, we further divide tensors
into symmetric and antisymmetric(aka alternating) tensors, and as it turns out,
alternating tensors have the right properties for integration. However, to get to
it we first juggle around some terms.

We’ve established that tensors are a generalization of vectors so you may be
wondering if a tensor can be represented in terms of a basis, and the answer is
actually yes!

Theorem 3. Let V be a vector space with basis a1, · · · , an. Let I = (i1, · · · , ik)
be a k-tuple of integers from the set {1, · · ·n}. There is a unique k-tensor ϕI on
V such that, for every k-tuple (j1, · · · , jk) from the set {1, · · ·n},

ϕI(aj1 , · · · , ajk) =

{
0 if I ̸= J

1 if I = J

The tensors ϕI for Lk(V ). We call ϕI the elementary k-tensors on V corre-
sponding to the basis a1, · · · , an for V . We can also define something called the
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elementary tensors denoted ϕi and defined as

ϕi(aj) =

{
0 if i ̸= j

1 if i = j

It has the property that if dI = f(ai1 , · · · , aik), then f =
∑
I

dIϕI

Now that we have all of this, we want a way to multiply two tensors and have
the result still be a tensor, and in the cases that we are discussing, this comes
together as something called the tensor product. Similar to how multiplication
adds the exponents of two numbers that have the same base in exponential form,
we define something called a tensor product which adds together the orders of
two tensors

Definition 27 (Tensor Product). The tensor product of a k-tensor f and an
ℓ-tensor g denoted f ⊗ g is defined by

f(v1, · · · , vk)⊗ g(vk+1, · · · , vk+ℓ) = f(v1, · · · , vk) · g(vk+1, · · · , vk+ℓ)

The tensor product f ⊗ g is a tensor of order k + ℓ

Since the tensor product in this case is just multiplication, you might (cor-
rectly) guess that it would share some of the properties of multiplication. We
list them in the following theorem

Theorem 4. Let f, g, h be tensors on V . Then the following properties hold:

1. (Associativity) f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h

2. (Homogeneity) (cf)⊗ g = c(f ⊗ g) = f ⊗ (cg)

3. (Distributivity) Suppose f and g have the same order. Then:

(f + g)⊗ h = f ⊗ g + g ⊗ g

h⊗ (f + g) = h⊗ f + h⊗ g

This is a good time to describe what the word alternating means in the con-
text of alternating tensors. While we haven’t defined them yet, it does give a bit
of a glimpse as to why the next few pieces of terminology are important. Alter-
nating in this case means that it is signed. The funny thing about alternating
tensors is that it is actually the determinant, and like the determinant, switch-
ing around terms will result in it alternating between positive and negative.
It’s hard to see the purpose and while there probably exists some long-winded
explanation,we can also just say ”It just works”. Explanations would probably
include mention of Theorem 6. For now, we must trudge through.
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Definition 28 (Permutation). A permutation is a bijection from {1, · · · , n} to
itself. Given 1 ≤ i ≤ k, an elementary permutation ei is defined by

ei(vj) =


vi j = i+ 1

vi+1 j = i

vj j ̸= i, i+ 1

We denote the symmetry group on n elements by Sn

Let’s talk about permutations as shuffling cards. Any shuffle of cards can be
done as some sequence of card swaps(swapping the position of two cards), and
swapping the position of any two cards can be done by a sequence of swapping a
card with the card next to it in a specific pattern. It then follows that every card
shuffle is just the composition of some number of card swaps between immediate
neighbours. Bringing this into the language of math, we can see that this is a
specific case of the following lemma

Lemma 2. If σ ∈ Sk, then σ is a composition of elementary permutations.

Definition 29 (Sign of Permutation). Let σ be a permutation. We define the
sign of σ denoted sgn σ to be 1 if σ is the composition of an even number of
elementary permutations and -1 if it is the composition of an odd number.

Definition 30 (Permutation on Tensor). If σ is a permutation of {1, · · · , k}
and f is a k-tensor, then fσ(v1, · · · , vk) = f(vσ(1), · · · , vσ(2)).

As it turns out, the function sgn has some nice properties, which we list
here.

Lemma 3. Let σ, τ ∈ Sk

1. If σ equals a composite of m elementary permutations, then sgn σ =
(−1)m

2. sgn (σ ◦ τ) = (sgn σ) · (sgn τ)

3. sgn σ−1 = sgn σ

4. if p ̸= q, and if τ is the permutation that exchanges p and q and leaves all
other integers fixed, then sgn τ = −1

Now we have the tools necessary to define an alternating tensor.

Definition 31 (Alternating Tensor). If f : V k → R is a k-tensor, then f is
said to be alternating if fei = −f for all i. In other words,

f(v1, · · · , vi+1, vi, · · · , vk) = −f(v1, · · · , vi, vi+1, · · · vk)

for all 1 ≤ i ≤ k We call the space of all alternating k-tensors on a vector space
V , Ak(V )
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Lemma 4. Let σ, τ ∈ Sk

1. If σ equals a composite of m elementary permutations, then sgn σ =
(−1)m

2. sgn (σ ◦ τ) = (sgn σ) · (sgn τ)

3. sgn σ−1 = sgn σ

4. if p ̸= q, and if τ is the permutation that exchanges p and q and leaves all
other integers fixed, then sgn τ = −1

We now introduce a nicer way to represent an alternating tensor, and show-
ing another connection between permutations and alternating tensors

Lemma 5. The tensor f is alternating if and only if fσ = (sgn σ)f for all σ

Recall how we had the elementary k-tensor, we now do the same here by
defining the elementary alternating k-tensor, which we do right now.

Theorem 5. Let V be a vector space with basis a1, · · · , an. let I = (i1, · · · , ik)
be an ascending k-tuple from the set {1, · · · , n}. There is a unique alternating
k-tensor ψI on V such that for every ascending k-tuple J = (j1, · · · , jk) from
the set {1, · · · , n},

ψI(aj1 , · · · , ajk) =

{
0 if I ̸= J

1 if I = J

The tensors form a basis for Ak(V ). The tensor ψI satisfies

ψI =
∑
σ∈Sk

(sgn σ)(ϕI)
σ

Lastly, we have this tidbit of information which shows how alternating ten-
sors are a generalization of the determinant.

Theorem 6. Let ψI be an elementary alternating tensor on Rn corresponding
to the usual basis for Rn, where I = (i1, · · · , ik). Given vectors (x1, · · · , xk) of
Rn, let X be the matrix X = [x1, · · · , xk]. Then

ψI(x1, · · · , xk) = detXI

where XI denotes the matrix whose successive rows are rows i1, · · · , ik

We’ve shown how we can define a basis for alternating tensors, just as with
normal tensors, and so it is only natural that we now define a product for
alternating tensors. The problem with the tensor product is that f ⊗ g is rarely
alternating, even if f and g are.
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Definition 32 (Wedge Product). To define the wedge product, we first define
a transformation Alt : Lk(V ) → Lk(V ) by

Alt F =
∑
σ

(sgn σ)Fσ

where σ extends over all permutations on {1, · · · , k} The wedge product of an
alternating k-tensor f and an alternating ℓ-tensor g on V defined by

f ∧ g =
1

k!ℓ!
A(f ⊗ g)

f ∧ g is an alternating k + ℓ-tensor

The coefficient 1
k!ℓ! may seem strangely out of place here but it is used in this

case for associativity although some texts will use other, similar, coefficients.

Theorem 7. Let V be a vector space. For f ∈ Ak(V ), g ∈ Aℓ(V ), h ∈ Am(V ),
the following properties hold

1. (Associativity) f ∧ (g ∧ h) = (f ∧ g) ∧ h

2. (Homogeneity) (cf) ∧ g = c(f ∧ g) = f ∧ (cg)

3. (Distributivity) If f and g have the same order,

(f + g) ∧ h = f ∧ h+ g ∧ h
h ∧ (f + g) = h ∧ f + h ∧ g

4. (Anticommutativity) If f and g have orders k and ℓ, respectively, then

g ∧ f = (−1)kℓf ∧ g

We now reach the differential parts and the first thing we do is define the
tangent space.

Definition 33 (Tangent Space). Given x ∈ Rn, we define a tangent vector to
Rn at x to be a pair (x, v), where v ∈ Rn. The set of all tangent vectors to Rn

at x is called the tangent space of x at Rn and is denoted Tx(Rn).

We can extend this definition to manifolds in general, but before we do that
we need to define something called the transformation induced by a differential
map.

Definition 34 (Transformation Induced by Differentiable Map). Let A be open
in Rk or Hk, let α : A → Rn be of class Cr. Let x ∈ A and let p = α(x). We
define a linear transformation α∗ : Tx(Rk) → Tp(Rn) by the equation

α∗(x, v) = (p,Dα(x) · v)

This is called the transformation induced by the differentiable map α
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Now we can define the tangent space on manifolds.

Definition 35 (Tangent Space on Manifolds with Boundary). Let M be a k-
manifold with boundary of class Cr in Rn. If p ∈M , choose a coordinate patch
α : U → V about p where U is open in Rk or Hk. Let x be the point of U such
that α(x) = p. The set of all vectors of the form α∗(x, v), where v is a vector
in Rk, is called the tangent space to M at p, and is denoted Tp(M).

Since Rk is spanned by e1, · · · , ek, Tp(M) is spanned by the vectors (p,Dα(x) · ej) =(
p, ∂α

∂xj

)
which form a basis for Tp(M)

We can now give a generalization of the scalar and vector field here. Instead
of a scalar or a vector, we assign a k-tensor to each point(Recall a 0-tensor is a
scalar and a 1-tensor is a vector when there is only a single variable input).

Definition 36 (Differential Form). Let A be an open set in Rn. A k-tensor
field in A is a function ω assigning to each x ∈ A a k-tensor ω(x) defined on
Tx(Rn). If each ω(x) is an alternating tensor, then we call ω a differential form
of order k or simply k-form. The set of all (C∞) k-forms on A is denoted Ωk(A)

Recall how earlier we defined elementary tensors, now we do the same except
for forms.

Definition 37 (elementary forms). Let e1, · · · , en be the usual basis for Rn.
Then (x, e1), · · · (x, en) is called the usual basis for Tx(Rn). We define a 1-form

ϕ̃i(x)(x, ej) =

{
0 if i ̸= j

1 if i = j

called an elementary 1-form on Rn. This is often denoted dxi. Using this
notation, given an ascending k-tuple I = (i1, · · · , ik) from the set {1, · · · , n} we
define a k-form

dxI = dxi1 ∧ · · · ∧ dxik
The k-forms dxI are called the elementary k-forms on Rn

A property that becomes very useful is dxi ∧ dxi = 0.
There are a few important properties of these elementary forms. The first

is that they are C∞. The second is that if ω is a k-form, then we can write the
k-tensor ω(x) uniquely as

ω(x) =
∑
[I]

bI(x)ψ̃I(x)

for some scalar functions bI(x), which we call components.
We now define something called the differential of a 0-form.

Convention:
Henceforth, we restirct ourselves to manifolds, maps, and forms of class C∞
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Definition 38 (Exterior Derivative). Let A be open in Rn. Let f : A → R be
a function of class Cr. We define a 1-form df on A by df(x)(x, v) by

df(x)(x, v) = f ′(x, v) = Df(x) · v

Where Df(x) denotes the derivative of f at x. Note that here, we are assigning
a 1-tensor df(x) to the point x and v is an input to df(x). The 1-form is called
the differential of f and is of class Cr−1. Now we define d on k-forms for k > 0.
If ω is a k-form, we can write it uniquely as

ω =
∑
[I]

fIdxI

and define

dω =
∑
[I]

dfI ∧ dxI

We denote the set of all C∞ k-forms by Ωk(A)

The differential(d) operator has some nice properties. For instance, it has
an analaogue of the product rule but it also has the property that the second
differential vanishes.

Lemma 6. 1. The operator d is linear on 0-forms

2. The operator d is linear on k-forms for k > 0

Theorem 8. Let A be an open set in Rn. There exists a unique linear trans-
formation

d : Ωk(A) → Ωk+1(A)

defined for k ≥ 0 such that

1. If ω and ν are of orders k and ℓ respectively, then

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

2. For every form ω,
d(dω) = 0

We now are only missing one more piece of the puzzle before we will have
arrived at integration, and that is the pullback.

Definition 39 (Pullback). Let A be open in Rk, let α : A→ Rn be of class C∞,
let B be an open set of Rn containing α(A). We define a dual transformation of
forms(Pullback) α∗ : Ωℓ(B) → Ωℓ(A) as follows: Given an ℓ-form ω on B with
ℓ > 0, we define an ℓ-form α∗ω on A by the equation

(α∗ω)(x)((x, v1), · · · , (x, vℓ)) = ω(α(x))(α∗(x, v1), · · · , α∗(x, vℓ))
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The following theorem is useful primarily for computational purposes, al-
though it does get used in the proofs as well.

Theorem 9. Let A be open in Rk, let α : A → Rm be a C∞ map. Let B be
open in Rm and contain α(A), let β : B → Rn be a C∞ map. Let ω, η, θ be
forms defined in an open set C of Rn containing β(B), assume ω and η have
the same order. The transformations α∗ and β∗ have the following properties:

1. β∗(aω + bη) = a(β∗ω) + b(β∗η)

2. β∗(ω ∧ θ) = β∗ω ∧ β∗θ

3. (β ◦ α)∗ω = α∗(β∗ω)

We have all of this theory, but we still don’t really have a simple way to
compute the pullback for elementary k-forms, which we rectify with the following
theorem.

Theorem 10. Let A be open in Rk, let α : A→ Rn be a C∞ map. Let x denote
the general point of Rk, let y denote the general point of Rn. Then dxi and dyi
denote the elementary 10forms in Rk and Rn respectively.

1. α∗(dyi) = dαi

2. If I = (i1, · · · , ik) is an ascending k-tuple from the set {1, · · · , n}, then

α∗(dyI) =

(
det

∂αI

∂x

)
dx1 ∧ · · · ∧ dxk,

where
∂αI

∂x
=
∂(αi1 , · · · , αik)

∂(x1, · · · , xk)

However, note that even with this theorem, it is still difficult to compute
α∗(dyI) for larger k values, where I = (i1, · · · , ik). We simplify this task using
the below theorem.

Theorem 11. Let A be open in Rk, let α : A→ Rn be of class C∞. If ω is an
ℓ-form defined in an open set of Rn containing α(A), then

α∗(dω) = d(α∗ω)

1.3 Integrating Forms Over Manifolds

To start off here, we need to first define what the integral of a form over an
oriented manifold is. To do so, we first define the integral over a subset of Rk.

Definition 40 (Integral of a Form over a Subset of Rn). Let A ⊂ Rn be open,
let η be a k-form defined in A. Then η can be written uniquely as

η =
∑
I

fidxi1 ∧ · · · ∧ dxik

14



However, since the integral is linear, we will only need to consider the k-form
η = fdx1 ∧ · · · ∧ dxk . We define the integral of such an η over A by∫

A

η =

∫
A

f

if the latter integral exists

This gives new meaning to
∫
fdx, we now see fdx as a 1-form, thus giving

the dx a use.

Definition 41 (Integral of a Form over a Manifold with Boundary). Let M be
a compact oriented k-manifold with boundary in Rn. let ω be a k-form defined in
an open set of Rn containing M . Let C =M ∩ (supportω), then C is compact.
Suppose there is a coordinate patch α : U → V onM belonging to the orientation
of M such that C ⊂ V . Be replacing U with a smaller set if necessary, we can
assume that U is bounded. We define the integral of ω over M by∫

M

ω =

∫
int U

α∗ω

Here, int U = U if U is open in Rk, and int U = U ∩ Hk
+ if U is open in Hk

but not in Rk

Notice that we can write α∗(ω) as hdx1 ∧ · · · ∧ dxk for some C∞ scalar
function h. Thus by definition,∫

int U

α∗ω =

∫
int U

h

It can be shown that h is indeed integrable over U and thus also over int U as
well as

∫
M
ω being well-defined, and independent of choice of coordinate patch.

You may have noticed that this definition isn’t for the general case. For the
general case we use partitions of unity.

Definition 42 (Integration of Forms over Oriented Manifolds with Boundary).
Let M be a compact oriented k-manifold with boundary in Rn. Let ω be a k-
form defined in an open set of Rn containing M . Cover M be coordinate patches
belonging to the orientation of M , then choose a partition of unity ϕ1, · · · , ϕℓ on
M that is dominated by this collection of charts on M . We define the integral
of ω over M by ∫

M

ω =

ℓ∑
i=1

(∫
M

ϕiω

)
Following this definition, we have the usual properties of the integral, given

be the following theorem.
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Theorem 12. Let M be a compact oriented k-manifold in Rn. Let ω, η be
k-forms defined in an open set of Rn containing M. Then∫

M

(aω + bη) = a

∫
M

ω + b

∫
M

η

If −M denotes M witht he opposite orientation, then∫
−M

ω = −
∫
M

ω

While this suffices for theoretical purposes, for computational purposes we
must introduce another theorem.

Theorem 13. Let M be a compact oriented k-manifold in Rn. Let ω be a k-
form defined in an open set of Rn containing M . Suppose that αi : Ai → Mi,
for i = 1, · · · , N , is a coordinate patch on M belonging to the orientation of
M , such that Ai is open in Rk and M is the disjoint union of the open sets
M1, · · · ,MN of M and a set K of measure zero in M . Then∫

M

ω =

N∑
i=1

(∫
Ai

α∗
iω

)
We are now left in a position to understand the statement of Generalized

Stokes’.

Theorem 14. Let k > 1. Let M be a compact oriented k-manifold in Rn give
∂M the induced orientation is ∂M is not empty. Let ω be a k-1 form defined in
an open set of Rn containing M. Then∫

M

dω =

∫
∂M

ω

if ∂M is nonempty and
∫
M

dω = 0 if ∂M is empty.

We can use Generalized Stokes’ to rederive Green’s Theorem, all we need to
do in this case is to show that for a compact 2-manifold M oriented naturally,
with ∂M being given the induced orientation, that for a 1-form Pdx + Qdy
defined in an open set of R2 about M ,∫

∂M

Pdx+Qdy =

∫
M

(D1Q−D2P )dx ∧ dy

which follows immediately from Generalized Stokes’. Generalized Stokes’ Is
hidden behind a mountain of definitions and results and we end up with this
unassuming result. However, with our rushed approach with a single goal in
mind, we have neglected the many other tools we’ve developed. In the next
part, we discuss a use of all this terminology by generalizing Gauss-Bonnet us-
ing some of it. However, this application to differential geometry extends far
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beyond just Gauss-Bonnet. You can in fact extend much of Differential Ge-
ometry with it. Using this language of forms brings us into the math of the
20th century, with its most famous application being General Relativity. [9]
talks about many of the applications of forms in differential geometry. It uses a
phrase to describe this abstract machinery which nicely encapsulates it. They
call it ”The Devil’s Machine”, it takes away geometric insight and much visual
insight but in return gives an amazingly effective tool.

Something which has not been mentioned here until now is the seemingly bizarre
definition given for induced orientation. It is defined the way it does because
as it turns out, changing dimensions is like playing hopscotch with the normal
vector field on the boundary. This definition was given so that the normal field
would stay consistent even as we switched dimensions. A major limitation on
this section is that we stay in Rn, and there are certainly more manifolds and
much more out there but we stayed in Rn because it gets vastly more com-
plicated when we leave, [7] covers such a case along with many more topics.
Something else that was always bubbling right underneath the surface was the
connection of forms to algebra. This will be seen very apparently in the next
portion of this section as we cover an application of the terminology with the
definition of derivations. Going further with all of this does eventually lead to
contact with algebra, and it becomes used extensively. The terminology covered
so far in this section allows a reformulation of many classical theorems of Vec-
tor Calculus and even such things as Maxwell’s Equations, and heading in the
opposite direction we see it being used in Exterior Algebra, which is covered in
the next section(section, not subsection)

1.4 Gauss-Bonnet Theorem

More connected to differential geometry, we can introduce a vast generalization
of the Gauss-Bonnet Theorem. To do so, we will need to generalize surfaces
to hypersurfaces and introduce some new terminology. This will be very short
with just a brief look into it. The main books used here are [5] and [7], although
[8] is also used sometimes.

We begin by defining a hypersurface. To do so, we use another approach to
tangent spaces and tangent vectors called derivations. At first glance, it doesn’t
seem to have any connection to the tangent vector we are familiar with, how-
ever, all directional derivatives are secretly a derivation. In fact, the connection
runs even deeper than this.

Definition 43 (Derivation). Let M be a smooth manifold with boundary. A
linear map v : C∞(M) → R is called a derivation at p if v(fg) = f(p)vg+g(p)vf
for all f, g ∈ C∞(M).The set of all derivations of C∞(M) at p, is the tangent
space to M at p, with any derivation being called a tangent vector at p.

It’s a bit confusing but it’s useful. Now we define something called the
differential.
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Definition 44 (Differential). Let M,N be smooth manifolds with boundary and
F : M → N a smooth map. For each p ∈ M we define a map dFp : TpM →
TF (p)N called the differential of F at p as follows. Given v ∈ TpM , we let
dFp(v) be the derivation at F (p) that acts on f ∈ C∞(N) by the rule

dFp(v)(f) = v(f ◦ F )

Now we can define an immersion, which is essentially asking ”What is the
most we can ask for from a mapping between manifolds of different dimensions?

Definition 45 (Immersion). Let X,Y be manifolds with dim(X) < dim(Y ).
Then, we call f an immersion at x if the differential is injective at x. If this is
true for every point, we simply call f an immersion.

Definition 46 (Hypersurface). Let M be a manifold with boundary and N a
manifold such that dimM −dimN = 1. Given an injective immersion f : N →
M , f(N) is a hypersurace in M .

We define the curvature as the Jacobian determinant of the Gauss map. We
can now state this version of the Gauss-Bonnet Theorem

Theorem 15. If X is a compact, even-dimensional hypersurface in Rk+1, then∫
X

κ =
1

2
ykχ(X)

where yk is the surface area of the unit k-sphere Sk and χ(X) is the Euler
Characteristic of X.

There are however even more general versions of this theorem.
By setting k = 2, we get∫

X

κ =
1

2
4πχ(X) = 2πχ(X)

which is the familiar Gauss-Bonnet Theorem.

2 Exterior Algebra

2.1 The Wedge Product

We now turn our attention to the use of tensors in exterior algebra, a powerful
tool that allows us to relate tensors to the geometry of space. We begin by
looking at bilinear mappings, which are basically mappings that take in two
vectors and are linear in both inputs.

Note that in all definitions below, vector spaces are assumed to be over an
arbitrary field F.

Definition 47. Suppose E,F,G are vector spaces, and consider a mapping
ϕ : E × F → G. We call ϕ bilinear if it satisfies
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1. For x1, x2 ∈ E, y ∈ F, λ, µ ∈ F,

ϕ(λx1 + µx2, y) = λϕ(x1, y) + µϕ(x2, y)

2. For x ∈ E, y1, y2 ∈ F, λ, µ ∈ F,

ϕ(x, λy1 + µy2) = λϕ(x, y1) + µϕ(x, y2)

If G = F, then ϕ is called a bilinear function.

We can extend the concept of bilinear maps to an arbitrary number of vectors
to get the definition of a p-linear mapping.

Definition 48. Suppose we are given p+ 1 vector spaces Ei (1 ≤ i ≤ p), G. A
mapping ϕ : E1 × · · · × Ep → G is called p-linear if for all 1 ≤ i ≤ p,

ϕ(x1, . . . , λxi + µyi, . . . , xp) = λϕ(x1, . . . , xi, . . . , xp) + µϕ(x1, . . . , yi, . . . , xp),

where xi, yi ∈ Ei, λ, µ ∈ F. In the case G = F, the mapping is called a p-linear
function.

We can now redefine the tensor product as in Section 1, but now in terms
of bilinear mappings.

Definition 49. The tensor product of two vector spaces E and F is a pair
(T,⊗), where ⊗ : E ×F → T is a bilinear mapping with the universal property
that for every mapping ϕ : E×F → H there exists a unique linear map T → H
such that Figure 1 commutes.

E × F

T

H

⊗
f

ϕ

Figure 1

The space T , which exists and is uniquely determined by E and F up to an
isomorphism, is also called the tensor product of E and F and is denoted by
E ⊗ F .

We will now prove the uniqueness of the tensor product. The existence is
slightly more complicated, but can be seen in [4]. Suppose that we had ⊗ and ⊗̃
bilinear mappings onto spaces T and T̃ , resp. Then there is linear isomorphism
f : T →̃ T̃ such that f(x⊗y) = x ⊗̃ y where x ∈ E, y ∈ F and linear isomorphism
g : T →̃ T̃ such that g(x ⊗̃ y) = x⊗y by the diagram. By these, gf(x⊗y) = x⊗y
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and fg(x ⊗̃ y) = x ⊗̃ y and therefore gf and fg are the identity mappings on T
and T̃ , respectively. Therefore f and g are inverse isomorphisms and so T and
T̃ are isomorphic.

Using the new definition of tensor product, we can develop the concept of a
tensorial power in terms of p-linear maps. The definition of a tensorial power
then gives us the definition of a tensor itself. Now, these definitions are the
same as above, but it is useful to view them in this new lens as we will define
the exterior algebra similarly.

Definition 50. Let E be a vector space. For each p ≥ 2, the pair

(⊗Ep,⊗p) = E ⊗ · · · ⊗ E︸ ︷︷ ︸
p times

is called the pth tensorial power of E, as is the space ⊗pE, whose elements are
called tensors of degree p. We can extend this definition to p ∈ {0, 1} by setting
⊗1E = E and ⊗0E = F.

For more on the tensor algebra, see [4].
Before defining the exterior algebra, we first define skew-symmetric mappings

based on the effects that permutations on the input of p-linear mappings have
on the outputs of such mappings. Essentially, a mapping is skew-symmetric if
any transposition of its inputs flips the sign of its output.

Definition 51. Let E and F be two vector spaces and let

ϕ : E × · · · × E︸ ︷︷ ︸
p times

→ F

be a p-linear mapping. The every permutation σ on p elements determines
another p-linear mapping σϕ given by

σϕ(x1, . . . , xp) = ϕ(xσ(1), . . . , xσ(p)).

A p-linear mapping is called skew-symmetric if σϕ = εσϕ, where εσ = ±1
depending on whether the permutation is (respectively) even or odd.

The exterior power is one such skew-symmetric mapping.

Definition 52. The pth exterior power of a vector space E is a pair (A,∧p),
where A is a vector space and

∧p : E × · · · × E︸ ︷︷ ︸
p times

→ A

is a skew-symmetric p-linear mapping with the universal property that if

ϕ : E × · · · × E︸ ︷︷ ︸
p times

→ H
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E × · · · × E︸ ︷︷ ︸
p times

A

H

∧p
f

ϕ

Figure 2

is a skew-symmetric p-linear mapping, there is a unique linear map f : A→ H
such that Figure 2 commutes.

The space A, which is uniquely determined up to an isomorphism, will also
be called the pth exterior algebra of E and is denoted by ∧pE. The elements of
∧pE are called p-vectors.

The uniqueness and existence arguments here are similar as above (see [4]).
Now that we have these definitions in place, we can look at what exterior

powers allow us to do in practice. As an aside, we can begin by noting that the
entirety of section 1 was due to exterior algebras, as they were used to define
differential forms. Note that ∧ is also known as the wedge product (this was also
defined in the previous section, but our new definition above provides another
lens through which to view them).

We can begin by thinking of wedge products geometrically. In real spaces,
we can imagine p-vectors as oriented p-parallelepipeds sitting in Rn. This geo-
metric intuition provides a basis and a high-level conceptual understanding of
the properties of the wedge product that follow.

One key feature of wedge products in Rn is that they provide a unified
approach to expressing geometric objects that encapsulates such notions as de-
terminants as well as cross-products and scalar triple products (in R3). Let’s
look at cross-products first. Consider R3 under the standard basis {i, j,k}, and
choose u = u1i+ u2j+ u3k,v = v1i+ v2j+ v3k ∈ R3 arbitrarily. Then

u ∧ v = (u1v2 − u2v1)(i ∧ j) + (u2v3 − u3v2)(j ∧ k) + (u3v1 − u1v3)(i ∧ k).

Notice that the coefficients here match those of the cross-product, except
that we have a 2-vector as a result of this wedge product. As a result, we have
an oriented parallelogram with the same orientation as the cross product. Thus
we can generalize the cross-product through the wedge product, as we can find
coefficients for 2-vectors in ∧2(Rn) obtained as a result of the wedge product
of two vectors in Rn. Intuitively, this generalized cross product provides us
oriented n-parallelepipeds that will have edges parallel to the vectors that we
wedge, rather than the n-dimensional vectors that we would have expected to
get as a result of the cross-product. The relationship with the cross product
will be made more explicit in the next section.
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We can also look at determinants. Although the calculations are omitted
here, the magnitude of the 2-vector of the wedge of two 2-D vectors v ∧ w ∈
∧2(R2) in terms of the standard basis matches up with the determinant of the
transformation associated with those vectors. Similarly, the magnitude of the 3-
vector of the wedge of three 3-D vectors in ∧3(R3) is the same as the determinant
of the transformation associated with those vectors. In general, we have that
for v1, . . . , vn ∈ Rn the magnitude of the n-vector v1 ∧ · · · ∧ vn in terms of the
standard basis is equal to

det

v1

...
vn

 .

In the language of differential forms, we refer to nonzero elements of the space
∧n(V ) as volume forms, for a vector space V with dimension n.

As an aside, note that for a finite-dimensional vector space V , where dimV =
n, the vector space ∧p(V ) has dim∧p(V ) =

(
n
p

)
. This is because we have n basis

vectors for V , and can choose p vectors to wedge together in
(
n
p

)
ways.

Ultimately, the wedge product provides us a way to encapsulate and gener-
alize various geometric notions by using p-vectors, unifying various geometric
”languages” within mathematics. A plethora of visual aids relevant to this
section can be found in [2].

The wedge product also provides a basis for a coordinate-free approach to
linear algebra (see [11]).

2.2 Hodge Duality

We proceed by looking at the duality of the exterior algebra under the Hodge
star operator. More information about this duality can be found in [3]. Formally,
we restrict ourselves to the case where V is a finite-dimensional inner-product
space and define the Hodge star on V as follows:

Definition 53. The Hodge Star operator is a linear operator on the exterior
algebra ∧p(V ) that maps p-vectors to (n− p)-vectors such that

α ∧ ⋆β = ⟨α, β⟩(ω) ∀α, β ∈ ∧p(V ),

where ω is the volume form obtained by wedging vectors in an oriented orthonor-
mal basis of V .

A dual definition of the Hodge star is in terms of determinants: for any
vectors α, β ∈ ∧p(V ), we have that det(α ∧ ⋆β) = ⟨α, β⟩.

The Hodge Star operator is similar to the orthogonal complement in linear
algebra. Essentially, this is because we can think of exterior products as being
analogous to the span of all linear combinations of vectors from two subspaces
(although these two concepts have differences, as the span is itself a subspace
while the wedge product is a p-vector). Since the wedge of a p-vector α with
the Hodge star of another p-vector β is an n-vector with determinant ⟨α, β⟩, we
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can think of α∧⋆β as an n-parallelepiped and α as a p-parallelepiped with edge
vectors parallel to α∧ ⋆β. Thus ⋆β is an (n− p)-parallelepiped whose edges are
parallel to the vectors that are the edges of α ∧ ⋆β but not edges of α.

The relationship between the Hodge star, wedge product, and cross product
is expressed in the formulas below:

⋆(u ∧ v) = u× v, ⋆(u× v) = u ∧ v.

2.3 The Geometric Algebra

One algebra intimately linked to the exterior algebra is the geometric algebra.
This algebra utilizes both the wedge product and inner product to define a
geometric product by the formula ab = a · b + a ∧ b. It is more standard to
formulate the geometric product axiomatically and define the dot and wedge
in terms of the geometric product, but we will not do so here for the sake of
brevity.

For example, if we find the geometric product of two parallel vectors, we
reason by skew-symmetry of the wedge product that the geometric product is
equal to the inner product in this case. Similarly, for orthogonal vectors the
inner product is 0 so the geometric product is equal to the wedge product.

Note that the geometric product inherently adds quantities that may not
be of the same ”type:” the inner product of two vectors is a scalar, while their
wedge is a 2-vector. Thus the principal objects of geometric algebras are not
p-vectors, but instead ”multivectors” that are the sum of various p-vectors that
we can write informally as something in the general form

n∑
p=0

xp xp ∈ ∧pE.

Now, we can write Maxwell’s equations in terms of the geometric product. Recall
that Maxwell’s equations are

∇ ·D = ρ,

∇ ·B = 0,

∇×E = −∂B
∂t
,

∇×H = J+
∂D

∂t
.

With geometric algebra, we can combine these four equations into a single
equation (see [6] for a full derivation in an arbitrary number of dimensions). In
3-D, we note that the pseudoscalar (the basis element resulting from taking the
geometric product of all 3 basis vectors) squares to −1 and therefore behaves
like the imaginary unit i. Thus we will refer to this pseudoscalar as i. Set
F = E+ icB, and we call F the field multivector; we can also set J = ρ− J to
be the current multivector. We find that, after defining ∇ analogously to how
it is defined in vector calculus, ∇F = J .
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Intuitively, this reformulation makes sense because we have that

∇F = ∇ · F +∇∧ F = ∇ · F + i∇× F,

and therefore it’s easy to see that the scalar component is Gauss’ law, the vec-
tor component is Ampere’s law, the psuedovector component (the component
with basis elements resulting from the geometric product of two basis vectors)
is Faraday’s law, and lastly Gauss’ law for magnetism is the pseudoscalar com-
ponent. Thus the use of geometric algebra allows us to generalize Maxwell’s
laws (see [6]) in a clean way.
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