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Abstract. In this paper, we introduce coordinate systems, manifolds, holo-
nomic constraints, differential forms, and constructs from symplectic geometry.
We also discuss how they apply to classical mechanics and help us understand
the motion of objects in our 3-dimensional world.

1. A Symple Introduction

To be able to describe the motion of objects, we first must create a founda-
tion of vocabulary and notation to avoid confusing language (though I will not
deny symplectic geometry can have intimidating symbols). We begin with some
definitions:

Definition 1.1 (Coordinate Map). Take some space M in d-dimensions and some
open subset of Rd. In addition, consider an open subset of M , which we will call
U . A coordinate map ψ is a homeomorphism ψ mapping U to some open subset
of Rd.

Definition 1.2 (Coordinate System). Any pair (U,ψ) is called a coordinate sys-
tem or a coordinate chart. 1

As we will see, defining coordinate systems on manifolds will be very helpful in
specifying position, momentum, and paths of objects in classical mechanics.

In addition, it helps easily define what a locally Euclidean space is:

Definition 1.3 (Locally Euclidean Space). A space M is a locally Euclidean
space if such a local coordinate system exists around every point in M . In other
words, consider any point p ∈ M . Also, consider the set of points in M close to
p, denoted by U . In other words, let ε > 0 be any sufficiently small real number,
Γ be the set of all paths from p to q along the manifold, and U = {q ∈ M :
infγ∈Γ

∫ q
p ∥γ̇∥dt < ε}. Then, there exists a homeomorphism ψ that maps U to Rd.

Locally Euclidean spaces are nice and easy to work with, which jives well with
the purpose symplectic geometry: to focus on simplistic cases.

Remark 1.4. Another way to simplify things is to assume that every map or
function one works with is infinitely differentiable. This assumption can be seen in
numerous definitions of the subject.

We also have transition functions that takes us from one coordinate chart to
another. More formally,
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1Definitions taken from [Tob17].

1



2 ANANT ASTHANA

Figure 1. A pictorial representation of the idea discussed in the
paragraph above.

Definition 1.5 (Transition Function). Say we have two coordinate systems (U1, ψ1)
and (U2, ψ2). A transition function is a function q : ψ1(U1 ∩ U2) → ψ2(U1 ∩ U2)
2.

Notice how if U1 = U2, we could still have two different coordinate systems on
the same set, and could give rise to a transition function.

We can consider multiple different coordinate systems at once:

Definition 1.6 (Smooth Atlas). A smooth atlas A on a locally Euclidean space
M is a collection of coordinate systems {(Ui, ψi) | i ∈ I} (where I is just some
indexing set) such that

(1) All points are covered by at least one chart, i.e.
⋃

i∈I Ui =M , and
(2) For any two Ui ⊆ M and Uj ⊆ M , ψi ◦ ψ−1

j , a.k.a the transition function
between ψj(Ui ∩ Uj) → ψi(Ui ∩ Uj), is smooth for all i, j ∈ I, and

(3) For any two p,q ∈ M such that p ̸= q, there exist U1, U2 ⊆ M such
thatp ∈ U1, q ∈ U2, and U1 ∩ U2 = ϕ. This last condition is also known as
the Hausdorff condition.

Sometimes, the word atlas is replaced by the word differentiable structure,
though they signify the exact same construct.

The term atlas is actually quite fitting here. You can imagine a set of atlases
inside a book with world maps; say there was a map of Alaska on two consecutive
pages, and part of the second page also showed part of West Canada. Then, after
flipping the page, the next two consecutive pages cover mostly Canada, but on
the left page there is a slight part of eastern Alaska. The rightmost part of the
previous two pages and the leftmost part of the current two pages overlap, i.e.
show the same region. This overlap can be considered the space of the transition
functions between ψi(Ui ∩ Uj) and ψj(Ui ∩ Uj), where Ui represents the last two
pages, and Uj represents the new two pages (or a subset of them which overlap).

Remark 1.7. For simplicity, we will refer to smooth atlases simply as atlases.

2[Wol] plus some modification of language to fit that of the paper
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We also have an extension of this concept, which is more commonly used in
symplectic geometry:

Definition 1.8 (Maximal Atlas). A maximal atlas Amax is a smooth atlas that
also satisfies the following property: if (Uo, ψo) is a coordinate system such that ψo

satisfies the properties of Definition 1.6 and for all i ∈ I, ψi = ψo, then (Uo, ψo) ∈
Amax . In other words, we cannot add new coordinate systems to this atlas.

Definition 1.9 (Smooth Manifold). Consider a set M of d-dimensions. Then,
the set M along with any atlas on that set would define a smooth manifold of
d-dimensions, or simply a manifold.

As we will see, manifolds are a useful construction that we can use to describe
and analyze motion or objects. In particular, the tangent space of the manifold is
involved:

Definition 1.10 (Tangent Space). The tangent space to a manifold M , denoted
as TM , is the set of all vectors tangent to M at any point. For example, letting
TpM denote the set of vectors tangent to M at p, then we have

TM =
⋃

p∈M

TpM.

We can make this definition more rigorous by using equivalence classes and
coordinate systems in the following manner:

Let there be a smooth function γ : (−ε, ε) → M such that γ(0) = p and we
consider the interval (−ε, ε) as the time interval. Furthermore, define the equiva-
lence relation ∼ such that γ1 ∼ γ2 if and only if there exists some coordinate chart
(U,ψ) for which p ∈ U and

d

dt
|t=0ψ(γ1(t)) =

d

dt
|t=0 ψ(γ2(t)).

Then, TpM is the set of tangent vectors, which are divided into equivalence classes
by the relation ∼.

Remark 1.11. In the rigorous definition above, to make the picture more intuitive,
realize that ψ(γ1(t)) and ψ(γ2(t)) are the result of taking every point on γ1 or γ2

and expressing them as points in U in terms of the new coordinate system (U,ψ).
Then, the derivative of ψ(γ1(t)) at t = 0 being equal to the derivative of ψγ2(t))

at
t = 0 is equivalent to the condition that the speeds of the curves at t = 0 are the
same.

Now, we approach the mechanics side of symplectic geometry.

2. Mechanics-related Symplectic Geometry

Up until now, the terms we have defined in the previous section have been
seemingly unrelated to the world of classical mechanics. However, now, they provide
us with a nice basis for how to express the motion of objects in our 3-dimensional
world on manifolds.

However, as many of us know from experience, to understand the motion of
objects, we must set constraints on its motion and give it a definite path, which we
usually denote as γ.
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Definition 2.1 (Holonomic Constraints). Holonomic constraints are a set of
functions outlining the possible points that γ could contain. In other words, at
any point in time, if the object is anywhere along the path γ and has coordinates
(u1, u2 . . . , ud) on a d−dimensional coordinate system, then those coordinates must
satisfy the equations f(u1, . . . , ud, t) = 0, which known as the holonomic con-
straints.

Remark 2.2. There also exist velocity-dependent constraints, which are functions
that take in u̇i as inputs for any 1 ≤ i ≤ d. These are known as non-holonomic
constraints.

Example 2.3. Describing the holonomic constraints for simple systems is actually
quite easy. A simple example is a car moving on a 2-dimensional coordinate system
along the x-axis, in which case the holonomic constraint is given by y = 0.

Example 2.4. Let’s look at a slightly more involve example: say you are standing
at the edge of a cliff of height ho above the ground and throw a ball horizontally
with initial velocity vo. In this case, the ball follows a parabolic path, so γ is a
subset of the set of points described by the equation y = −x2+ho (though we could
include a degree 1 term involving x as well, we can define the coordinate system in
such a way that we can void over-complication).

Example 2.5. Finally, let’s take a look at a bob on a pendulum of length L.
For instance, consider a pendulum with a weight located at (x, y) attached to a
rigid string of length L. Then, we can describe the pendulum bob’s motion as
x2 + y2 − L2 = 0.

From these holonomic constraints, we can define a configuration space (also
known as a constraint manifold) that describes the change in the coordinates of the
object per unit time at each point. For instance, say the directional vector uq, a
d−dimensional vector, describes the change in the coordinates at a certain point q
on γ. Then, the constraint manifold C =

⋃
q∈γ uq.

Example 2.6. Let’s return to the case of the ball being thrown off the edge of a
cliff, and derive its configuration space. We know that the x-component of velocity
remains constant at ẋ = vo. For the y-component, we realize that at t = 0 (the
instant the ball is released from your hand), dy

dt |t=0 = 0. However, ÿ = d2y
dt2 = −g,

where g is the acceleration due to gravity (g = 9.8m/s2). We can rearrange to get
d2y = −gdt2. After integrating both sides, we get that at time t, dy = −gt. Thus,
the configuration space is u = (vo,−gt).

Remark 2.7. Symplectic geometry, besides a way to describe mechanics, is also a
form of geometry which focuses on area and volume rather than lengths. This is
clearly evident in the repeated use of the exterior product, denoted by ∧. It is
defined such that v∧w is equal to the signed area of the region defined by the two
vectors, i.e. the area of the region swept by v as it moves along w from head to
tail (Figure 3). There are some important properties of the exterior product:

(1) Firstly, v ∧ v = 0 for any vector v.
(2) Secondly, v ∧ w = −w ∧ v for any vectors v,w.

As we will see soon, the exterior product plays a key role in the construction of
symplectic manifolds.
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Figure 2. Two vectors of which we are about to take the
exterior product.

Figure 3. The exterior product is the area swept out by one of
the vectors as it moves along the other.

3. More Symplectic Definitions

On the foundations of the current set of definitions we have created, we continue
with more involved definitions, bringing us to why symplectic geometry really mat-
ters in mechanics. We continue the introduction of differential forms:

Definition 3.1 (1-form). A differential 1-form on a d-dimensional manifold M
takes the form

d∑
j=1

Fj(u1, u2, . . . , ud)duj ,

where each Fj is a function on an n-dimensional manifold M that outputs a real
number, and each uj for 1 ≤ j ≤ n represents the vector of magnitude uj along the
jth-axis.

It turns out we can derive the conservation of energy using a special property of
1-forms, namely:



6 ANANT ASTHANA

Proposition 3.2. Let there be a closed 1-form ω = F1dx + F2dy + F3dz, so that
dω = 0 (where d is the exterior derivative) and F1, F2, F3 are all 1-differentiable
functions. Then, there exists a 2-differentiable function, namely β, such that dβ =
ω.

In this situation, the exterior derivative of ω (a.k.a the de Rham derivative
of ω), is evaluated in the following manner:

dω =
∂ω

∂x
+
∂ω

∂y
+
∂ω

∂z
= F1,xdx ∧ dx + F1,ydx ∧ dy + F1,zdx ∧ z

+ F2,xdy ∧ dx + · · ·+ F3,zdz ∧ dz
= 0 + F1,ydx ∧ dy + F1,zdx ∧ z + F2,xdy ∧ dx + · · ·+ 0

= F1,ydx ∧ dy + F1,zdx ∧ dz + F2,xdy ∧ dx + F2,zdy ∧ dz+
F3,xdz ∧ dx + F3,ydz ∧ dy
= (F1,y − F2,x)dx ∧ dy + (F1,z − F3,x)dx ∧ dz + (F2,z − F3,y)dy ∧ dz.

More information regarding the exterior derivatives of higher-dimensional differ-
ential forms can be found at [Pen20b].

Example 3.3 (Conservation of Energy). Imagine the force vector field F = F1i+
F2j + F3k, where i, j,k represent the unit vectors in the x, y, z directions, respec-
tively, and F1, F2, F3 are 1-differentiable. Suppose that ∇ × F = 0 (here, ∇× is
the vector-field-equivalent of derivative), i.e. F is closed (a.k.a conservative as in
classical physics). Then, by the proposition, there exists a 2-differentiable function,
which we call the potential energy, such that

F = −∇P,

i.e. F is equal to the negative gradient of the potential energy of an object.
Now, consider the velocity vector V = (u̇1, . . . , u̇d) . Then, the kinetic energy K

is given by K = 1
2m∥V∥2. By Newton’s 2nd Law, we also have that F = mV̇. In

the special case that F is conservative (no energy is lost due to friction, heat, etc.,
i.e. we have a nice system), F satisfies Proposition 1, and thus we can substitute
F = −∇P . Now, we can rewrite K = 1

2mV · V, and after some manipulation, we
end up with

d

dt
(K + P ) = 0,

which is exactly the Law of Conservation of Energy. 3

We can state this as follows:

Physical Law (Conservation of Energy). In a physical system with no non-conservative
forces acting on the system, the mechanical energy, a.k.a the sum of the kinetic and
potential energies of the system, remains constant.

However, we will use the 2-form more often than the 1-form, which is a higher-
dimensional analog of the 1-form, defined as follows:

3Example taken from [Ara16].
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Definition 3.4 (2-form). A differential 2-form, essentially a higher-dimensional
analog of a 1-form, is written as

ω =

n∑
i=1

n∑
j=1
i ̸=j

Fj(u1, u2, . . . , un)dui ∧ duj ,

using notation similar to that of Definition 3.1.

Typically, we evaluate the differential 2-form by first considering a specific point
p ∈ M , converting this from a differential 2-form to simply a 2-form, which is a
bilinear form ωp (we will cover this later in the paper) such that ωp : TpM×TpM →
R. Then, computing the exterior product is similar to calculating the cross product,
since the action of the exterior products on the set of the original vectors, for
instance dui ∧ duj(ui,uj), gives a 2 × d matrix with the d components of ui in
the first row, and the d components of uj in the next row. The exterior product is
simply the determinant of this matrix 4.

Remark 3.5. Actually, the true interpretation of a differential 2-form also requires
another condition, which states that ωp varies smoothly (when referring to 2-forms,
we will assume this condition is met).

Example 3.6. For instance, consider the case when n = 3 (which most accurately
describes our planet, commonly believed to exist in 3 dimensions). Then, the 2-form
in 3 dimensions would be

ω = F1(x, y, z)dx ∧ dy + F2(x, y, z)dy ∧ dz + F3(x, y, z)dx ∧ dz.

We also have one more concept that is based off of the idea of differential forms:

Definition 3.7 (Pull-back). Say F is a smooth map from one manifold to another,
say F : M → N . Then, the pull-back of F , denoted F ∗, is a smooth map from
the vector space of 2-forms on N to the vector space of the 2-forms on M . This
means that wor any p ∈M and q ∈ N such that F (p) = q, then F ∗(ω2,q) = ω1,p.

We can imagine the pull-back is a map we get for free between the constructs
on N and the constructs on M automatically when we define a map from M to
N . One could also imagine it as the inverse (though not technically) of F but on a
different set of constructs.

Now, we define the basic construct in symplectic geometry: the symplectic man-
ifold.

Definition 3.8 (Symplectic Manifold). A smooth manifoldM with an even number
of dimensions along with a differential 2-form on that manifold, called the sym-
plectic form and denoted by ω, is considered a special kind of manifold, known
as a symplectic manifold, if
(a) dω = 0, i.e. ω is closed, and
(b) For any v ∈ TM , ω(v, w) = 0 implies w = 0; i.e. ω is non-degenerate.
5

Remark 3.9. The reason to specify that M has an even number of dimensions as
above will become evident later during discussion of the Linear Darboux Theorem.

4[Pen20a]
5Definition taken from [Jef22].
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Figure 4. A graphical representation of the pull-back of a
function. F maps the dark blue triangle to the green triangle.

The green diamond represents the space of the differential
2-forms on the green triangle, while the blue diamond represents

the space of the differential 2-forms on the blue triangle. The
pull-back of F , F ∗, maps the green diamond to the blue diamond.

Of course, we can also consider maps between symplectic manifolds:

Definition 3.10 (Symplectomorphism). A symplectomorphism S is a diffeo-
morphism from two symplectic manifolds (M1, ω1) and (M2, ω2) S : M1 → M2

which has a pull-back acting on the space of 2-forms on M2 that outputs elements
of the space of 2-forms on M1. We consider M1 and M2 as manifolds and ω1, ω2

their differential 2-forms, respectively.

In other words, a symplectomorphism is a set of two maps that essentially came
with a construct-one-get-one-free deal.

It turns out that symplectomorphisms are transitive, though we will not be
proving that in this paper.

Let’s look at a few examples of symplectic manifolds:

Example 3.11. Suppose we have an orientable d-dimensional manifold M , i.e.
there exists a volume form ω (i.e. a differential d-form, a higher dimensional analog
of the 2-form that involves exterior products of d vectors at a time). Then, since
volume forms are nondegenerate on orientable surfaces and are closed (we leave this
as an excercise to the reader to show), (M,ω) is a symplectic manifold.

Example 3.12. Say (M,ω) is a any symplectic manifold. Then, for any open
subset U ⊆M , (U, ω) is also a symplectic manifold.
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Example 3.13. The d-dimensional torus Td = S1 × S1 × · · · × S1 (where the
right-hand side involves d terms) with the symplectic form

ω =

n∑
i,j=1
i̸=j

dui ∧ duj

together constitute a symplectic manifold. 6

The Linear Darboux Theorem gets us closer to some insight on how to understand
these abstract constructions. Before introducing the theorem, we cover a few quick
definitions:

Definition 3.14 (Bilinear Forms). Take a vector space V . A bilinear form B is
a map B : V × V → R that satisfies the following properties:

(1) For any u,v,w ∈ V , B(u + v,w) = B(u,v) + B(u,w) and B(u + w,v) =
B(u,v) + B(w,v), and

(2) For any scalar λ ∈ R, B(u, λv) = B(λu,v) = λB(u,v).

Remark 3.15. A differential 2-form can also be viewed a continuous map from Rd

to the set of all alternating bilinear forms on V × V .

Definition 3.16 (Alternating and Non-degenerate Bilinear Forms). A bilinear form
is considered alternating if B(v,v) = 0 for all v ∈ V . A nondegenerate bilinear
form is one such that for any two vectors v,w ∈ V , B(v,w) = 0 implies that one
of v or w is 0.

We can now state the theorem:

Theorem 3.17 (Linear Darboux). Let there be a vector space V of d dimensions.
Then, if there exists an alternating non-degenerate bilinear form B : V × V → R,
then d must be even.

Proof. The idea of the proof follows along the lines of induction. For the base case,
consider any vector v ∈ V . Then, due to the non-degeneracy property of B, there
exists some v′ ∈ V such that B(v,v′) = 1. Thus, there does not exist a scalar λ for
which B(v, λv′) = 0, which means that v′ is not a scalar multiple of v (otherwise
due to B(v,v) = 0, the output of the bilinear form acting on v and v′ would also
be 0). Thus, V must have at least two dimensions.

Now, we move on to the inductive step. Consider the set V = {w ∈ V |
B(v,w) = B(v′,w) = 0}. In other words, V contains the vectors that are scalar
multiples of either v or v′. Due to the non-degeneracy condition, this set must have
d − 2 dimensions, and also has its own alternating non-degenerate bilinear form.
Therefore, we can combine this basis of vectors with v and v′ and end up with V ,
which must have an even number of dimensions. □

Corollary 3.18. A corollary of the theorem above is that all symplectic manifolds
have an even number of dimensions.

This is why in the definition of a symplectic manifold, we must state that the
dimension of the manifold is even (or it can be implied by the corollary above).

There is yet another theorem (by Darboux once more) which presents even more
information regarding symplectic manifolds:

6Both examples above were taken from [WanAD].
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Theorem 3.19 (Darboux). Every symplectic d-dimensional manifold (M,ω) is
locally symplectomorphic to (Rd, ωRd), where ωRd is a symplectic form on Rd 7.

The idea of the proof is given a d-dimensional manifold M and its symplectic
form along with the symplectic form of Rd, there is only one diffeomorphism from
M to Rd. We will not be proving this theorem in this paper8.

However, we will be including a corollary that one can derive from this theorem:

Corollary 3.20. Every d-dimensional manifold is symplectomorphic to each other.

What this is essentially saying is that every d-dimensional symplectic manifold
is equivalent to every other. This has huge applications, especially in the field of
contact geometry.

There are numerous more interesting properties of symplectic manifolds that this
paper did not cover, and this is still an ongoing area of research. In fact, this field
is so new that some believe the foundations for the topic are too weak to properly
define abstracts [HM19].

4. Conclusion

In this paper, we have introduced coordinate systems and maps; manifolds and
atlases; holonomic constraints and configuration spaces; differential forms; and con-
structs from symplectic geometry, including symplectic manifolds and symplecto-
morphisms. We also discuss how they apply to classical mechanics and simplify the
process of describing the motion of objects. For instance, holonomic constraints and
configuration spaces are a very natural way to translate the motion of real-world
objects into the language of manifolds. In addition, differential forms allow us to
understand force and prove the Law of Conservation of Energy. Finally, constructs
from symplectic geometry enable us to investigate some interesting properties in
this area.
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