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MEAN CURVATURE FLOW

AMIT SAHA

Abstract. Mean curvature flow is a fascinating field discussing the evo-
lution of hypersurfaces by the mean curvature at a point. It has multiple
applications throughout physics and mathematics. In this paper, we first
examine some theorems on the R2 dimensional analogue of mean curvature
flow, known as curve-shortening flow. We then examine some prototypical
examples of mean curvature flow in n dimensions and examine theorems on
convergence of hypersurfaces evolving by mean curvature flow.

1. Preface

In a general setting, geometric flows describe the deformation of geometric
objects using partial differential equations. Geometric flows have numerous
uses throughout geometry and applied mathematics, and generally serve to
evolve geometric onjects to ”nicer” ones with better properties.

2. Curve Shortening Flow

First, we’ll restrict our attention to mean curvature flow in two dimensions,
with curves embedded into R2.

Definition 2.1 (Curve Shortening Flow). Let M ∈ R2 be a smooth curve
with unit normal vector n(p, t) and scalar curvature κ(p, t),Then, the curve
shortening flow is defined by the family of curves {φt ⊂ R2} that satisfy

∂

∂t
φ(p, t) = H(p, t)n(p, t).

We can rephrase this in terms of arclength, so that the family of curves
satisfies

∂

∂t
φ =

∂2

∂s2
φ.

A prototypical example of curve shortening flow is seen in the sphere.

Example. If we have M = S1, we can write that φ(p, t) = R(t)φ0(p, t). Then,
(2.1) gives us the differential equation

R′(t) = − 1

R(t)
.
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This admits the solution R(t) =
√
R2 − 2t, t ∈ (−∞, R2/2).

Notice that the solution R(t) =
√
R2 − 2t exists for a finite time. It turns

out that there exists a strong condition on the lifetime of a closed curve under
curve shortening flow. If a closed curve encloses a region of area A(t), we can
show that

∂

∂t
A(t) = −

∫
φ

κ ds = −2π.

Integrating this yields

A(t) = A(0)− 2πt,

so any closed curve that converges to a singularity will converge in finite time
A(0)
2π

. This raises the natural question – when do we know that curves will
converge to a singularity in R2? The answer is given in the Gage-Hamilton
theorem.

Theorem 2.2 (Gage-Hamilton). A convex curve φ ⊂ R2 converges to a single
point.

The proof of the Gage-Hamilton theorem is beyond the scope of this paper.
However, the consequences are enormous. Under this setting, all convex curves
eventually converge to a finite point. In conjunction with another result, we
can learn even more about curve shortening flow.

Theorem 2.3 (Grayson). If φ0 is a closed curve in R2, then, there exist x0

and T < ∞ such that the mean curvature flow φ converges to a round point
around x0.

Grayson’s theorem essentially implies that non-convex closed and embedded
curves eventually become convex, so that the Gage-Hamilton theorem may be
applied. Together, these two results imply that any closed embedded curve
shrinks to a unique round point under curve shortening flow. We have now
determined a fascinating condition on convergence for curve-shortening flow.
We can also make an assertion about the disjunction of curves under curve
shortening flow, known as the avoidance principle.

Another fascinating area of interest for curve shortening flows is in travelling
solutions. For the curve-shortening flow, we have the traveling solution known
as the grim reaper.

y = − log cos(t), t ∈ (−π/2, π/2).

This curve is essentially translated forwards over time, and never changes or
converges in any way.
Finally, we can prove some results on the curvature over time.
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Theorem 2.4 (Evolution for curvature in curve shortening flow). If φ evolves
by curve shortening flow, then

κt = κss + κ3.

Proof. We begin with a unit-speed parameterization. We can first compute
that

κt = ∂t⟨∂2
xφ,n⟩ − 2⟨, t, ∂x∂tφ⟩⟨∂2

xφ,n⟩
= ⟨∂2

x∂tφ,n⟩ − 2κ⟨t, ∂x∂tφ⟩

We can then continue that

∂tκ = ∂2
xκ+ κ⟨∂2

xn,n⟩ − 2κ2⟨t, ∂xn⟩
= ∂2

xκ− κ⟨∂xn, ∂xn⟩+ 2κ3

Observing that ∂2
xκ = κss proves the theorem. ■

3. Mean Curvature Flow

We’ll now define curve shortening flow in a space of arbitrary dimension.
First, we’ll cover some preliminaries.

Definition 3.1 (Mean Curvature). Let S be a hypersurface embedded into
Rn+1 with second fundamental form F2. Then, the mean curvature is

Tr(F2) =
n+1∑
i=1

κi,

where κi is the i-th principal curvature.

We’ll denote the unit normal vector to φ at a point p at some time t as
n(p, t). As the mean curvature changes at any given point over time, we will
use the notation H(p, t) to denote the mean curvature. We can now define the
mean curvature flow.

Definition 3.2 (Mean Curvature Flow). Let Mn be a smooth (i.e. differ-
entiable) manifold. Suppose that there exists some initial embedding of M ,
φ0 : M

n → Rn+1. The mean curvature flow of Mn is a family of hypersurfaces
φ : M × [0, t) → Rn+1 that satisfy

∂

∂t
φ(p, t) = H(p, t)n(p, t).

While hypersurfaces evolving by geometric flows generally do not admit
solutions, some simple objects do. We can illustrate the general principle
behind mean curvature flow with some prototypical examples, such as the
sphere.
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Example. Consider the n-sphere of radius R centered at the origin of Rn+1.
Intuitively, we can figure out that the sphere simply shrinks over time – the
mean curvature is constant everywhere and the unit inwards normal vector
also always points towards the origin. This turns out to be true.
If M = Sn, then we find the relation φ(p, t) = R(t)φ0(p), where R(t) varies
the radius over time and R(0) = R. We can then find that

R′(t)φ0(p) =
∂

∂t
φ(p, t) = −n

φ0(p)

R(t)
,

which admits the solution R(t) =
√
R2 − 2nt on t ∈ (−∞, R2/2n).

A similar solution exists for the cylinder.

Example. Suppose that there exists an n-dimensional cylinder M = Sj ×
Rn−j+1. The cylinder then has a family of immersions under mean curvature
flow described by the radius function

R(t) =
√
R2 − 2(n− j)t, t ∈ (−∞, R2/2(n− j)).

Under a more general setting, there exists no exact formula for the evo-
lution of embedded hypersurfaces. However, we can still prove theorems of
existence. We first describe the analogue of the Gage-Hamilton theorem in
the n-dimensional setting.

Theorem 3.3 (Huisken). For n ≥ 2, a closed convex hypersurface M ⊂ Rn+1

converges to a round point.

Strikingly, Grayson’s theorem does not have a higher dimensional analogue.
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