
MINIMAL SURFACES

ALAN LEE

1. Introduction

One of the problem sets this year had a question about a very strange parametrized surface,
which turned out to be a conformal map from the plane:

σ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)
.

This surface, known more commoonly as the Enneper surface, is also a minimal surfaces.

Recall that the mean curvature is defined as H = 1
2
Tr(W), where W is the Weingarten

map.

Definition 1.1. A minimal surface is a surface with zero mean curvature.

It is easy to see that since the mean curvature (ie. the trace) is 0, the product of the prin-
cipal curvatures (eigenvalues) of the Weingarten map matrix, or the Gaussian curvature,
must be nonpositive.

Theoretically, the minimal surface is one that has the least area when stretched over a
closed contour. These arise naturally in many scenarios, such as the draping of a circus
tent, the film between two soap films, or even our cells’ endoplasmic reticulum. All surfaces
parametrized as (x, y, f(x, y)) with 0 mean curvature satisfy the equation

d

dx

(
fx√

1 + f 2
x + f 2

y

)
+

d

dy

(
fy√

1 + f 2
x + f 2

y

)
= 0.

Using the formula

H =
LG− 2MF +NE

2(EG− F 2)
= 0,

one can also obtain the equation

(1 + f 2
y )fxx − 2fxfyfxy + (1 + f 2

x)fyy = 0

to describe minimal surfaces.

Example. The helicoid, parametrized by

σ(u, v) = (u cos v, u sin v, v)

, is a minimal surface.
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Proof. For the helicoid, we can check that it is minimal by finding the coefficients of the first
fundamental form:

E = σu · σu = (cos v, sin v, 0) · (cos v, sin v, 0) = cos2 v + sin2 v = 1,

F = σu · σv = (cos v, sin v, 0) · (−u sin v, u cos v, 1) = 0,

G = σv · σv = (−u sin v, u cos v, 1) · (−u sin v, u cos v, 1) = u2 sin2 v + u2 cos2 v + 1 = u2 + 1.

The unit normal vector can be computed to be N = (sin v,− cos v, u)/
√
u2 + 1, so for the

second fundamental form we have the following coefficients.

L = N · σuu = 0,

M = N · σuv = − 1√
u2 + 1

,

N = N · σvv = 0.

Note that in the numerator for our expression of the mean curvature H, all terms contain
either F = 0, L = 0 or N = 0, so the mean curvature is indeed 0. A helicoid soap film is
presented in Figure 1. □

Figure 1. A helicoid in real life.

Notice that the minimal surfaces do not necessarily correspond to having a minimal sur-
face area to volume ratio: spheres have constant positive mean curvature, for example.

In addition to helicoids, catenoids and planes are the most commonly known minimal
surfaces. These can be checked in a similar manner to have zero mean curvature.

2. Complex Analysis Crash Course

For the next section, we will need knowledge of some topics from complex analysis.

Definition 2.1. Let f(x, y) be a function of two variables. We say that f is a harmonic
function if it is a twice-differentiable function that satisfies the equation

▽2f = fxx + fyy = 0.

This equation is known as Laplace’s equation.
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Example. Let f(x, y) = x2 − y2. Then

▽2f = (x2 − y2)xx + (x2 − y2)yy = 2 + (−2) = 0.

We also need the concept of holomorphic functions, which are basically the “nice” functions
of complex analysis.

Definition 2.2. Let U ∈ C be an open set. A function f(z) : U → C is holomorphic if it is
differentiable, ie.

lim
z→z0

f(z)− f(z0)

z − z0
exists, at every point z0 ∈ U .

To deduce whether a function is holomorphic, the Cauchy-Riemann equations are of great
use.

Theorem 2.3. (Cauchy-Riemann equations) Let f(x, y) = u(x, y) + v(x, y)i be a function
of a complex variable. If the following equations are satisfied,

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x
f must be a holomorphic function and both u and v must both be harmonic. Additionally,

we refer to the functions u and v as harmonic conjugates.

3. Isothermal Surfaces

It is useful to use isothermal surfaces as a means to construct minimal surfaces.

Definition 3.1. A regular (non self-intersecting) parametrized surface σ(u, v) is isothermal
if it satisfies the property E = σu · σu = σv · σv = G and F = 0.

The following proposition shows us another way to prove that a surface is isothermal,
which will allow us to find more minimal surfaces.

Proposition 3.2. For a function of a complex variable f , define fz = 1
2
(f ′

u − if ′
v). Then

φ(u, v) = (φ1(u, v), φ2(u, v), φ3(u, v)) is isothermal if and only if

(φ1
z)

2 + (φ2
z)

2 + (φ3
z)

2 = 0.

Proof. Expanding the left-hand side of the equation, we obtain

(φ1
z)

2 + (φ2
z)

2 + (φ3
z)

2 =
1

4
((φ1)′u − i(φ1)′v)

2 + (φ2)′u − i(φ2)′v)
2 + (φ3)′u − i(φ3)′v)

2

=
1

4

(
3∑

k=1

((φk)′u)
2 −

3∑
k=1

((φk)′v)
2 − 2i

3∑
k=1

(φk)′u(φ
k)′v

)

=
1

4
(E −G+ 2iF ),

which is only 0 if E = G and F = 0, precisely the case when φ is an isothermal surface. □
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Now we show how to find minimal isothermal surfaces with an explicit construction.

Theorem 3.3. Let ψ1, ψ2, ψ3 be holomorphic functions such that

(1) (ψ1
z)

2 + (ψ2
z)

2 + (ψ3
z)

2 = 0,
(2) |ψ1

z |2 + |ψ2
z |2 + |ψ3

z |2 ̸= 0 (to ensure that the surface is regular, ie. non-intersecting).

Then there exists a regular minimal isothermal surface φ = (φ1, φ2, φ3) such that

φ1
z = ψ1, φ

2
z = ψ2, φ

3
z = ψ3

defined by

φ1 = Re

∫
ψ1(z)dz, φ

2 = Re

∫
ψ2(z)dz, φ

3 = Re

∫
ψ3(z)dz.

For the sake of conciseness, we omit the full proof, but the basic idea is that if h′(z) = g(z)
is a holomorphic function and h(z) = a(z)+ b(z)i, then az = g with notation as before. Now
before we can try an example, we can simplify φ further into a surface based off of just two
holomorphic functions using the following theorem.

Theorem 3.4 (Weierstrass Representation Theorem). Let g(z) and h(z) be two holomorphic
functions. Then the isothermal surface φ = (φ1, φ2, φ3) defined by

φ1 = Re

∫
1

2
h(z)(1− g(z)2)dz

φ2 = Re

∫
i

2
h(z)(1 + g(z)2)dz

φ1 = Re

∫
h(z)g(z)dz

is minimal.

Proof. Using the functions ψ1, ψ2, ψ3 defined in terms of φ1, φ2, φ3 in Theorem 3.3, we notice
that

(ψ1
z)

2 + (ψ2
z)

2 + (ψ3
z)

2 =
1

4
h2(z)(1− g(z)2)2 − 1

4
h(z)2(1 + g(z)2)2 + h(z)2g2(z)

=
h(z)2

4
− h(z)2g(z)2

2
+
h(z)2g(z)4

4

− h(z)2

4
− h(z)2g(z)2

2
− h(z)2g(z)4

4
+ h(z)2g(z)2

= 0.

Additionally, one can check that

(ψ1
z)

2 + (ψ2
z)

2 + (ψ3
z)

2 =
1

4
|h(z)|2(|1− g(z)2|2 + |1 + g(z)2|2 + 4|g(z)|2)

=
1

2
|h(z)|2(1 + |g(z)|2)2

̸= 0
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using the identity

|1− z2|2 + |1 + z2|2 + 4|z|2 = 2(1 + |z|2)2.

Because all three conditions are satisfied, the surface described is indeed minimal.
□

Now that the proof is complete, let us try out some examples.

Example. Let h(z) = −e−z and g(z) = −ez. We now compute φ1, φ2, φ3:

φ1(u, v) = −1

2
Re

∫
e−z(1− e2z)dz

= −1

2
Re(−e−z − ez)

= −1

2
Re(−e−u(cos v − i sin v)− eu(cos v + i sin v))

= −−e−u − eu

2
cos v

= coshu cos v.

φ2(u, v) = −1

2
Re

∫
ie−z(1 + e2z)dz

= −1

2
Re(−ie−z + iez)

= −1

2
Re(−ie−u(cos v − i sin v) + ieu(cos v + i sin v))

= −−e−u − eu

2
sin v

= coshu sin v.

φ3(u, v) = Re

∫
(−e−z)(−ez)dz = Re

∫
1dz = Rez = u.

This is the parametrization of the catenoid: (coshu cos v, coshu sin v, u), which is indeed a
minimal surface.

Example. If we take −Im instead of Re in the integrals from the previous example, we
obtain the new parametrization (− sinhu sin v, sinhu cos v,−v). Letting u′ = sinhu and
v′ = v + π/2, this parametrization can be rewritten as

u′ cos v′, u′ sin v′,−v′ + π

2
.

Because a change of variables from the catenoid leads us to the helicoid, and this can be
obtained by taking −Im instead of Re everywhere, the helicoid and catenoid are conjugate
minimal surfaces (surfaces whose component functions are pairwise harmonic conjugates).
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4. More Minimal Surfaces

In this section, we will be exploring more nontrivial minimal surfaces, in a chronological
order. Let us first return to the Enneper surface (discovered in 1864), mentioned at the start
of this paper. Recall its parametrization

σ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)
.

A portion of the surface is shown in Figure 2. This is actually a remarkably simple surface
when applied in the context of Theorem 3.4: the holomorphic functions are h(z) = 1 and
g(z) = z.

Figure 2. A portion of the Enneper surface. Note the self-intersections.

In the 1880s many triply periodic minimal surfaces were found by Schwarz. Some of them
are included in Figure 3.

Figure 3. The Schwarz P (primitive), D (diamond) and H (hexagonal)
minimal surfaces from left to right.

Finally, we look at Costa’s minimal surface C(u, v), parametrized by
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C(u, v) =

(
1

2
Re−ζ(u+ iv) + πu+

π2

4e1
+

π

2e1

[
ζ

(
u+ iv − 1

2

)
− ζ

(
u+ iv − 1

2
i

)]
,

1

2
Re−iζ(u+ iv) + πv +

π2

4e1
− π

2e1

[
iζ

(
u+ iv − 1

2

)
− iζ

(
u+ iv − 1

2
i

)]
,

1

4

√
2π log

∣∣∣∣℘(u+ iv)− e1
℘(u+ iv) + e1

∣∣∣∣
)
,

where ζ(z) is the Weierstrass zeta function, ℘(g2, g3; z) is the Weierstrass elliptic function
with (g2, g3) = (189.07 . . . , 0), and e1 ≈ 6.87519. The visual representation for Costa’s
minimal surface can be found in Figure 4. Discovered in 1982 by Celso José da Costa, it
disproved the conjecture that the catenoid, helicoid and plane were the only regular minimal
surfaces without a boundary.

Figure 4. A portion of the Costa minimal surface.
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