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1 Introduction

Many modern cryptosystems use the group structures of ordinary elliptic
curves. However, these cryptosystems can be broken using quantum comput-
ers. The following paper is based on the paper referenced in (1) - it outlines
a quantum resistant cryptosystem based on supersingular elliptic curves and
the di�culty of finding isogenies between them.

1.1 Group Theory Overview

We start by defining some group theory terms.

Definition 1.1: A homomorphism is defined as a function f : G ! H
such that for every u, v 2 G the function f has the following property:
f(u · v) = f(u) · f(v).

Definition 1.2: A kernel of a homomorphism f : G ! H is defined as:
{g 2 G : f(g) = eH}

Definition 1.3: An image of a homomorphism is defined as {h 2 H :
h = f(g), g 2 G}

One should note that if a homomorphism f : G ! H is surjective, then
the image of the homomorphism is H itself. The kernel and the image are
ways to measure how isomorphic a homomorphism is. In an isomorphism,
the kernel consists only of the identity element of G and the image is H itself.
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1.2 Elliptic Curve Overview

An elliptic curve over a field K is a nonsingular cubic curve with a dis-
tinguished point (known as the infinity point). If the field characteristic is
neither 2 nor 3, then the elliptic curve can be expressed in the form:

y2 = x3 + Ax+B.

where the discriminant is not equal to 0. The discriminant of an elliptic curve
is:

� = 16(4A3 + 27B2).

This ensures that there are no double or triple roots - we run into problems
with the group structure in elliptic curves if there are repeated roots. An
elliptic curve has a group law that makes it an abelian group. The identity
element is the infinity point.

We can also define elliptic curves over finite fields. E(Fp) means all the
points on E with coordinates in Fp. A nonsingular curve reduced modulo p
can become singular if p|� , since then the discriminant in Fp becomes 0. In
this case, we say that E has bad reduction modulo p. If E(Fp) is nonsingular,
then we say that E has good reduction modulo p.

We now move on to relationships between elliptic curves

Definition 1.4: An isogeny is a mapping between elliptic curves that in-
duces a homomorphism between the groups of elliptic curves.

The distinguished points of the two elliptic curves are thus mapped to each
other. If there is an isogeny between two elliptic curves, they are said to be
isogenous. For example, E ! nE is an isogeny.

Definition 1.5: An endomorphism is a homomorphism from a mathemat-
ical object to itself. For elliptic curves, an endomorphism is an isogeny
f : E ! E.

Example: Let E be an elliptic curve over a finite field Fq. The Frobenius
endomorphism of E is the map E : (x : y : z) ! (xq : yq : zq)
The endomorphisms of an elliptic curve form a ring since they can be added
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and composed.

Definition 1.6: An endomorphism ring of an elliptic curve is either isomor-
phic to an order in an imaginary quadratic field, or an order in a quaternion
algebra.

When the endomorphism ring is isomorphic to an order in a quaternion
algebra, the endomorphism ring is unusually large and lacks commutativity.
This dichotomy allows us to classify elliptic curves over finite fields.

2 Supersingular Elliptic Curves

There are five equivalent definitions of a supersingular elliptic curve given
by Deuring’s Theorem; however, we will only discuss two of them.

Theorem 1.1: An elliptic curve is supersingular if:

1. The p-torsion subgroup is trivial.

E[pr] = 0 8r � 1.

2. The endomorphism ring of the elliptic curve is an order in a quaternion
algebra.

And for ordinary elliptic curves if:

1.

E[pr] ⇠= Z/prZ 8r � 1.

2. The endomorphism ring is an order in an imaginary quadratic field.

It is important to note that supersingular elliptic curves are not singular! A
singular elliptic curve is an elliptic curve with repeated roots. The following
are some simpler examples of a supersingular curve.

Theorem 1.2: Let E/Fq be an elliptic curve over a field of prime order
p � 3. Then E is supersingular i↵ the trace of the Frobenius is congruent to
0modp.
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Example: Suppose that E is the elliptic curve y2 = x3 + ax, and suppose
that p is a prime congruent to 3 (mod 4). Show that E(Fp) = p+ 1.
As it turns out, E is a supersingular elliptic curve!

Definition 2.1: The j-invariant of an elliptic curve y2 = x3 + ax + b is
defined as

j(E) = 1728
4a3

4a3 + 27b2
.

Over an algebraically closed field, two elliptic curves are isomorphic i↵ they
have the same j-invariant.

3 Key Exchange:

The key exchange is based of the Di�e-Hellman Key Exchange - rather
than using the Discrete Logarithm Problem as the source of complexity,
it uses the Supersingular Computational Di�e-Hellman Problem. It starts
with the following public information: elliptic curve E0, the four points
PA, QA, PB, QB.

1. Start with a common elliptic curve E0. Alice selects two points PA and
QA. Bob selects two points PB and QB. These points are public.

2. Alice chooses two random coe�cients [ma] and [na]. She then calculates
the point [ma]PA+[na]QA. This point will be the kernel for the isogeny
�A created using Velu’s Formula. Bob does the same: ’he chooses two
random coe�cients [mb] and [nb] and calculates the point [mb]PB +
[nb]QB to use as a kernel for his isogeny �B.

3. Alice takes Bob’s points PB and QB and calculates the image of these
points. We know the image exists since isogenies are surjective thus
meaning im(�A) is EA. Alice send the points, �A(PB) and �A(QB)
over to Bob. Bob does the same thing with Alice’s points PA and QA
and sends his calculated points �B(PA) and �B(QA) to Alice.

4. Alice uses the same coe�cients [ma] and [na] to calculate the point
[ma]�B(PA) + [na]�B(QA). This point will be the kernel for another
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isogeny �0
A created using Velu’s Formula. Bob does the same thing

with his coe�cients, creating a kernel and thus the isogeny �0
B with

the point [mb]�A(PB) + [nb]�A(QB).

5. The curve created with Alice’s isogeny �0
A and the curve created with

Bob’s isogeny �0
B are isomorphic. Thus, we can calculate a common

j-invariant and that will be our key.

4 Complexity and Security:

The security of this cryptosystem relies on the fact that the endomor-
phism ring of a supersingular elliptic curve is not commutative.

Supersingular Computational Di�e-Hellman Problem: Given the
curves EA and EB and the points �A(PB) , �A(QB) , �B(PA), �B(QA), find
the j-invariant of E0/h[ma]PA + [na]QA, [mb]PB + [nb]QBi.

The fastest known algorithm for finding isogenies between supersingu-
lar curves in general takes O(

p
p log2 p) time. However, this problem is less

general since the degree of the isogeny is already known in advance and is
known to be smooth.

So far, attacks on the system are theorized to be O(p
1
4 ) for ordinary

computers, and O(p
1
6 ) for quantum computers. This means that the system

is 128-bit secure for a prime of 768 bits.
There is a known quantum subexponential time algorithm for solving

SSCDH for ordinary elliptic curves. However, this algorithm relies on the
properties of abelian groups. Since the endomorphism ring of a supersingular
elliptic curve is not commutative, this algorithm likely cannot be adapted for
the supersingular case.
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