
Schönhage-Strassen Algorithm

Yehui Feng

1 Introduction

Efficient multiplication of large integers is a critical problem in computational mathematics with wide-
ranging applications in fields such as cryptography, numerical analysis, and computer science. Over the
years, numerous algorithms have been developed to tackle this challenge, each improving on the efficiency
of its predecessors. A significant milestone in this evolution was the introduction of the Schönhage–Strassen
algorithm by Arnold Schönhage and Volker Strassen in 1971 [1]. This algorithm revolutionized integer
multiplication by employing the fast Fourier transform (FFT) in conjunction with modular arithmetic,
achieving a bit complexity of O(n · log n · log log n). This marked a notable advancement over previous
methods, such as Karatsuba and Toom–Cook multiplication [4], and established it as the fastest known
method for large integers for decades.

The Schönhage–Strassen algorithm’s impact is particularly evident when handling very large numbers,
where it outperforms earlier algorithms for inputs on the order of thousands to hundreds of thousands
of digits. Despite the introduction of new algorithms in recent years—such as Martin Fürer’s improved
method in 2007 [3] and the O(n log n) algorithm by David Harvey and Joris van der Hoeven in 2019 [2]—the
Schönhage–Strassen algorithm remains a cornerstone in practical applications due to its robust performance
and well-understood characteristics.

This paper provides an in-depth exploration of the Schönhage–Strassen algorithm, detailing its theoret-
ical underpinnings and practical implementation. By focusing on its strengths and the reasons behind its
historical significance, we aim to underscore the continued relevance of this algorithm in the field of integer
multiplication.

2 Preliminary

This section introduces the fundamental concepts and tools necessary for understanding the Schönhage-
Strassen algorithm. In particular, the concept of Principal Roots of Unity (PROU) is central to many fast
algorithms for polynomial multiplication, including the Discrete Fourier Transform (DFT) and the Fast
Fourier Transform (FFT). These techniques are prerequisites for the advanced ideas discussed later, such as
handling polynomial multiplication in rings that do not naturally support an n-PROU.

2.1 Principal Roots of Unity (PROU)

Definition 2.1 (Principal Roots of Unity). Let R be a commutative ring. An element ω ∈ R is said to be
an n-th principal root of unity (n-PROU) if it satisfies two fundamental properties:

• ωn = 1, establishing that ω is a root of the polynomial xn − 1.

• For every integer 0 < i < n, the sum
∑n−1

j=0 ωij = 0.

Lemma 2.2. If n is a power of 2 and ω ∈ R such that ωn/2 = −1, then ω is indeed an n-PROU.

Proof. Given that ωn/2 = −1, we have ωn = (ωn/2)2 = 1, ensuring that ω is a root of xn − 1. To verify the
vanishing sum condition, consider the geometric series 1 + ω + ω2 + · · ·+ ωn−1. Since ω is a root of xn − 1,

1



the series represents the sum of all n-th roots of unity, which is known to be zero. Thus, ω satisfies the
conditions to be an n-PROU.

2.2 Discrete Fourier Transform (DFT)

Definition 2.3 (Discrete Fourier Transform (DFT)). Consider a polynomial f(x) ∈ R[x] with degree
deg(f) < n, where ω ∈ R is an n-th principal root of unity (n-PROU). The Discrete Fourier Transform
(DFT) of f(x) with respect to ω is defined as the tuple:

DFTω(f) =
(
f(1), f(ω), . . . , f(ωn−1)

)
.

This tuple represents the evaluation of the polynomial at each of the n-th roots of unity, encapsulating the
frequency characteristics of f(x) in the spectral domain.

The beauty of the DFT lies not only in its ability to transform a polynomial into its frequency components
but also in the existence of an inverse transformation that allows us to recover the original polynomial from
its spectral representation. The next lemma establishes this critical connection.

Lemma 2.4 (Inverse DFT). Let ω ∈ R be an n-PROU, and consider a polynomial f(x) of degree less than
n. The inverse Discrete Fourier Transform (DFT) is given by:

f(x) =
1

n

n−1∑
j=0

DFTω−1(f) · ω−jx.

This formula reconstructs f(x) from its frequency components, completing the circle of transformation be-
tween the time domain and the frequency domain.

Proof. The proof relies on the orthogonality of the roots of unity and the properties of geometric series.
Specifically, the orthogonality ensures that the sum of cross-terms vanishes, leaving only the original poly-
nomial when the inverse transform is applied. This establishes the DFT and its inverse as true inverses, up
to a normalization factor of n.

2.3 Fast Fourier Transform (FFT)

The power of the Discrete Fourier Transform is magnified when we consider the case where n is a power
of two. In this scenario, we can leverage a highly efficient algorithm, known as the Fast Fourier Transform
(FFT) as showned in Algorithm 1, to compute the DFT in O(n log n) time—a significant improvement over
the naive O(n2) approach. The FFT exploits the recursive structure of the DFT, dramatically reducing the
computational burden.

Lemma 2.5 (FFT Time Complexity). Let n be a power of 2, f(x) a polynomial over a commutative ring
R with degree less than n, and let ω ∈ R be an n-th principal root of unity (n-PROU). The Fast Fourier
Transform (FFT) algorithm computes the Discrete Fourier Transform (DFT) of f(x) with respect to ω using:

• O(n log n) additions of arbitrary elements in R,

• O(n log n) multiplications by powers of ω.

Proof. The FFT algorithm operates by recursively dividing the problem of size n into two subproblems of
size n/2, and combining their results. This recursive process leads to the following recurrence relation for
the time complexity T (n):

T (n) = 2T
(n
2

)
+O(n),

where:

2



Algorithm 1 Fast Fourier Transform (FFT)

Require: A sequence of coefficients f0, f1, . . . , fn−1 ∈ R and an n-PROU ω ∈ R
Ensure: The DFT values (f(1), f(ω), . . . , f(ωn−1))
1: if n = 1 then
2: return f0
3: end if
4: Separate the sequence into even and odd-indexed coefficients:
5: feven ← (f0, f2, . . . , fn−2)
6: fodd ← (f1, f3, . . . , fn−1)
7: Compute the DFT recursively on the even and odd parts:
8: (a0, . . . , an/2−1)← FFT(feven, ω

2)
9: (b0, . . . , bn/2−1)← FFT(fodd, ω

2)
10: for i = 0, . . . , n/2− 1 do
11: Compute the combined DFT values:
12: γi ← ai + ωibi
13: γi+n/2 ← ai − ωibi
14: end for
15: return γ0, . . . , γn−1

• 2T
(
n
2

)
accounts for the time to solve the two subproblems of size n/2,

• O(n) represents the time to combine the results of these subproblems, involving n/2 additions and n/2
multiplications by powers of ω.

To solve this recurrence, we use the Master Theorem for divide-and-conquer recurrences, which states:

T (n) = aT
(n
b

)
+O(nd),

where a = 2, b = 2, and d = 1. According to the Master Theorem:

T (n) =


O(nd log n) if a = bd,

O(nd) if a < bd,

O(nlogb a) if a > bd.

In our case, a = bd (i.e., 2 = 21), so:

T (n) = O(n1 log n) = O(n log n).

For operations:

• Additions: Each recursion level requires O(n) additions. With log2 n levels, the total number of
additions is O(n log n).

• Multiplications: Each recursion level requires O(n) multiplications by powers of ω. Thus, the total
number of multiplications is also O(n log n).

Thus, the FFT algorithm performs O(n log n) additions and multiplications, completing the proof.

2.4 Polynomial Multiplication in Rings Supporting FFT

Consider the multiplication of two polynomials f(x) and g(x) with degree less than n in a ring R[x]. Suppose
ω ∈ R is an n-th primitive root of unity (PROU), and R allows division by 2. The multiplication f(x) · g(x)
can be executed with remarkable efficiency, thanks to the FFT.

3



Lemma 2.6 (Polynomial multiplication over rings supporting FFT). Let R be a ring that contains an n-
PROU ω. Then, two polynomials f(x) and g(x) in R[x] with deg(fg) < n can be multiplied using Algorithm 2,
which involves:

• O(n log n) additions of two arbitrary elements in R,

• O(n log n) multiplications of an arbitrary element of R with a power of ω,

• n multiplications of two arbitrary elements in R,

• n divisions by n.

Algorithm 2 Polymult with PROU(f , g, ω)

Require: Polynomials f(x), g(x) given by coefficients from R with deg(f)+deg(g) < n, and an ω ∈ R that
is an n-PROU.

Ensure: Coefficients of f(x) · g(x).
1: Interpret both f(x) and g(x) as polynomials of degree less than n (by padding with zeros if necessary).
2: a0, a1, . . . , an−1 ← FFT(f, ω)
3: b0, b1, . . . , bn−1 ← FFT(g, ω)
4: for i = 0 to n− 1 do
5: ci ← ai · bi
6: end for
7: h0, h1, . . . , hn−1 ← 1

n · FFT([c0, c1, . . . , cn−1], ω
−1)

8: return h0, h1, . . . , hn−1

Proof. To establish the time complexity of multiplying two polynomials f(x) and g(x) using the algorithm
described in Algorithm 2, we analyze each step of the algorithm:

1. Computing FFT(f, ω) and FFT(g, ω) each require O(n log n) operations, as established in Algorithm 1.
This involves O(n log n) additions and O(n log n) multiplications of elements by powers of ω.

2. The loop in line 5 computes n pointwise multiplications ci ← ai ·bi, which requires O(n) multiplications
of elements in R.

3. The final step involves computing the inverse FFT of the n values [c0, c1, . . . , cn−1] using FFT([c0, c1, . . . , cn−1], ω
−1).

This step also requires O(n log n) operations, including O(n log n) additions and O(n log n) multiplica-
tions by powers of ω−1.

4. After the inverse FFT, each coefficient hi is computed by dividing by n, which requires O(n) divisions.

Combining these results, we see that the total time complexity is dominated by the FFT computations,
which require O(n log n) additions and multiplications by powers of ω, and the inverse FFT computation.
The additional operations (pointwise multiplication and divisions) are linear in n, O(n). Thus, Algorithm 2
is efficient, with the polynomial multiplication being achieved in O(n log n) time complexity.

3 The Schönhage-Strassen Method

Imagine you’re in a ring R that, alas, lacks an n-primitive root of unity (n-PROU). Alas, this means we
can’t directly employ Algorithm 2. Fear not, Schönhage and Strassen came to the rescue with an ingenious
workaround. They devised a clever technique of ”importing” an appropriate root of unity into the ring and
working with this augmented setup. The grand theorem we aim to prove is:

4



Theorem 3.1 (Schönhage-Strassen). Given any ring R, the product of two polynomials f and g in R[x]
with deg(fg) < n can be computed using O(n log n log log n) operations in R.

To achieve this impressive bound, we need to navigate the absence of an n-PROU in R with some finesse.
Below, we detail the iterative improvements that lead to the elegant solution.

3.1 First Attempt: Expanding the Ring

Our initial strategy involves expanding our ring of coefficients to R′ = R[t]
tn/2+1

, where t satisfies tn/2 + 1 = 0,

and thus serves as an n-PROU by Lemma 2.2. This lets us interpret f(x) and g(x) as polynomials in R′[x]
and apply Algorithm 2 with ω = t.

However, this approach introduces complications: each addition in R′ translates to O(n) additions in R,
leading to a time complexity of at least O(n2 log n), which is less efficient than naive polynomial multiplica-
tion.

3.2 Second Attempt: Bivariate Polynomials and Modular Arithmetic

Next, we try a different tactic—rewriting f and g as bivariate polynomials. Suppose k and m are powers of
two such that k ·m = n (eventually choosing k and m to be around

√
n each). We pad f and g and view

them as polynomials of degree less than n:

f(x) = f0 + f1x+ · · ·+ fn1−1x
n1−1 = F0 + F1x

m + · · ·+ Fk1−1x
(k1−1)m

where Fj(x) = fjm + fjm+1x+ · · ·+ fjm+(m−1)x
m−1.

Hence, f(x) can be expressed as:

f(x) = f̃(x, xm),

where

f̃(x, y) := F0 + F1y + · · ·+ Fk1−1y
k1−1.

We then work with the bivariate polynomials f̃(x, y) and g̃(x, y). If we can efficiently multiply these
polynomials, substituting y = xm yields f(x) · g(x).

We can treat f̃ and g̃ as polynomials in R′′[y], where R′′ = R[x]. Since mk = n, the degree in y of f̃ g̃ is
less than k. Thus, we can use Algorithm 2 if R′′ contains a k-PROU. Unfortunately, this isn’t guaranteed.

Here’s where Schönhage and Strassen provide another stroke of brilliance. Define:

R′′′ =
R[x]

x2m + 1
.

It may seem we’ve made a slip by using 2m instead of k, but bear with us. The key insight is this:

Lemma 3.2. When interpreted as elements of R′′[y], the product of f̃ and g̃ is the same as when viewed in
R′′′[y].

Proof. Since degx(f̃ g̃) < 2m, the polynomial f̃ g̃ remains unchanged when considered modulo x2m + 1, as
R′′ and R′′′ differ only by this relation.

Thus, we can treat f̃ and g̃ as polynomials in R′′′[y]. Conveniently, x in R′′′ is a 4m-PROU due to
Lemma 2.2. By choosing parameters such that 4m ≥ k, we can use Algorithm 2. For n = 2ℓ, set m = 2⌊ℓ/2⌋

and k = 2⌈ℓ/2⌉. This choice ensures 2m ≥ k and fits our needs perfectly.
Thus, we compute h̃(x, y) = f̃ · g̃ using Algorithm 2, with the k-PROU ω appropriately chosen. The

computational steps involve:

1. O(k log k) additions in R′′′,

5



2. O(k log k) multiplications in R′′′ with powers of x,

3. k multiplications of elements in R′′′.

Each addition in R′′′ corresponds to m additions in R. Similarly, multiplications by powers of x in R′′′

equate to shifts and sign changes in R, and are therefore O(m). Multiplying polynomials modulo x2m + 1
requires recursively handling polynomials of degree less than 2m, yielding:

T (n) = O(mk log k) + k · T (2m).

With k = m =
√
n, solving this recurrence relation gives us:

T (n) = O(n log n log log n).

Thus, we achieve the desired time complexity, validating the theorem.

4 Convolutions

With the groundwork of the Schönhage-Strassen algorithm laid, we can now explore one of its pivotal
components: the efficient handling of convolutions. As we have seen, the Schönhage-Strassen algorithm
leverages fast integer multiplication by reducing the problem to polynomial multiplication, which in turn
hinges on convolutions. Understanding these convolutions, particularly their wrapped variants, is key to
grasping the algorithm’s efficiency and power.

Definition 4.1 (Convolution). Consider two vectors f = [f0, . . . , fn−1] and g = [g0, . . . , gn−1], where
each entry fi and gi is a real number. The convolution of f and g, denoted f ∗ g, results in a vector
h = [h0, . . . , h2n−1] defined by:

hℓ =

n−1∑
i=0

fi · gℓ−i

for every index ℓ = 0, . . . , 2n−1. This essentially says that if you view h as the coefficients of a polynomial,
it represents the product of the polynomials f(x) and g(x).

4.1 Wrapped Convolutions

Let’s make things a bit more interesting with wrapped convolutions, which essentially “wrap” the standard
convolution to fit into a smaller space. There are two varieties: positively wrapped convolution (PWC) and
negatively wrapped convolution (NWC).

Definition 4.2 (Positively Wrapped Convolution (PWC)). Given vectors f = [f0, . . . , fn−1] and g =
[g0, . . . , gn−1] with real entries, the positively wrapped convolution of f and g produces a vector h+ =
[h+

0 , . . . , h
+
n−1] defined as:

h+
ℓ =

n−1∑
i=0

(fi · gℓ−i + fi · gn+ℓ−i)

for ℓ = 0, . . . , n− 1.

Definition 4.3 (Negatively Wrapped Convolution (NWC)). Similarly, the negatively wrapped convolution
of f and g is a vector h− = [h−

0 , . . . , h
−
n−1] defined by:

h−
ℓ =

n−1∑
i=0

(fi · gℓ−i − fi · gn+ℓ−i)

for ℓ = 0, . . . , n− 1.

6



These wrapped convolutions cleverly reduce the length of the convolution output, computed modulo
xn ± 1.

Observation 4.4. If we think of f(x) and g(x) as polynomials with degree less than n, then the polynomials
for the positively and negatively wrapped convolutions are:

h+(x) = f(x) · g(x) mod (xn − 1),

h−(x) = f(x) · g(x) mod (xn + 1).

4.2 Computing Wrapped Convolutions Using FFT

4.2.1 Positively Wrapped Convolution (PWC)

To compute the positively wrapped convolution efficiently, we use the Fast Fourier Transform (FFT). The
algorithm is similar to the standard FFT-based convolution but employs an n-th primitive root of unity
(PROU) instead of a 2n-th PROU.

Algorithm 3 PWC-WITH-PROU(f , g, ω)

1: Input: Vectors f = [f0, . . . , fn−1], g = [g0, . . . , gn−1], and an n-PROU ω ∈ R
2: Output: The positively wrapped convolution h+ = [h0, . . . , hn−1] of f and g
3: a0, . . . , an−1 ← FFT(f, ω)
4: b0, . . . , bn−1 ← FFT(g, ω)
5: for i = 0 to n− 1 do
6: ci ← ai · bi
7: end for
8: h0, . . . , hn−1 ← 1

n · FFT([c0, . . . , cn−1], ω
−1)

9: return h0, . . . , hn−1

Lemma 4.5 (PWC over Rings Supporting FFT). If R is a ring containing an n-PROU ω, then the PWC
of two polynomials f(x), g(x) ∈ R[x] with degrees less than n can be computed using Algorithm 3 with:

• O(n log n) additions of elements in R,

• O(n log n) multiplications of an element in R with a power of ω,

• n multiplications of elements in R,

• n divisions by n.

4.2.2 Negatively Wrapped Convolution (NWC)

To compute negatively wrapped convolutions, we again use FFT, but this time with a 2n-PROU. The
approach involves transforming the polynomials using a primitive root of unity, computing the PWC in the
transformed domain, and then reversing the transformation.

Algorithm 4 NWC-WITH-PROU(f , g, ω)

1: Input: Vectors f = [f0, . . . , fn−1], g = [g0, . . . , gn−1], and a 2n-PROU ω ∈ R
2: Output: The negatively wrapped convolution h− = [h0, . . . , hn−1] of f and g
3: Compute f̃(x) := f(ω · x) and g̃(x) := g(ω · x)
4: h̃(x)← PWC-WITH-PROU(f̃ , g̃, ω2)
5: Compute [h0, . . . , hn−1] of h

−(x) := h̃(ω−1 · x)
6: return h0, . . . , hn−1

7



Lemma 4.6 (NWC over Rings Supporting FFT). If R is a ring with a 2n-PROU ω, then the NWC of two
polynomials f(x), g(x) ∈ R[x] with degrees less than n can be computed using Algorithm 4 with:

• O(n log n) additions of elements in R,

• O(n log n) multiplications of an element in R with a power of ω,

• 2n multiplications of elements in R,

• n divisions by n.

Note that the number of multiplications of arbitrary elements in R is n rather than 2n, demonstrating
an efficiency gain.

5 Conclusion

The Schönhage-Strassen algorithm represents a groundbreaking advancement in computational number the-
ory, particularly for the multiplication of large integers. By employing the Fast Fourier Transform (FFT)
over rings and extending the use of roots of unity, Schönhage and Strassen achieved an impressive time
complexity of O(n · log n · log logn). This efficiency established their method as the gold standard for large
integer multiplication for over thirty years.

In this paper, we examined the core principles behind the Schönhage-Strassen algorithm, including Prin-
cipal Roots of Unity (PROU), the Discrete Fourier Transform (DFT), and the FFT, and discussed how
these concepts facilitate efficient polynomial multiplication. We also addressed the algorithm’s approach to
handling rings that lack suitable PROU through ring expansion and modular arithmetic.

Although newer algorithms, such as those by Fürer and Harvey–van der Hoeven, offer better asymptotic
complexity, the Schönhage-Strassen algorithm continues to be highly relevant. Its practical performance
remains superior for many real-world applications due to the constant factors involved in newer methods.

References

[1] A. Schönhage and V. Strassen, Schnelle Multiplikation großer Zahlen, Computing, 7:281–292, 1971.
https://doi.org/10.1007/BF02242355.

[2] D. Harvey and J. van der Hoeven, Integer multiplication in time O(n log n), Annals of Mathematics,
193(2):563–617, 2021. https://doi.org/10.4007/annals.2021.193.2.4.

[3] M. Fürer, Faster integer multiplication, In Proc. STOC ’07, pages 57–66, San Diego, Jun 2007. https:
//web.archive.org/web/20070305123131/http://www.cse.psu.edu/~furer/Papers/mult.pdf.

[4] A. Karatsuba and Yu. Ofman, Multiplication of Many-Digital Numbers by Automatic Computers, Pro-
ceedings of the USSR Academy of Sciences, 145:293–294, 1962. Translation in the academic journal
Physics-Doklady, 7 (1963), pp. 595–596. https://www.mathnet.ru/php/archive.phtml?wshow=paper&
jrnid=dan&paperid=26729&option_lang=eng.

8

https://doi.org/10.1007/BF02242355
https://doi.org/10.4007/annals.2021.193.2.4
https://web.archive.org/web/20070305123131/http://www.cse.psu.edu/~furer/Papers/mult.pdf
https://web.archive.org/web/20070305123131/http://www.cse.psu.edu/~furer/Papers/mult.pdf
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=26729&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=26729&option_lang=eng

	Introduction
	Preliminary
	Principal Roots of Unity (PROU)
	Discrete Fourier Transform (DFT)
	Fast Fourier Transform (FFT)
	Polynomial Multiplication in Rings Supporting FFT

	The Schönhage-Strassen Method
	First Attempt: Expanding the Ring
	Second Attempt: Bivariate Polynomials and Modular Arithmetic

	Convolutions
	Wrapped Convolutions
	Computing Wrapped Convolutions Using FFT
	Positively Wrapped Convolution (PWC)
	Negatively Wrapped Convolution (NWC)


	Conclusion

