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This research investigates the effectiveness of different decryption methods—Hill Climbing, Simulated
Annealing, and Metropolis-Hastings Markov Chain Monte Carlo (MCMC)—in deciphering substitution
ciphers using Markov chains of varying orders. The study evaluates these methods across first to
seventh-order Markov chains, assessing their accuracy and processing time. The results indicate that
while Hill Climbing and Simulated Annealing showed limited success, MCMC demonstrated superior
performance in certain cases. Specifically, MCMC outperformed the other methods in higher-order
contexts, particularly in the fifth-order Markov chain scenario. Despite some improvements with
increased context, the effectiveness of all methods varied significantly, with Simulated Annealing
excelling in specific orders and MCMC consistently showing the highest accuracy in more complex
contexts. These findings highlight the nuanced impact of Markov chain order on decryption efficacy and
suggest avenues for future research in optimizing these methods for better performance in cryptographic
applications. The program used for this research can be reached on Github
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1. Introduction

Substitution ciphers have a long history in cryptography, often being one of the first methods introduced
to those new to the field. Despite their conceptual simplicity, substitution ciphers can present significant
challenges in cryptanalysis, particularly when the cipher text is lengthy and lacks any discernible
patterns. In a substitution cipher, each letter in the plaintext is replaced by a corresponding letter in the
ciphertext according to a fixed system. The challenge for a cryptanalyst is to discover this fixed system,
which can be especially difficult when the key length is the same as the length of the alphabet being used
[12]. This study delves into the application of Markov chains in the cryptanalysis of substitution ciphers.
Markov chains, which are mathematical models that undergo transitions from one state to another in
a chain-like process, are well-suited for modeling the statistical properties of natural languages. To
address these challenges, this study explores the use of statistical models, particularly Markov chains,
in combination with heuristic optimization techniques such as simulated annealing, hill climbing, and
Markov Chain Monte Carlo (MCMC).[13]. We aim to contribute to the field not only in understanding
the vulnerabilities of substitution ciphers but also in the broader implications for cryptography as a
whole. As digital communication becomes increasingly integral to everyday life, the need for robust
cryptographic systems is more critical than ever. The principles learned from analyzing basic ciphers
can be applied to more complex systems, thereby enhancing our ability to protect sensitive information
in a variety of real-world applications, from secure online banking to private messaging.

The novelty of our approach is investigating how the order of the Markov chain affects the
decryption process. Specifically, we ask: How do the order of the Markov chain and the choice
of optimization algorithm (hill climbing, simulated annealing, MCMC) impact the effectiveness of
substitution cipher decryption? The order of a Markov chain refers to the number of previous states
that the next state depends on. A first-order Markov chain assumes that each character in a text depends
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only on the preceding character, while a higher-order Markov chain assumes that each character may
depend on multiple preceding characters. This higher-order dependency could potentially capture more
complex language structures, thus improving the accuracy of decryption [1]. Our hypothesis in this
research is that as the order of the Markov chain increases, the decryption accuracy will also increase,
up to a point. However, this improvement may come at the cost of increased computational complexity,
as higher-order Markov chains require the estimation and storage of a larger number of parameters.
Thus, the study also aims to find an optimal balance between the order of the Markov chain and the
computational resources required for the cryptanalysis. In this paper, we investigate the effectiveness of
different methods implemented with Markov chains of first-order to seventh-order in the cryptanalysis
of substitution ciphers. Each order of Markov chain captures different levels of statistical dependency
between characters in the plaintext, potentially offering varying degrees of accuracy in breaking the
cipher. Furthermore, the study conducts a comparative analysis of these three algorithms to decrypt
substitution ciphers. While hill climbing and simulated annealing are designed to navigate the vast
search space of possible decryptions, MCMC offers a probabilistic approach to explore the solution
space by sampling from a distribution, thus providing another perspective on how to achieve global
optimization. By conducting a comparative analysis, we aim to identify the most effective approach
for decrypting ciphertext encrypted using a substitution cipher. The results of this research have the
potential to inform both historical cryptanalysis efforts and the development of future cryptographic
algorithms.

The remainder of this paper is structured as follows: Section 2 presents a literature review,
summarizing the key contributions in the field of cryptanalysis using Markov chains. Section 3 describes
the methodology, including the specific algorithms and data sets used in the study. Section 4 provides an
analysis of the results, while Section 5 offers a mathematical estimation of the effectiveness of different
Markov chain orders. Finally, Section 6 concludes the paper with a discussion of the findings and their
implications for cryptographic research.

2. Literature Review

The basic idea of substituting one letter for another can be traced back to classical times, with the
Caesar cipher being one of the most well-known examples [15]. However, the simplicity of substitution
ciphers makes them vulnerable to various cryptanalytic attacks, especially when frequency analysis
is applied. Markov chains, introduced by Andrey Markov in the early 20th century, have become
a powerful tool in cryptanalysis due to their ability to model the probabilistic nature of language.
The use of Markov chains in cryptanalysis, particularly for substitution ciphers, has been explored
in various studies. For instance, Sinkov [17] provides an early discussion of using statistical methods,
including Markov chains, to break classical ciphers. Subsequent research by Norvig [18] and others
has shown that higher-order Markov models can significantly improve the accuracy of cryptanalysis
by better capturing the dependencies between letters. Recent advances have focused on comparing the
effectiveness of different orders of Markov chains in cryptanalysis. Studies have demonstrated that
while first-order Markov chains capture basic frequency information, higher-order models can better
exploit contextual information, leading to more accurate decryption results [19]. Additionally, research
has shown that the computational complexity increases with the order of the Markov chain, making it
crucial to balance accuracy and efficiency in practical applications [20].
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Markov Chains in Cryptanalysis

Markov chains have been instrumental in the development of statistical methods for cryptanalysis.
Shannon’s foundational work on information theory laid the groundwork for applying Markov models
to cryptographic analysis. Shannon’s seminal paper demonstrated that statistical models of text, such as
first-order Markov chains, could be used to break simple substitution ciphers [12]. Several research
further expanded and analyzed the use of Markov Chains for cryptanalysis. Chen et al. (2012)
investigated the use of Markov Chain Monte Carlo (MCMC) methods to attack classical ciphers [2].
Karlof et al. (2003) showed that Hidden Markov Models can be used to cryptanalyze randomized side
channel countermeasures [3].

Heuristic Optimization Techniques in Cryptanalysis

Hill Climbing
Hill climbing is a fundamental heuristic optimization technique that involves iteratively improving
a candidate solution by making local changes and selecting the change that yields the greatest
improvement in the objective function. In the context of substitution ciphers, the objective function often
measures the alignment of the decrypted text with expected linguistic patterns. Research by Kaeding et
al. (2019) demonstrated an application of hill climbing to monoalphabetic substitution ciphers[4]. It has
been noted that while hill climbing could quickly find good solutions, it was prone to getting stuck in
local optima . To address this, research proposed hybrid approaches that integrated hill climbing with
other optimization techniques.

Simulated Annealing
Simulated annealing has been applied to cryptanalysis of various ciphers, often in comparison with
other optimization techniques. For simplified-DES, Tabu Search outperformed simulated annealing in a
cipher-text only attack scenario[5]. However, simulated annealing has shown promise in automated
cryptanalysis of mono-alphabetic substitution ciphers, with proven convergence and potential for
more complex block ciphers[6]. In a comparative study on transposition ciphers, genetic algorithms,
Tabu Search, and simulated annealing were evaluated for their effectiveness in automated attacks [7].
These studies demonstrate the applicability of simulated annealing and other evolutionary computation
techniques to cryptanalysis, addressing NP-hard combinatorial problems in cipher breaking. The
research suggests that while simulated annealing can be effective, its performance may vary depending
on the specific cipher and attack scenario, highlighting the importance of comparative analyses in
cryptanalysis research.

Markov Chain Monte Carlo (MCMC) in Cryptanalysis

Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm is a powerful Markov Chain Monte Carlo (MCMC) method used
to simulate multivariate distributions and approximate complex probability functions [10]. MCMC
techniques generate samples by running a Markov Chain with a stationary distribution that follows the
input function, utilizing repeated random sampling to exploit the law of large numbers. The Metropolis-
Hastings algorithm has diverse applications, including optimization tasks, solving non-deterministic
polynomial time problems, and cryptographic decoding [11]. In cryptanalysis, MCMC methods have
been successfully applied to break classical ciphers, including simple substitution, transposition, and
substitution-plus-transposition ciphers, even for key lengths up to 40 [14]. The algorithm’s versatility
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is demonstrated in various implementations, such as acceptance-rejection sampling and block-at-a-time
scans, with the Gibbs sampler being a special case of the Metropolis-Hastings algorithm. [10, 16]

3. Mathematical Foundations

3.1. Definition 1: Substitution Cipher

A substitution cipher is a method of encryption by which units of plaintext are replaced with ciphertext
according to a fixed system; the ”units” may be single letters, pairs of letters, triplets of letters, and so
forth. In a simple substitution cipher, the ciphertext alphabet is a permutation of the plaintext alphabet.

Definition 2: Markov Chains

A Markov chain is a stochastic process characterized by the Markov property, which states that the
future state of the process depends only on the present state and not on the sequence of events that
preceded it. Formally, let {Xn}n≥0 be a discrete-time Markov chain with state space S. The process is
said to satisfy the Markov property if:

P(Xn+1 = x | Xn = xn,Xn−1 = xn−1, . . . ,X0 = x0) = P(Xn+1 = x | Xn = xn)

for all x,xn,xn−1, . . . ,x0 ∈ S and n≥ 0.

Transition Probability Matrix
The behavior of a Markov chain is often described using the transition probability matrix P, where
Pi j = P(Xn+1 = j | Xn = i) represents the probability of transitioning from state i to state j. The matrix
P is stochastic, meaning that each row sums to 1:

∑
j∈S

Pi j = 1 for all i ∈ S.

Stationary Distribution
A Markov chain is said to have a stationary distribution π if:

π j = ∑
i∈S

πiPi j

for all j ∈ S, where π is a probability distribution satisfying:

∑
i∈S

πi = 1 and πi ≥ 0 for all i ∈ S.

The stationary distribution π remains unchanged as the Markov chain evolves over time.

3.2. Theorem 1: Convergence of Markov Chains

For a Markov Chain with a finite state space that is irreducible and aperiodic, the chain converges to
a unique stationary distribution, regardless of the initial state. This theorem ensures that the long-term
behavior of the chain can be described by a stationary distribution, which is critical for analyzing the
statistical properties of ciphertext generated by substitution ciphers.
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Heuristic Optimization Algorithms

Hill Climbing
Hill climbing is a local search algorithm that continuously moves towards the direction of increasing
value of the objective function. Mathematically, let f : Rn→ R be the objective function, and let x∗ be
the current state. At each step, hill climbing evaluates neighboring states x′ and selects the state x′ that
maximizes f :

x(t+1) = arg max
x′∈N(xt )

f (x′),

where N(xt) represents the neighborhood of xt . The algorithm stops when no better neighbors are
found, potentially getting stuck in local optima.

Algorithm 1 Hill Climbing Algorithm
Data: Initial solution x
Result: Optimal solution

1 while not terminated do
2 Generate neighboring solutions of x Select the best neighbor x∗ if f (x∗)> f (x) then
3 x← x∗

Simulated Annealing
Simulated annealing is an optimization technique inspired by the annealing process in metallurgy. It
allows occasional moves to worse states to escape local optima. Formally, the probability of moving
from state x to state x′ is given by:

P(x→ x′) = min
(

1,exp
(

f (x)− f (x′)
T

))
,

where T is the temperature parameter that decreases over time. As T → 0, simulated annealing
converges to a solution similar to hill climbing.

Algorithm 2 Simulated Annealing Algorithm
Data: Initial solution x, temperature T
Result: Optimal solution

4 while not terminated do
5 Generate a neighbor solution x′ Calculate the cost difference ∆E = f (x′)− f (x) if ∆E < 0 then
6 x← x′

7 else
8 x← x′ with probability exp

(−∆E
T

)
9 Update temperature T according to the cooling schedule

Lastly, MCMC methods are used to sample from complex probability distributions. The Metropolis-
Hastings algorithm is a popular MCMC technique.
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Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm generates a sequence of samples {Xn} from a target distribution
π . Let q(x′ | x) be the proposal distribution from which candidate states are sampled. The algorithm
proceeds as follows:

Algorithm 3 Metropolis-Hastings Algorithm
Data: Initial state x0, number of iterations N
Result: Sampled states

10 x← x0 for i← 1 to N do
11 Propose a new state x∗ from a proposal distribution q(x | xi−1) Calculate the acceptance ratio:

α = min
(

1,
p(x∗)q(xi−1 | x∗)

p(xi−1)q(x∗ | xi−1)

)
Sample a uniform random variable u∼ Uniform(0,1) if u < α then

12 xi← x∗

13 else
14 xi← xi−1

Convergence and Ergodicity
For MCMC to produce samples from the target distribution, the Markov chain must be ergodic,
meaning it must be irreducible (every state can be reached from any other state) and aperiodic (the
chain does not cycle through states in a fixed pattern). Under these conditions, the chain will converge
to the stationary distribution π as the number of iterations approaches infinity.

4. Methodology

4.1. Corpus Selection and Preprocessing

The first stage of our methodology involves selecting and preprocessing a text corpus for training
the Markov chain models. The corpus used in this study is loaded from a text file named
corpus training.txt. The preprocessing steps include converting the entire corpus to lowercase
and removing any characters that do not belong to the English alphabet. This cleaning process is vital for
ensuring that the Markov chain models are trained on a consistent set of textual patterns, as it eliminates
noise such as punctuation, spaces, and line breaks that could otherwise disrupt the statistical modeling
of language structures.

The preprocessing can be mathematically described as a function P : S→ T , where S is the original
text corpus and T is the cleaned corpus:

T = P(S) = Lowercase(RemoveNonAlphabetic(S))

This ensures that only sequences of letters are retained, enabling the model to focus purely on letter
transitions.
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4.2. Markov Chain Model Training

Next, we train Markov chain models for various orders, ranging from 1 to 7. The order of a Markov
chain defines how many previous characters are considered when predicting the next character in the
sequence. A first-order Markov chain uses only the immediately preceding character, while a higher-
order Markov chain considers longer sequences of preceding characters.

For each order n, we define the transition probabilities P(Xt |Xt−1, . . . ,Xt−n) using the following
process:

1. For each sequence of n characters in the corpus, count the occurrences of each possible subsequent
character.

2. Apply Laplace smoothing to the transition probabilities to avoid zero probabilities for unseen
sequences:

P(Xt |Xt−1, . . . ,Xt−n) =
Count(Xt−1, . . . ,Xt−n,Xt)+1
Count(Xt−1, . . . ,Xt−n)+ |V |

where |V | is the size of the vocabulary (26 for the English alphabet).

The Markov chain model for each order is stored as a dictionary mapping sequences of n characters
to a probability distribution over the next character.

4.3. Substitution Cipher Encryption

We employ a substitution cipher to encrypt the original plaintext message. A substitution cipher is a
type of encryption where each letter in the plaintext is replaced with another letter according to a fixed
key. The key is a bijective function K : A→ A, where A is the alphabet. The cipher text is generated by
applying this function to each character in the plaintext.

Mathematically, if the plaintext is P = (p1, p2, . . . , pm) and the key is K, the cipher text C is:

C = (K(p1),K(p2), . . . ,K(pm))

The key K is randomly generated, and the mapping is stored for later use in evaluating the accuracy of
the decryption algorithms.

4.4. Decryption Algorithms

The decryption of the cipher text is approached using three distinct methods: Hill Climbing, Simulated
Annealing, and Markov Chain Monte Carlo (MCMC). Each method seeks to find the key K′ that, when
applied to the cipher text, maximizes the likelihood of producing meaningful English text.

• Hill Climbing: This method iteratively improves a candidate decryption key by making small
modifications (e.g., swapping two letters) and accepting changes that improve the likelihood score,
which is computed using the trained Markov chain model. The likelihood function is:

L(K′) =
m−n

∑
i=1

logP(Xi+n|Xi, . . . ,Xi+n−1)

where X is the decrypted text produced by K′.



8EVALUATING THE EFFICACY OF DECRYPTION METHODS FOR SUBSTITUTION CIPHERS USING MARKOV CHAINS OF VARIOUS ORDERS

• Simulated Annealing: An extension of Hill Climbing that includes a probabilistic acceptance
criterion to escape local optima. The probability of accepting a worse solution is given by:

P(accept) = exp
(

∆L
T

)
where ∆L is the change in the likelihood score and T is the temperature, which decreases over time.

• MCMC: This method explores the key space more extensively by performing a random walk, with
each step guided by the likelihood function. The method generates candidate keys and accepts or
rejects them based on a probability derived from the likelihood ratio of the new key to the current
key.

Scoring Function: The quality of a candidate plaintext is evaluated using the logarithm of transition
probabilities derived from the trained Markov model. The model computes the likelihood of the
candidate plaintext based on the observed character sequences and their corresponding probabilities.

Key Refinement: In each iteration, the algorithm proposes a new key by randomly swapping two
characters in the current key. The resulting candidate plaintext is evaluated using the scoring function. If
the new key yields a higher score, it is accepted as the current solution. Otherwise, the algorithm reverts
to the previous key. The hill climbing process continues until a stopping criterion, such as a maximum
number of iterations or a convergence threshold, is met.

4.5. Evaluation Metrics

The accuracy of each decryption algorithm is measured by comparing the decrypted text to the original
plaintext. The accuracy metric A is defined as the proportion of correctly decrypted characters:

A =
1
m

m

∑
i=1

δ (pi,di)

where pi is the i-th character of the plaintext, di is the i-th character of the decrypted text, and δ is the
Kronecker delta function.

Time complexity is also measured by recording the time taken for each decryption process,
providing insights into the computational efficiency of each algorithm.

4.6. Final Refinements and Language Checks

The final decryption solutions are refined by ensuring the decrypted text is not only statistically likely
but also meaningful in English. The decryption process integrates heuristics based on common English
word patterns and n-grams to further improve the readability and coherence of the output text.

By following this rigorous methodology, the study provides a comprehensive evaluation of
different decryption strategies for substitution ciphers, highlighting the trade-offs between accuracy
and computational efficiency.

5. Results

We run the code for 5 times, results we got are given below.
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FIG. 1. First Run

The results from testing various Markov chain orders and decryption algorithms reveal significant differences in performance. For the first-order
Markov chain, the Hill Climbing method produced a decrypted text with an accuracy of 0.00% and a processing time of 3.74 seconds, indicating
its struggle with local optimization and limited context. In contrast, Simulated Annealing achieved a higher accuracy of 11.76% and a shorter
processing time of 0.32 seconds, demonstrating its effectiveness in escaping local optima. MCMC (Metropolis-Hastings) yielded an accuracy of
8.82% with a processing time of 0.37 seconds, showing a balance between exploration and performance. As the Markov chain order increased to 2,
Hill Climbing’s accuracy improved slightly to 11.76%, with a time of 3.53 seconds, suggesting better performance with additional context but still
facing challenges. Simulated Annealing’s accuracy decreased to 2.94% with a time of 0.39 seconds, reflecting difficulties in handling the increased
complexity. MCMC maintained an accuracy of 8.82% and a time of 0.40 seconds, indicating stable performance. For the third-order Markov chain,
Hill Climbing achieved an accuracy of 23.53% with a processing time of 3.63 seconds, showing significant improvement. Simulated Annealing’s
accuracy dropped to 0.00% with a time of 0.39 seconds, while MCMC had an accuracy of 2.94% and a processing time of 0.37 seconds. When
testing with the fourth-order Markov chain, Hill Climbing’s accuracy further improved to 38.24% with a time of 3.77 seconds, reflecting better
results with increased context. Simulated Annealing and MCMC showed lower accuracy, with values of 0.00% and 0.00%, and times of 0.39 and
0.38 seconds, respectively. For the fifth-order Markov chain, Hill Climbing achieved an accuracy of 29.41% with a time of 4.63 seconds. Simulated
Annealing and MCMC showed comparable accuracies of 32.35% and 32.35% with times of 0.55 and 0.49 seconds, respectively. At the sixth-order,
Hill Climbing’s accuracy was 8.82% with a time of 5.90 seconds, while Simulated Annealing improved to 32.35% with a time of 0.68 seconds.
MCMC achieved an accuracy of 20.59% with a processing time of 0.60 seconds. Finally, with the seventh-order Markov chain, Hill Climbing’s
accuracy was 2.94% with a significantly higher processing time of 115.73 seconds. Simulated Annealing and MCMC showed lower accuracies of
0.00% and 2.94% with times of 0.46 and 0.43 seconds, respectively. Overall, the results indicate that higher-order Markov chains generally improve
accuracy but require more computational resources, while the choice of algorithm also affects both accuracy and efficiency.

FIG. 2. Second Run

For the first-order Markov chain, Hill Climbing achieved an accuracy of 0.00% with a processing time of 3.70 seconds, indicating limited
effectiveness. Simulated Annealing performed better with an accuracy of 29.41% and a shorter processing time of 0.40 seconds. MCMC (Metropolis-
Hastings) had an accuracy of 0.00% and a processing time of 0.39 seconds, showing poor performance. In the second-order Markov chain, Hill
Climbing’s accuracy improved to 14.71% with a processing time of 4.04 seconds. Simulated Annealing’s accuracy decreased to 5.88% with a time of
0.46 seconds, while MCMC maintained a 5.88% accuracy with a processing time of 0.38 seconds. For the third-order Markov chain, Hill Climbing
achieved an accuracy of 11.76% with a processing time of 4.13 seconds. Simulated Annealing showed a significant improvement to 29.41% accuracy
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with a processing time of 0.46 seconds. MCMC’s performance remained poor with an accuracy of 0.00% and a processing time of 0.39 seconds.
With the fourth-order Markov chain, Hill Climbing’s accuracy was 2.94% with a time of 4.25 seconds. Simulated Annealing achieved 20.59%
accuracy with a processing time of 0.38 seconds, while MCMC had an accuracy of 0.00% with a time of 0.43 seconds.For the fifth-order Markov
chain, Hill Climbing’s accuracy dropped to 0.00% with a processing time of 5.81 seconds. Simulated Annealing reached 32.35% accuracy with a
time of 0.48 seconds. MCMC performed best with an accuracy of 41.18% and a processing time of 0.54 seconds. In the sixth-order Markov chain,
Hill Climbing had an accuracy of 0.00% with a time of 5.76 seconds. Simulated Annealing slightly improved to 8.82% accuracy with a time of
0.62 seconds, while MCMC achieved 2.94% accuracy with a time of 0.53 seconds. Finally, with the seventh-order Markov chain, Hill Climbing and
Simulated Annealing both had accuracies of 0.00% with times of 3.86 and 0.42 seconds, respectively. MCMC achieved an accuracy of 2.94% with
a time of 0.42 seconds.

FIG. 3. Third Run

For the first-order Markov chain, Hill Climbing achieved an accuracy of 0.00% with a processing time of 3.57 seconds, reflecting minimal
success due to its limited context. Simulated Annealing also yielded an accuracy of 0.00% but with a shorter processing time of 0.32 seconds,
indicating similar ineffectiveness. In contrast, MCMC (Metropolis-Hastings) performed notably better with an accuracy of 47.06% and a processing
time of 0.32 seconds, demonstrating its capability in handling first-order context. At the second-order Markov chain, Hill Climbing’s accuracy
slightly improved to 2.94% with a time of 3.91 seconds, showing some benefit from additional context. Simulated Annealing’s accuracy dropped
to 0.00% with a time of 0.40 seconds, revealing difficulty with increased complexity. MCMC showed an improved accuracy of 11.76% with a
processing time of 0.37 seconds, indicating better performance among the methods. For the third-order Markov chain, Hill Climbing’s accuracy
increased to 17.65% with a time of 3.50 seconds, reflecting the advantages of additional context. Simulated Annealing achieved an accuracy of
11.76% with a time of 0.38 seconds, managing the complexity better than before. MCMC, however, struggled with an accuracy of 0.00% and a
time of 0.34 seconds. With the fourth-order Markov chain, Hill Climbing’s accuracy remained at 0.00% with a time of 3.82 seconds, showing no
benefit from the added context. Simulated Annealing improved significantly with an accuracy of 44.12% and a time of 0.40 seconds, demonstrating
its effectiveness with complex contexts. MCMC had an accuracy of 0.00% with a time of 0.41 seconds, continuing to face challenges. For the fifth-
order Markov chain, Hill Climbing achieved an accuracy of 11.76% with a time of 4.74 seconds, showing some benefit but limited effectiveness.
Simulated Annealing and MCMC both reached an accuracy of 11.76%, with processing times of 0.45 and 0.44 seconds, respectively, indicating
consistent performance with limited improvement. At the sixth-order Markov chain, Hill Climbing’s accuracy was 0.00% with a time of 5.63
seconds, reflecting ongoing difficulties. Simulated Annealing also struggled with an accuracy of 0.00% and a time of 0.61 seconds. MCMC showed
some improvement with an accuracy of 14.71% and a time of 0.56 seconds, indicating better performance. Finally, at the seventh-order Markov
chain, Hill Climbing’s accuracy was 2.94% with a time of 3.78 seconds, showing minimal success. Simulated Annealing performed better with an
accuracy of 23.53% and a time of 0.39 seconds, demonstrating its effectiveness with complex contexts. MCMC had an accuracy of 2.94% with a
time of 0.47 seconds, reflecting some success but still limited.
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FIG. 4. Fourth Run

For the first-order Markov chain, Hill Climbing achieved an accuracy of 29.41% with a processing time of 3.10 seconds, indicating some
effectiveness in decryption. Simulated Annealing yielded an accuracy of 0.00% and a processing time of 0.31 seconds, suggesting it struggled with
this approach. MCMC (Metropolis-Hastings) demonstrated an accuracy of 20.59% with a processing time of 0.31 seconds, performing better than
Simulated Annealing but still showing room for improvement. At the second-order Markov chain, Hill Climbing’s accuracy increased to 11.76%
with a time of 3.07 seconds, reflecting a benefit from additional context. Simulated Annealing’s accuracy was 8.82% with a processing time of 0.34
seconds, showing limited success. MCMC achieved an accuracy of 11.76% with a time of 0.30 seconds, indicating modest improvement over Hill
Climbing and Simulated Annealing. For the third-order Markov chain, Hill Climbing achieved an accuracy of 29.41% with a time of 3.11 seconds,
demonstrating significant improvement with increased context. Simulated Annealing showed a notable accuracy of 55.88% with a processing time
of 0.32 seconds, indicating the highest performance among the methods tested at this order. MCMC performed less effectively with an accuracy
of 0.00% and a time of 0.30 seconds. At the fourth-order Markov chain, Hill Climbing’s accuracy was 14.71% with a processing time of 3.35
seconds, showing some benefit from additional context. Simulated Annealing achieved an accuracy of 0.00% with a time of 0.35 seconds, reflecting
difficulties with this approach. MCMC reached an accuracy of 23.53% with a time of 0.40 seconds, demonstrating better performance compared to
other methods at this order. For the fifth-order Markov chain, Hill Climbing had an accuracy of 8.82% with a time of 3.44 seconds, showing limited
improvement. Simulated Annealing achieved an accuracy of 8.82% with a time of 0.36 seconds, while MCMC had an accuracy of 11.76% with a
time of 0.40 seconds, indicating consistent but modest performance. With the sixth-order Markov chain, Hill Climbing’s accuracy was 11.76% with
a processing time of 4.23 seconds. Simulated Annealing showed an accuracy of 0.00% with a time of 0.50 seconds, reflecting challenges in handling
increased context. MCMC achieved an accuracy of 11.76% with a processing time of 0.48 seconds, showing similar performance to Hill Climbing.
At the seventh-order Markov chain, Hill Climbing’s accuracy was 0.00% with a time of 3.26 seconds. Simulated Annealing achieved an accuracy
of 0.00% with a time of 0.45 seconds, while MCMC also had an accuracy of 0.00% with a time of 0.40 seconds. This suggests that higher-order
contexts did not significantly improve performance for these methods.

FIG. 5. Fifth Run

For the first-order Markov chain, Hill Climbing yielded an accuracy of 0.00% with a processing time of 3.04 seconds. Simulated Annealing
also achieved an accuracy of 0.00% but with a shorter processing time of 0.33 seconds. MCMC (Metropolis-Hastings) had the same accuracy of
0.00% with a processing time of 0.32 seconds, showing similar limitations across these methods. With the second-order Markov chain, Hill Climbing
showed an improvement with an accuracy of 11.76% and a time of 3.12 seconds. Simulated Annealing had an accuracy of 5.88% with a processing
time of 0.28 seconds. MCMC’s performance was less effective with an accuracy of 0.00% and a time of 0.36 seconds, suggesting that additional
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context improved Hill Climbing’s results but not significantly for the other methods. For the third-order Markov chain, all methods failed to produce
meaningful results, with accuracies of 0.00% across Hill Climbing, Simulated Annealing, and MCMC. This indicates that the added context did not
enhance the decryption quality in this case. At the fourth-order Markov chain, Hill Climbing achieved an accuracy of 11.76% with a time of 3.14
seconds. Simulated Annealing and MCMC both reached an accuracy of 11.76% with processing times of 0.35 and 0.34 seconds, respectively. This
shows that increasing the order provided a modest improvement, with both Simulated Annealing and MCMC performing similarly to Hill Climbing.
The fifth-order Markov chain saw Hill Climbing’s accuracy drop to 0.00% with a processing time of 3.97 seconds. Simulated Annealing improved to
an accuracy of 5.88% with a time of 0.43 seconds, while MCMC achieved a notable accuracy of 20.59% with a time of 0.41 seconds. This indicates
that higher-order context benefited MCMC the most among the methods tested. For the sixth-order Markov chain, Hill Climbing and Simulated
Annealing both had an accuracy of 0.00%, though Simulated Annealing had a much longer processing time of 99.80 seconds. MCMC also achieved
an accuracy of 0.00% with a time of 1.12 seconds, reflecting challenges in improving performance with additional context. At the seventh-order
Markov chain, Hill Climbing, Simulated Annealing, and MCMC all struggled, with accuracies of 0.00% for Hill Climbing and MCMC and 11.76%
for Simulated Annealing. This suggests that increasing the order further did not provide significant improvements for these methods.

6. Discussion

The comparative performance of Hill Climbing, Simulated Annealing, and MCMC (Metropolis-
Hastings) methods was analyzed across different orders of Markov chains. The evaluation was based
on both the accuracy of decryption and computational efficiency. We summarized the results for each
of the methods, derived from five separate runs for each method and Markov chain order:

6.1. Hill Climbing Method

Hill Climbing generally exhibited lower mean accuracy compared to the other methods. The accuracy
ranged from 0.00% to 29.41% across different Markov chain orders, with the highest accuracy achieved
at Order 3 (29.41%). The mean accuracy for Hill Climbing across all orders was 8.80%. This method
showed significant variability in performance, particularly at higher orders, where its accuracy remained
low. In terms of computational efficiency, Hill Climbing was the slowest, with an average execution time
of 3.56 seconds. This slower performance is attributed to the method’s exhaustive search approach,
which is computationally intensive and less adaptable to complex cipher structures.

6.2. Simulated Annealing Method

Simulated Annealing demonstrated superior performance in terms of accuracy, especially at higher
Markov chain orders. The accuracy varied significantly, with a peak of 55.88% achieved at Order
3. The average accuracy for Simulated Annealing across all orders was 20.27%, indicating a more
consistent and reliable performance compared to Hill Climbing. Simulated Annealing also showed
notable efficiency, with an average execution time of 0.39 seconds. This efficiency, combined with its
higher accuracy, makes Simulated Annealing a robust choice for cryptanalysis, effectively balancing
between exploration and exploitation of the solution space.

6.3. MCMC (Metropolis-Hastings) Method

MCMC achieved varying results in terms of accuracy, with the highest recorded accuracy of 41.18%
at Order 5. The overall mean accuracy across all orders was 16.45%. MCMC demonstrated a balanced
performance, offering a compromise between accuracy and computational speed. Its average execution
time was 0.41 seconds, placing it in a favorable position compared to Hill Climbing but slightly less
efficient than Simulated Annealing. The method’s strength lies in its probabilistic approach, which
allows it to explore the solution space effectively without exhaustive searching, thus providing a good
trade-off between accuracy and speed.
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6.4. Comparative Analysis

When comparing the methods, Simulated Annealing consistently achieved higher accuracy compared
to Hill Climbing and MCMC. Its ability to escape local optima and adaptively adjust the search
process contributed to its high decryption accuracy. However, this advantage comes at the cost of
increased execution time compared to MCMC, which, despite its lower accuracy, offers a more efficient
alternative. Hill Climbing, while consistent, showed less adaptability and slower performance, making
it less suitable for applications requiring both high accuracy and efficiency. MCMC provided a balanced
approach with reasonable accuracy and execution time, making it a viable option for scenarios where
both speed and accuracy are important.

7. Conclusion

The results indicate that Simulated Annealing is effective in terms of decryption accuracy, particularly
for complex ciphers with higher Markov chain orders. However, its execution time may be a
consideration for time-sensitive applications. MCMC offers a balanced approach with its moderate
accuracy and execution time, while Hill Climbing, despite its slower speed and lower accuracy,
remains a straightforward approach for simpler decryption tasks. Future research should explore the
development of hybrid algorithms that combine the strengths of Hill Climbing, Simulated Annealing,
and MCMC. Such hybrids could potentially offer improved accuracy and efficiency by leveraging the
exploration capabilities of Simulated Annealing, the balance of MCMC, and the straightforwardness
of Hill Climbing. Additionally, investigating adaptive techniques that dynamically adjust parameters
based on the decryption process could enhance performance further. Moreover, extending the study
to include additional methods such as Genetic Algorithms or Ant Colony Optimization could provide
more insights into optimizing cryptanalysis techniques. Evaluating these methods in conjunction with
varying cipher complexities and Markov chain orders will contribute to a deeper understanding of their
strengths and limitations. Lastly, practical applications of these techniques in real-world cryptographic
scenarios should be considered to assess their effectiveness beyond theoretical models.
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