
Cryptographic Hash Functions

Sriram Venkatesh

August 19, 2024

Abstract

This paper discusses applications and standard definitions of cryptographic hash
functions. It also proves the security of a well-known construction for cryptographic
hash functions, and discusses extensions to the Random Oracle Model.

1 Introduction and Applications

A hash function is a mathematical function that can compress large messages into smaller
digests. A cryptographic hash function is a specific kind of hash function that is computa-
tionally infeasible to invert. Hash functions are useful in ensuring the integrity of data sent
through public channels.

Cryptographic hash functions are useful in creating digital signatures for messages. Sup-
pose Alice wants to send a message m to Bob. She would like to sign the message digitally so
that Bob knows that the message really came from Alice. Alice and Bob each have private
and public keys, which are inverses of each other. Alice will first apply the hash function to
her message to get h(m). She will then sign h(m) using her private key, and send both the
message and the signature to Bob. Bob can then apply Alice’s public key, then compare this
to the hashed version of the message sent. If the two messages are equal, then Bob can be
sure that the message was really sent by Alice.

2 Requirements for Cryptographic Hash Functions

Definition 2.1. A hash family is a 4-element tuple: {X, Y,K,H}, where

1. X is a possibly infinite set of possible messages

2. Y is the finite set of possible outputs, or digests.

3. K is the finite set of keys.

4. For k ∈ K, ∃hk ∈ H, where hk : X → Y.

Given a hash family, we consider every element of H to be a hash function. In this paper,
we will only consider non-keyed hash families, where |K| = 1 and |H| = 1.

1

Definition 2.2. A cryptographic hash function h is a hash function for which there exist
no polynomial time algorithms in the message size that can compute the following:

1. Preimage: Given y ∈ Y, find x ∈ X such that h(x) = y.

2. Second-preimage: Given x ∈ X, find x′ ∈ X such that x′ ̸= x and h(x) = h(x′).

3. Collision: Find x, x′ ∈ X such that h(x) = h(x′).

Typically, |X| > |Y |, so there will almost always be a collision for a given hash function.
While there do not exist deterministic polynomial time algorithms for solving any of these

problems, we can come up with probabilistic Las Vegas algorithms. A Las Vegas algorithm is
a probabilistic algorithm that always outputs the correct result. If it is not able to compute
the answer, it will inform about its failure.

To solve each of these problems, we must choose a polynomial-size search space. The
Las Vegas algorithms for the three problems can be modeled as a pair (Q, ε), where Q is the
search space and ε represents the probability of success.

Let M = |X| and Q be the search space. We can easily show there exists a Las Vegas
algorithm (Q, 1 − (1 − 1

M
)Q) to solve Preimage. Such an algorithm simply scans the entire

input space to invert a specific output of the hash function. Similarly, we can show that an
algorithm (Q, 1− (1− 1

M
)Q−1) can solve Second-preimage. The collision problem is slightly

more interesting.
The algorithm we will use to solve the collision problem is simple. We pick a search space

X0, and compute h(x) for all x ∈ X0. The probability of success is the probability that there
exist two equal values of h(x). We can show that the probability of success given |X0| = Q
is

1−
(
1− 1

M

)(
1− 2

M

)
. . .

(
1− Q− 1

M

)
.

Solving the collision problem is very similar to the Birthday Paradox, which asks for
the number of people necessary for it to be more likely than not that two people share a
birthday. It can be shown that we need

√
2n log(2) people before we expect a collision of

two birthdays. Like birthdays, hash values are also random, so we would need a search space
of O(

√
M) before we are likely to have a collision. Therefore, we can write our Las Vegas

algorithm for the collision problem as (
√
M, 1

2
).

This, of course, means that for an effective hashing algorithm, M should be large enough
so that

√
M computations are not feasible. Even 40-bit hashing protocols, where there are

240 possible hash values, are rendered obsolete with today’s computational power.

3 Reductions

Definition 3.1. An oracle is a theoretical black-box that can solve a certain problem in a
single operation.

We will show that if there exists an oracle machine that can solve Preimage or Second-
preimage, then there exists a polynomial time algorithm to solve the collision problem. This
relationship between two problems is called a polynomial time reduction.

2

It is fairly obvious that any oracle machine that can solve Second-preimage can also solve
Collision. However, it is not so obvious for Preimage. To see this, we will prove the following
theorem.

Theorem 3.2. Suppose h : X → Y is a hash function such that |X| ≥ 2|Y |. Suppose there
exists an Oracle machine (1, Q) that can solve Preimage. Then, there exists a Las Vegas
algorithm (1

2
, Q+ 1) to solve Collision.

Before we begin the proof let us address the assumption we made initially. Assuming
that |X| ≥ 2|Y | is valid because hash functions are used to compress bitstrings of arbitrary
size. Therefore, |X| ≫ |Y | in general.

Proof. We first partition X into groups so that all elements in a group have the same hash
value. We can see that there will be C = |Y | such groups. Let’s say we pick a value x ∈ X
and want to find another value x0 ∈ X such that h(x) = h(x0). This is essentially solving
the second preimage problem, but it will be useful to us in our proof.

We can compute z = h(x) and apply the Oracle machine to z to get some value x0 ∈ X
such that h(x0) = z = h(x). The only time this will fail is if x0 = x, and we would not have
found a valid collision. Let s(x) be the size of the group that x is in. The probability that

the Oracle machine will not output the original value of x is s(x)−1
s(x)

.
We now compute the average case success probability of this algorithm over all possible

values of x. This average probability is

1

|X|
∑
x∈X

s(x)− 1

s(x)
.

We can break this summation into two, where we iterate over the groups first and then
the values of x within each group. Given that C is the set of all the groups, we have

1

|X|
∑
c∈C

∑
x∈c

s(x)− 1

s(x)
=

1

|X|
∑
c∈C

∑
x∈c

|C| − 1

|C|
.

The size of a group is constant for all x ∈ c, so we can write

1

|X|
∑
c∈C

|C| |C| − 1

|C|
=

1

|X|
∑
c∈C

|C| − 1

=
1

|X|
∑
c∈C

|C| − 1

|X|
∑
c∈C

1.

We know that
∑

c∈C |C| = |X| and
∑

c∈C 1 = |Y |, so we can simplify the above equation to

1− |Y |
|X|

.

Since we initially made the assumption that |X| ≥ 2|Y |, the average case probability is
at least 1

2
. This, we have shown that there exists a Las Vegas algorithm modeled as (Q+1, 1

2
)

that can solve Collision. The reason we have Q + 1 instead of Q is because once we pick a

3

random x ∈ X, we must compute h(x) before applying the Oracle machine that can solve
Preimage, so this one extra computation causes the Q+ 1 to appear.

■

From these reductions, we can see that if we can solve Preimage or Second-preimage
efficiently, then we can solve Collision efficiently. Therefore, a hash function that is collision
resistant is also resistant to Preimage and Second-preimage. We see that solving Preimage
or Second-preimage is much harder than solving Collision, so attackers typically focus break
the Collision problem.

Definition 3.3. Ideal cryptographic hash functions: Given any X0 ⊆ X, we compute Y0

where Y0 is the hash operation applied to each element of X0. If the knowledge of Y0 does
not make computing h(x′) easier for x′ ∈ X and x′ /∈ X0, then h is an ideal cryptographic
hash function.

4 Merkle–Damg̊ard Construction

We will now discuss a construction that is used as a primary step in sophisticated cryp-
tographic hash algorithms such as MD5, SHA-1, and SHA-2.

Definition 4.1. A compression function can transform an input of a fixed length to an
output of a fixed length.

On the other hand, a hash function can compress an input of arbitrary length to an output
of fixed length. The Merkle–Damg̊ard Construction provides a way of building collision
resistant hash functions given a collision resistant compression function.

Let us say that we have a compression function, c(x) that can compress bitstrings of
size m + t to size m, for any m. We wish to hash a bitstring x of arbitrary length. For
this algorithm we denote || to mean concatenation. The construction is performed with the
following algorithm. The original proposition of this algorithm can be found in [2]

1. We first partition x into chunks of size t − 1. We form k = ⌈ |x|
t−1

⌉ groups, and label
them x1, x2, . . . xk. If |x| is not a multiple of t− 1, then |xk| < t− 1.

2. We create a new string y such that y is yi = xi. However, yk is padded at the end with
d = k(t− 1)− |x| zeroes, which is the amount by which xk is less than all of the other
partitions.

3. We apply an additional step called the Merkle–Damg̊ard strengthening step, which
pads y with the binary encoding of d. We represent this encoding as yk+1. This step
ensures that the transformation from x to y is injective, which we will see later is very
useful for us.

4. We assign z1 to be y1 padded in the front with m+ 1 zeroes so that it is of size m+ t.
Let g1 = c(z1).

5. We loop i from 1 to k, and each time we assign zi+1 to be gi||1||yi+1, where || indicates
concatenation. We assign gi+1 = c(zi+1).

4

6. We finally ouptut h(x) = gk+1.

Theorem 4.2. Given that c is a collision-resistant compression function, then the cryp-
tographic hash function generated by the Merkle–Damg̊ard Construction is also collision-
resistant.

Proof. We will prove that if the hash function is not collision-resistant, then the compression
function is also not collision-resistant, which is equivalent to proving the original statement.

Assume we have two bitstrings x, x′, and hash function h such that x ̸= x′ and h(x) =
h(x′), which is a collision. We construct strings y and g from x, and strings y′ and g′ from

x′. Let k = ⌈ |x|
t−1

⌉ and l = ⌈ |x′|
t−1

⌉.
To show that there must be a collision in the compression function, we will consider

different cases.

Case 1: |x| ̸≡ |x′| (mod t− 1)

Since h(x) = h(x′), we know that gk+1 = g′l+1. We know that gk+1 = c(gk||1||yk+1) and
gl+1 = c(g′l||1||yl+1). Therefore, we have,

c(gk||1||yk+1) = c(g′l||1||yl+1).

However, we know that yk+1 ̸= yl+1 because each of these represent the binary encoding
of the remainder k(t − 1) − |x| and l(t − 1) − |x′| Therefore, the two strings within the
compress function are not the same and we have found a collision.

Case 2: |x| ≡ |x′| (mod t− 1)

We first consider the case where |x| = |x′|. This means that k = l, and gk+1 = g′k=1,
which means that

c(gk||1||yk+1) = c(g′k||1||y′k+1).

We know that yk+1 = y′k+1 because the two string lengths are congruent modulo t− 1. If
gk ̸= g′k, then we have found a collision. Otherwise, we let gk = g′k, from which we can write

c(gk−1||1||yk) = c(g′k−1||1||y′k).
If the two strings inside the compress function are not equal, we have again found a

collision. If they are, this means that gk−1 = g′k−1 and yk = y′k. We can continue this
relationship on and finally write that y1 = y′1. However, this means that y = y′, and since
the transformation from x to y was injective, this implies that x = x′. However, this is a
contradiction because we initially assumed that x ̸= x′. Therefore, at some point, either
gi = g′i or yi = y′i, which means that we have found a collision.

We finally consider the case where |x| ̸= |x′| but |x| ≡ |x′| (mod t − 1). Assuming that
x was split into k groups and x′ was split into l groups, we again have that gk+1 = g′l+1.
Without loss of generality, we assume that l > k..

We can follow the same procedure as the previous case and continue writing down equali-
ties among the compressed values. Assuming we have not found a collision, the final equality
will be g1 = g′l−k+1, which means that the equalities among the compressed values will be

5

c(0m+1||y1) = c(g′l−k||1||y′l−k+1).

However, the values within c cannot be equal on both sides. We know that the size of
g′l−k is m. The m+ 1-th bit of 0m+1||y1 is a 0. However, the m+ 1-th bit of g′l−k||1||y′l−k+1 is
a 1. Here, we see the importance of concatenating a 1 instead of 0 in step 5. Therefore, we
have found two values that compress to the same output and we have found a collision. ■

5 Random Oracle Model

Definition 5.1. Random Oracle: A random oracle is a theoretical black box that responds
to any query with a truly random output that is not influenced by past queries.

We refer to hash functions follow the random oracle model as ideal cryptographic hash
functions. In such functions, knowledge of previous hashed values will not give any additional
clue for hashing a new value. In all the proofs above, we have assumed that our cryptographic
hash functions are essentially random oracles. Any system that is proven secure on ideal
hash functions are said to be secure in the random oracle model. Proving the same without
this assumption is often difficult, so most proofs relating to hash function are done in the
random oracle model. Certain systems have been proven secure in the standard model of
cryptography (a model without the random oracle assumption)but there are others that still
require such proofs. For more information on extending the Merkle–Damg̊ard construction
to the practical hash functions, read [1].

References

[1] M. Backes, G. Barthe, M. Berg, B. Grégoire, C. Kunz, M. Skoruppa, and S. Z. Béguelin.
Verified security of merkle-damg̊ard. In 2012 IEEE 25th Computer Security Foundations
Symposium, pages 354–368, 2012.

[2] I. B. Damg̊ard. A design principle for hash functions. In G. Brassard, editor, Advances in
Cryptology — CRYPTO’ 89 Proceedings, pages 416–427, New York, NY, 1990. Springer
New York.

6

	Introduction and Applications
	Requirements for Cryptographic Hash Functions
	Reductions
	Merkle–Damgård Construction
	Random Oracle Model

