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Abstract

Primality testing is an important topic in cryptography and various
other fields of mathematics. It is necessary to use primality testing for
cryptography encrypting methods such as RSA[1] and Diffie-Hellman[2].
In this paper, we discuss and prove the Fermat Primality Test and Lucas-
Lehmer Test[3,4]. We also find counter-examples and improvements for the
Fermat Primality Test. In addition, we find the Time Complexity of run-
ning these primality tests using different multiplication/exponentiation
algorithms, such as the Schöhage-Strassen algorithm[5] and the binary
exponentiation algorithm.

1 Introduction

Primality testing is a very important topic in cryptography. For example, in the
RSA cryptosystem it is necessary to choose large prime numbers p and q, but
how can we check if p and q are primes quickly? There are various primality
tests with different complexities that have different usages depending on the size
of p and q.

The most basic primality test is trial division. It is easy to prove that if there
is a composite number, say n, then n must have a factor from the range 2 to√
n. This immediately gives an algorithm to check whether n is prime or not:

Iterate through all i from 2 to
√
n, if for any i we have that n is a multiple of

i, then n is composite, otherwise n is prime.

In 1640, French mathematician Pierre de Fermat proved Fermat’s little the-
orem which is the basis of the Fermat Primality Test. It states the following:

Theorem 1.1. For a prime p, if gcd(a, p) = 1, ap−1 ≡ 1 (mod p).

In 1878, French mathematician Édouard Lucas proposed the Lucas-Lehmer
test, and in 1930 Derrick Lehmer proved the test. Nowadays, there are many
other primality tests such as the AKS test and the Miller-Rabin test. In this
paper, we focus on the Fermat Primality Test and the Lucas-Lehmer Test.
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2 Fermat Primality Test

This test is one of the most simple tests that works for all primes, but it is quite
easy to find counter-examples.

The Fermat Primality Test is the following:

Theorem 2.1. Consider an integer n. Choose an integer a such that gcd(a, n) =
1. If n is prime then an−1 ≡ 1 (mod n).

Proof. This is exactly Fermat’s Little Theorem. But note, that if n is composite,
it could be possible that an−1 ≡ 1 (mod n).

2.1 Counter Examples and Improvements

Note that there are many different counter-examples to this primality test.

For example, if we consider when a = 2 and n = 341, we have that 2340 ≡ 1
(mod 341). Here we say that 341 is a Base 2 Fermat pseudoprime. A more
general example are the Carmichael numbers. One can notice that for all a
such that gcd(a, n) = 1, we have that n is a Base a Fermat pseudoprime.

Cipolla[6] showed that there are an infinite number of Base a Fermat pseu-
doprimes. Kim and Pomerance[7] showed that for a random odd number n ≤ k
the probability that n is a b Fermat pseudoprime, where b is a random number
1 < b < n− 1 is less than 2.77 · 10−8 for k = 10100.

An improvement to the general Fermat Primality Test is to run it multiple
times, to reduce the number of counter-examples. But, no matter how many
tests you will run, Carmichael numbers will always pass the test. Let C(x) be
the number of Carmicheal numbers less than x. Erdős[8] previously showed the
following:

C(x) < xe
−k2 log(x) log(log(x))

log(log(x))

Here, k2 is some constant.

It has been previously calculated that C(1021) < 3 · 108, so the probability
of choosing a Charmiceal number is less than 10−12.

2.2 Time Complexity

Theorem 2.2. If we apply binary exponentiation and fast multiplication our
final complexity is O(log2(n) · log(log(n)))

Proof. Using binary exponentiation, we need to square a number at most log(n)
times, so using FFT, we get a complexity of O(log(n) · log(n) · log(log(n))), as
desired.
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3 Lucas-Lehmer Test

Let p be a prime number. Let Mp = 2p − 1.

Definition 1. We call Mp a Merssene number.

We define a sequence si for i ≥ 1. We let s1 = 4 and for i ≥ 2, si = s2i−1−2.
The Lucas-Lehmer Test states the following:

Theorem 3.1. Mp is prime if and only if sp−1 is a multiple of Mp, which is
equivalent to sp−1 ≡ 0 (mod Mp).

We prove the correctness of the Lucas-Lehmer Test by proving Theorems
3.4 and 3.5. Let ω = 2 +

√
3, ω̄ = 2−

√
3.

Lemma 3.2. sm = ω2m−1

+ ω̄2m−1

.

Proof. We prove this with induction.

Base Case: m = 1, we get ω + ω̄ = 4, which is true. Inductive Hypothesis:
Assume sm = ω2m−1

+ ω̄2m−1

. We show this is true for m+ 1. Inductive Step:
Notice, we have sm+1 = ω2m + ω̄2m + 2(ωω̄)2

m−1 − 2 = ω2m + ω̄2m .

Lemma 3.3. If G is a finite group, then the order of any element is at most
the order of the group.

Proof. This is trivial by Lagrange’s theorem which states the order of any ele-
ment in the group is a divisor of the order of the group.

We start by proving the following theorem:

Theorem 3.4. If sp−1 ≡ 0 (mod Mp), we have that Mp is a prime number.

Proof. Assume sp−1 ≡ 0 (mod Mp). Let ω
2p−2

+ ω̄2p−2

= kMp for some integer
k.

Notice we have that ωω̄ = 1, so if we multiply both sides by ω2p−2

, we get
the following:

ω2p−1

+ 1 = kMpω
2p−2

Now, for sake of contradiction, we assume that Mp is composite. Let q be the
smallest prime factor of Mp. It is obvious that q > 2 because Mp ≡ 1 (mod 2).

Let G be the set of all elements a + b
√
3, where 0 ≤ a, b < q and a, b ∈ Z.

Multiplication is trivial, we multiply (a + b
√
3)(c + d

√
3) and take the integer

part and the
√
3 part, and reduce both of them modulo q. It is easy to see that

this makes G a closed set. Notice, we must have that ω and ω̄ are both elements
of G.

Let H be the set of elements that has an multiplicative inverse in G.It is easy to
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see that H is group. Notice that |H| ≤ q2 − 1 because we know that 0 doesn’t
have an inverse and there are q2 elements in G.

Now, since we have that q | Mp, we have that kMpω
2p−2

is 0, when consid-

ered an element in G. Notice from the equation ω2p−1

+ 1 = kMpω
2p−2

, we get

ω2p−1

= −1 and ω2p = 1.

We have that ω is also an element ofH with order 2p, this means that 2p ≤ q2−1.
Since q is the smallest prime factor of Mp, we have that q2 ≤ Mp, so we need
that 2p < Mp = 2p − 1, which is an obvious contradiction.

We now prove another theorem.

Theorem 3.5. If Mp is prime then we have that sp−1 ≡ 0 (mod Mp).

Proof. Assume Mp is a prime number. Let G be the set of all elements a+ b
√
3,

where 0 ≤ a, b < Mp and a, b ∈ Z.

Now, since Mp is a prime number, we have that for all k such that 0 < k < Mp,(
Mp

k

)
is a multiple of Mp. Thus, we get (1 +

√
3)Mp ≡ 1 + (

√
3)Mp (mod Mp).

Now, by the quadratic reciprocity law, we have that

(
Mp

3

)(
3

Mp

)
= (−1)

Mp−1

2 .

Since Mp ≡ 3 (mod 4), we must have that Mp is a quadratic residue modulo
3 and 3 is not a quadratic residue modulo Mp or vice versa. But, notice that

Mp ≡ 1 (mod 3), so we need that 3
Mp−1

2 ≡ −1 (mod p), so (
√
3)Mp ≡ −

√
3

(mod Mp).

Thus, we have (1 +
√
3)Mp ≡ 1 −

√
3 (mod Mp). Multiplying both sides by

1 +
√
3, we get that (1 +

√
3)Mp ≡ −2 (mod Mp), so we get (2ω)

Mp+1

2 ≡ −2
(mod Mp).

Notice, we have that Mp ≡ −1 (mod 8), so we have that 2 is a quadratic
residue (mod Mp), so we simplify the left-hand side to get the equation:

2ω
Mp+1

2 ≡ −2 (mod Mp)

Notice that the inverse of 2 modulo Mp is
Mp+1

2 , so we can multiply both sides

by this to get ω
Mp+1

2 ≡ −1 (mod Mp).

We can rewrite this as

ω2p−1

≡ ω2p−2

ω2p−2

≡ −1 (mod Mp)

Multiplying both sides by ω̄2p−2

, we get that ω2p−2

+ ω̄2p−2 ≡ 0 (mod Mp),
which implies that sp−1 ≡ 0 (mod Mp), as desired.
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Now we prove the Lucas-Lehmer test.

Theorem 3.6. Mp is prime if and only if sp−1 is a multiple of Mp, which is
equivalent to sp−1 ≡ 0 (mod Mp).

Proof. Combining Theorem 3.4 and Theorem 3.5, we get that Mp is prime if
and only if sp−1 ≡ 0 (mod Mp), as desired.

3.1 Time Complexity

We also prove the complexity of the Lucas-Lehmer test with basic multiplication
and with the Schönhage–Strassen algorithm.

Theorem 3.7. The complexity with basic multiplication is just O(p3). The
complexity with the Schönhage-Strassen algorithm which applies FFT is O(p2 ·
log(p) · log(log(p)))

Proof. Notice that the recurrence formula for sp, needs squaring. When using
basic multiplication, we can do this in O(p2) time, which would result in a total
complexity of O(p3) because we apply this p times. But, the Schönhage-Strassen
algorithm can multiply two numbers in O(p · log(p) · log log(p)), which would
result in a complexity of O(p2 · log(p) · log log(p)).
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