
Various Primality Tests

Soham Samanta

July-August 2024

Abstract

Primality testing is an important topic in cryptography and various
other fields of mathematics. It is necessary to use primality testing for
cryptography encrypting methods such as RSA[1] and Diffie-Hellman[2].
In this paper, we discuss and prove the Fermat Primality Test and Lucas-
Lehmer Test[3,4]. We also find counter-examples and improvements for the
Fermat Primality Test. In addition, we find the Time Complexity of run-
ning these primality tests using different multiplication/exponentiation
algorithms, such as the Schöhage-Strassen algorithm[5] and the binary
exponentiation algorithm.

1 Introduction

Primality testing is a very important topic in cryptography. For example, in the
RSA cryptosystem it is necessary to choose large prime numbers p and q, but
how can we check if p and q are primes quickly? There are various primality
tests with different complexities that have different usages depending on the size
of p and q.

The most basic primality test is trial division. It is easy to prove that if there
is a composite number, say n, then n must have a factor from the range 2 to√
n. This immediately gives an algorithm to check whether n is prime or not:

Iterate through all i from 2 to
√
n, if for any i we have that n is a multiple of

i, then n is composite, otherwise n is prime.

In 1640, French mathematician Pierre de Fermat proved Fermat’s little the-
orem which is the basis of the Fermat Primality Test. It states the following:

Theorem 1.1. For a prime p, if gcd(a, p) = 1, ap−1 ≡ 1 (mod p).

In 1878, French mathematician Édouard Lucas proposed the Lucas-Lehmer
test, and in 1930 Derrick Lehmer proved the test. Nowadays, there are many
other primality tests such as the AKS test and the Miller-Rabin test. In this
paper, we focus on the Fermat Primality Test and the Lucas-Lehmer Test.

1

2 Fermat Primality Test

This test is one of the most simple tests that works for all primes, but it is quite
easy to find counter-examples.

The Fermat Primality Test is the following:

Theorem 2.1. Consider an integer n. Choose an integer a such that gcd(a, n) =
1. If n is prime then an−1 ≡ 1 (mod n).

Proof. This is exactly Fermat’s Little Theorem. But note, that if n is composite,
it could be possible that an−1 ≡ 1 (mod n).

2.1 Counter Examples and Improvements

Note that there are many different counter-examples to this primality test.

For example, if we consider when a = 2 and n = 341, we have that 2340 ≡ 1
(mod 341). Here we say that 341 is a Base 2 Fermat pseudoprime. A more
general example are the Carmichael numbers. One can notice that for all a
such that gcd(a, n) = 1, we have that n is a Base a Fermat pseudoprime.

Cipolla[6] showed that there are an infinite number of Base a Fermat pseu-
doprimes. Kim and Pomerance[7] showed that for a random odd number n ≤ k
the probability that n is a b Fermat pseudoprime, where b is a random number
1 < b < n− 1 is less than 2.77 · 10−8 for k = 10100.

An improvement to the general Fermat Primality Test is to run it multiple
times, to reduce the number of counter-examples. But, no matter how many
tests you will run, Carmichael numbers will always pass the test. Let C(x) be
the number of Carmicheal numbers less than x. Erdős[8] previously showed the
following:

C(x) < xe
−k2 log(x) log(log(x))

log(log(x))

Here, k2 is some constant.

It has been previously calculated that C(1021) < 3 · 108, so the probability
of choosing a Charmiceal number is less than 10−12.

2.2 Time Complexity

Theorem 2.2. If we apply binary exponentiation and fast multiplication our
final complexity is O(log2(n) · log(log(n)))

Proof. Using binary exponentiation, we need to square a number at most log(n)
times, so using FFT, we get a complexity of O(log(n) · log(n) · log(log(n))), as
desired.

2

3 Lucas-Lehmer Test

Let p be a prime number. Let Mp = 2p − 1.

Definition 1. We call Mp a Merssene number.

We define a sequence si for i ≥ 1. We let s1 = 4 and for i ≥ 2, si = s2i−1−2.
The Lucas-Lehmer Test states the following:

Theorem 3.1. Mp is prime if and only if sp−1 is a multiple of Mp, which is
equivalent to sp−1 ≡ 0 (mod Mp).

We prove the correctness of the Lucas-Lehmer Test by proving Theorems
3.4 and 3.5. Let ω = 2 +

√
3, ω̄ = 2−

√
3.

Lemma 3.2. sm = ω2m−1

+ ω̄2m−1

.

Proof. We prove this with induction.

Base Case: m = 1, we get ω + ω̄ = 4, which is true. Inductive Hypothesis:
Assume sm = ω2m−1

+ ω̄2m−1

. We show this is true for m+ 1. Inductive Step:
Notice, we have sm+1 = ω2m + ω̄2m + 2(ωω̄)2

m−1 − 2 = ω2m + ω̄2m .

Lemma 3.3. If G is a finite group, then the order of any element is at most
the order of the group.

Proof. This is trivial by Lagrange’s theorem which states the order of any ele-
ment in the group is a divisor of the order of the group.

We start by proving the following theorem:

Theorem 3.4. If sp−1 ≡ 0 (mod Mp), we have that Mp is a prime number.

Proof. Assume sp−1 ≡ 0 (mod Mp). Let ω
2p−2

+ ω̄2p−2

= kMp for some integer
k.

Notice we have that ωω̄ = 1, so if we multiply both sides by ω2p−2

, we get
the following:

ω2p−1

+ 1 = kMpω
2p−2

Now, for sake of contradiction, we assume that Mp is composite. Let q be the
smallest prime factor of Mp. It is obvious that q > 2 because Mp ≡ 1 (mod 2).

Let G be the set of all elements a + b
√
3, where 0 ≤ a, b < q and a, b ∈ Z.

Multiplication is trivial, we multiply (a + b
√
3)(c + d

√
3) and take the integer

part and the
√
3 part, and reduce both of them modulo q. It is easy to see that

this makes G a closed set. Notice, we must have that ω and ω̄ are both elements
of G.

Let H be the set of elements that has an multiplicative inverse in G.It is easy to

3

see that H is group. Notice that |H| ≤ q2 − 1 because we know that 0 doesn’t
have an inverse and there are q2 elements in G.

Now, since we have that q | Mp, we have that kMpω
2p−2

is 0, when consid-

ered an element in G. Notice from the equation ω2p−1

+ 1 = kMpω
2p−2

, we get

ω2p−1

= −1 and ω2p = 1.

We have that ω is also an element ofH with order 2p, this means that 2p ≤ q2−1.
Since q is the smallest prime factor of Mp, we have that q2 ≤ Mp, so we need
that 2p < Mp = 2p − 1, which is an obvious contradiction.

We now prove another theorem.

Theorem 3.5. If Mp is prime then we have that sp−1 ≡ 0 (mod Mp).

Proof. Assume Mp is a prime number. Let G be the set of all elements a+ b
√
3,

where 0 ≤ a, b < Mp and a, b ∈ Z.

Now, since Mp is a prime number, we have that for all k such that 0 < k < Mp,(
Mp

k

)
is a multiple of Mp. Thus, we get (1 +

√
3)Mp ≡ 1 + (

√
3)Mp (mod Mp).

Now, by the quadratic reciprocity law, we have that

(
Mp

3

)(
3

Mp

)
= (−1)

Mp−1

2 .

Since Mp ≡ 3 (mod 4), we must have that Mp is a quadratic residue modulo
3 and 3 is not a quadratic residue modulo Mp or vice versa. But, notice that

Mp ≡ 1 (mod 3), so we need that 3
Mp−1

2 ≡ −1 (mod p), so (
√
3)Mp ≡ −

√
3

(mod Mp).

Thus, we have (1 +
√
3)Mp ≡ 1 −

√
3 (mod Mp). Multiplying both sides by

1 +
√
3, we get that (1 +

√
3)Mp ≡ −2 (mod Mp), so we get (2ω)

Mp+1

2 ≡ −2
(mod Mp).

Notice, we have that Mp ≡ −1 (mod 8), so we have that 2 is a quadratic
residue (mod Mp), so we simplify the left-hand side to get the equation:

2ω
Mp+1

2 ≡ −2 (mod Mp)

Notice that the inverse of 2 modulo Mp is
Mp+1

2 , so we can multiply both sides

by this to get ω
Mp+1

2 ≡ −1 (mod Mp).

We can rewrite this as

ω2p−1

≡ ω2p−2

ω2p−2

≡ −1 (mod Mp)

Multiplying both sides by ω̄2p−2

, we get that ω2p−2

+ ω̄2p−2 ≡ 0 (mod Mp),
which implies that sp−1 ≡ 0 (mod Mp), as desired.

4

Now we prove the Lucas-Lehmer test.

Theorem 3.6. Mp is prime if and only if sp−1 is a multiple of Mp, which is
equivalent to sp−1 ≡ 0 (mod Mp).

Proof. Combining Theorem 3.4 and Theorem 3.5, we get that Mp is prime if
and only if sp−1 ≡ 0 (mod Mp), as desired.

3.1 Time Complexity

We also prove the complexity of the Lucas-Lehmer test with basic multiplication
and with the Schönhage–Strassen algorithm.

Theorem 3.7. The complexity with basic multiplication is just O(p3). The
complexity with the Schönhage-Strassen algorithm which applies FFT is O(p2 ·
log(p) · log(log(p)))

Proof. Notice that the recurrence formula for sp, needs squaring. When using
basic multiplication, we can do this in O(p2) time, which would result in a total
complexity of O(p3) because we apply this p times. But, the Schönhage-Strassen
algorithm can multiply two numbers in O(p · log(p) · log log(p)), which would
result in a complexity of O(p2 · log(p) · log log(p)).

References

[1] Ronald R. Rivest, Adi Shamir, Leonard Adleman (1978) A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems

[2] Whitfield Diffie, Martin E. Hellman (1976) New Directions in Cryptography

[3] Micheal I. Rosen (1988) A proof of the Lucas-Lehmer Test

[4] James B. Bruce (1993) A Really Trivial Proof of the Lucas-Lehmer Test

[5] Arnold Schönhage, Volker Strassen (1971) Fast multiplication of large num-
bers

[6] Michele Cipolla (1904) On the composite numbers P , which verify Fermat’s
congruence

[7] Su H. Kim, Carl Pomerance (1989) The Probability that a Random Probable
Prime is Composite

[8] Paul Erdős (1956) On psuedoprimes and Carmicheal numbers

5

