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Abstract

Hash functions are a type of one-way function used in many branches of modern cryp-
tography. They are used in many applications, such as digital signatures and identity ver-
ification. One way functions are essential to cryptography in order to prevent an attacker
from decrypting a message from the hashed ciphertext.

Contents

1 Introduction 2
1.1 Mathematical Bounding Conventions . . . . . . . . . . . . . . . . . . . . . . 2

2 One-way Functions 2
2.1 Trapdoor Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Key Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Why One-way Functions? 3
3.1 Chosen Plaintext Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Keyed Hash Functions 4
4.1 Basic Definitions and Properties . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Constructing UHFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.2.1 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2.2 A parallel UHF from a small PRF . . . . . . . . . . . . . . . . . . . . 5

5 Unkeyed Hash Functions and Algorithms 6
5.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.2.1 The Merkle-Damg̊ard Paradigm . . . . . . . . . . . . . . . . . . . . . 6
5.2.2 Building Compression Functions . . . . . . . . . . . . . . . . . . . . . 7

1



6 Security 8
6.1 Keyed Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.2 Collision Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.3 Attacks on Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.3.1 Joux’s Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7 Applications 11
7.1 File Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.2 SHA256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.3 Identity Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 Introduction

Section 2 of this paper will introduce one-way functions and their uses in cryptography.
Section 3 will dive further into the rationale behind one-way functions, and section 4 will
introduce hash functions. Section 5 will discuss what it means for a cryptosystem to be
secure. This will set up section 6, where different hashing algorithms will be covered. The
final section will demonstrate how hashing algorithms are applied to different cryptosystems.

1.1 Mathematical Bounding Conventions

Before we dive into one-way functions, we give mathematical definitions of negligible and
super-poly functions:

Definition 1.1. A function f : Z≥1 → R is negligible if for all positive real numbers c,
there exists positive integer n0 such that for all n ≥ n0, we have |f(n)| < 1/nc. A function
f : Z≥1 → R is super-poly if 1/f is negligible.

2 One-way Functions

A one-way function is a function that is very easy to compute, but hard to reverse. As
we shall see, various types of hash functions satisfy this one-way property. Instead, we look
at other functions that satisfy the one-way property.

2.1 Trapdoor Functions

A trapdoor functions works as follows: we know that it is hard to reverse a one-way
function, but given a certain key piece of information (the trapdoor), we can easily reverse
the computation. The formal definition from [BS23] is as follows:

Definition 2.1 (Trapdoor Function Scheme). Let X and Y be finite sets. The trapdoor
function scheme T , defined over (X, Y ), is a triple of algorithms (G,F, I), where

• G is a probabilistic key generation algorithm that is invoked as (pk, sk)
R←− G(), where

pk is the public key and sk is the secret key.
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• F is a deterministic algorithm that is invoked as y ← F (pk, x), where x ∈ X. The
output y is an element of Y .

• I is a deterministic algorithm that is invoked as x ← I(sk, y), where y ∈ Y . The
output x is an element of X.

With this definition, the secret key acts as the trapdoor of the scheme. Now consider the
following attack game:

• We are given a trapdoor scheme T as defined in Definition 2.1 and an adversary A.

• The challenger computes

(pk, sk)
R←− G(), x

R←− X, y ← F (pk, x)

and sends (pk, y) to the adversary.

• The adversary outputs x̂ ∈ X.

Define OWadv[A, T ], the adversary’s advantage in inverting T , as the probability that
x̂ = x. A trapdoor function scheme is one-way if for all efficient adversaries A, the quantity
OWadv[A, T ] is negligible.

2.2 Key Exchange

Alice and Bob can exchange a key using the trapdoor function scheme as follows:

1. Alice computes (pk, sk)
R←− G() and sends pk to Bob.

2. Upon receiving pk from Alice, Bob computes x
R←− X, y ← F (pk, x) and sends y to

Alice.

3. Upon receiving y from Bob, Alice computes x← I(sk, y).

The element x is Alice and Bob’s shared key. Note the similarity to Diffie-Hellman Key
Exchange.

2.3 RSA

The RSA cryptosystem also makes use of a trapdoor function scheme. The difficult step
of breaking an RSA key is factoring the modulus n. This number usually consists of two
very large prime factors. However, clever factorization algorithms and primality tests have
been developed to factor n.

3 Why One-way Functions?

In order to prevent an attacker from decrypting messages, we want to give em a problem
that is computationally hard. In other words, we want an encryption function that allows
us to easily encrypt messages but hard to decrypt without the key. In other words, we must
recreate the trapdoor scheme.
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3.1 Chosen Plaintext Attacks

An eavesdropper can decrypt ciphertexts in general if they are able to find ways to decrypt
certain ciphertexts. Ey can then use the plaintext they obtain to find the decryption key.

One method against chosen plaintext attacks is to use one-time padding. In other words,
after Alice and Bob use a key, they switch to another one. This will eliminate the chances
that their messages can be decrypted since the key keeps changing.

3.2 Time

The idea behine a one-way function is that it only gets used temporarily. A secret is
only kept for a certain amount of time, so by the time an attacker finds a way to reverse a
one-way function, there would be no point of learning the secret.

4 Keyed Hash Functions

In this section, we explore keyed hash functions. Unkeyed hash function are another
main type of hash function; those will be covered in section 5.

4.1 Basic Definitions and Properties

First, we define a keyed hash function:

Definition 4.1. A keyed hash function H is a deterministic algorithm that takes a key k
and a message m as its two inputs; its output t := H(k,m) is called a digest. We also have
K as the space of keys, M as the space of messages, and T as the space of digests.

Typically, digests have a fixed size, independent of the message length. This means that
gigabyte-long messages can be hashed into 256-bit digests.

We say that two messages m0, m1 ∈ M form a collision for H under key k ∈ K if
H(k,m0) = H(k,m1), but m0 ̸= m1. A hash function with the property that it is hard to
find a collision is called a universal hash function, or UHF. Consider the following attack
game:

• Attack Game 4.1:

• We are given a keyed hash function H defined over (K,M, T ) and an adversary A.

• The challenger computes k
R←− K and keeps k to himself

• The adversary outputs two messages m0,m1 ∈M .

The adversary wins the game whenever H(m0, k) = H(m1, k), and A’s advantage with
respect to H, denoted UHFadv[A,H], is the probability that A wins the game.

4.2 Constructing UHFs

We give several methods for how to construct a UHF.
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4.2.1 Polynomials

We start with a UHF construction using polynomials modulo a prime. Let ℓ be a length
parameter and p be a prime. We define a hash function Hpoly that hashes a message m ∈
(Z/pZ)≤ℓ to a single element t ∈ Z/pZ. The key space is K := Z/pZ.

Let m = (a1, a2, . . . , av) for some 0 ≤ v ≤ ℓ. Let k ∈ Z/pZ be a key. Then we define
Hpoly(k,m) to be

Hpoly(k, (a1, a2, . . . , av)) :=
v∑

i=0

kv−iai,

where a0 = 1. The function outputs elements in Z/pZ.
With this definition, it is not too hard to compute without knowing the length of the

message ahead of time. When the message ends, we obtain the final hash. With inputs m
and k, Horner’s method for polynomial evaluation works as follows:

1. Set t← 1.

2. For i← 1 to v:

3. t← t · k + ai ∈ Z/pZ

4. Output t

UHFs can be very brittle - an adversary who learns the values of the function at a few
points can recover the secret key. Consequently, we will hide values of the UHF from the
adversary, either by encrypting them or using other means.

4.2.2 A parallel UHF from a small PRF

First, we formally define a pseudo-random function, or PRF:

Definition 4.2. A pseudo-random function is a deterministic algorithm F that has two
inputs: a key k and input data block x. The output y := F (k, x) is the output data block.
The inputs and output have their respective spaces K, X, and Y . Denote by Funs[X, Y ] to
be the set of all functions f : X → Y .

Now that we have defined a pseudo-random function, it is time to construct our hash
function. The XOR-hash F⊕ is defined over (K,X≤ℓ, Y ), where Y is the set of all n-bit
binary strings. The algorithm works as follows:

1. t← 0n

2. For i = 1 to v do:

3. t← t⊕ F (k, (ai, i))

4. Output t

In other words, we evaluate F (k, (ai, i)) for all i, and then we sum the resulting strings
using XOR.
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5 Unkeyed Hash Functions and Algorithms

In the previous section, we explored keyed hash functions. Here, we explore some unkeyed
hash functions and explore their properties.

5.1 Basic Definitions

As in section 4, we say that we have a collision when H(m0) = H(m1), but m0 ̸= m1.
We define collision resistance in a similar way. Collision-resistant processes are discussed in
the security section (section 6).

5.2 Algorithms

Presented below are various collision-resistant hashing algorithms that do not require a
key.

5.2.1 The Merkle-Damg̊ard Paradigm

Many practical constructions follow the Merkle-Damg̊ard paradigm. The idea is to start
from a collision-resistant hash function that hashes short messages and build from it a
collision-resistant hash function that hashes much longer messages.

Let h : X × Y → X be a hash function. Assume that Y is of the form {0, 1}ℓ for
some ℓ. While it is not necessary, typically X is of the form {0, 1}n for some n. The Merkle-
Damg̊ard function derived from h, denoted HMD, is a hash function defined over ({0, 1}L, X)
that works as follows (the pad PB is added to M in order to make the length a multiple of
ℓ):

• input: M ∈ {0, 1}L

• output: a tag in X

• M̂ ←M ∥ PB

• partition M̂ into consecutive ℓ-bit blocks so that M̂ = m1 ∥ m2 ∥ · · · ∥ ms, where the
mi are elements of {0, 1}ℓ

• t0 ← IV ∈ X

• For i = 1 to s do:

• ti ← h(ti−1,mi)

• Output ts

• (Note that ∥ denotes concatenation.)
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The function h is called a compression function. The constant IV is the initial value and
is fixed to some pre-specified value. One could take IV = 0n, but usually IV is set to some
complicated string. In addition, the padding block PB must contain an encoding of the
message length. A standard format for PB is

PB := 1000 . . . 000 ∥ ⟨s⟩,

where ⟨s⟩ is a fixed-length bit string that encodes, in binary, the number of ℓ-bit blocks in
M .

5.2.2 Building Compression Functions

We explore several ways to build the compression function h. These functions fall into
two categories:

• Compression functions built from a block cipher. The most commonly used method is
Davies-Meyer.

• Compression functions using number theoretic primitives. These are elegant construc-
tions with clean proofs of security. However, they are generally far less efficient than
the first method.

We start with a compression function built with simple modular arithmetic. Let p be a

large prime such that q :=
p− 1

2
is also prime. Let x and y be suitable chosen integers in

the range [1, q]. Consider the following compression function that takes two integers in [1, q]
as inputs and outputs an integer in [1, q]:

H(a, b) := abs(xayb mod p),

where abs(z) = z when z ≤ q and abs(z) = p− z when z > q.
The Davies-Meyer compression function is built off of a block cipher E = (E,D) over

(K,X), where X = {0, 1}n. The function hDM : (X ×K,X) is defined as

hDM(x, y) := E(y, x)⊕ x.

When plugging this function into the Merkle-Damg̊ard paradigm, the inputs are a chain-
ing variable x := ti−1 ∈ X and a message block y := mi ∈ K. The output is the next
chaining variable ti. Note that the message block is used as the block cipher key, but the
adversary has full control over the message.

Many variants of Davies-Meyer construction exists. One can use the following functions:

h1(x, y) := E(x, y)⊕ y

h2(x, y) := E(x, y)⊕ y ⊕ x

h3(x, y) := E(x⊕ y, y)⊕ y

These can be shown to be collision-resistant.
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6 Security

We prove special properties of the functions in section 4. Next, we prove collision-
resistance of the hashing algorithms of section 5. Many of the proofs will follow the guide
of [BS23]. Then, we explore attacks on some of these algorithms.

6.1 Keyed Hash Functions

We start with some definitions:

Definition 6.1. Let H be a keyed hash function over (K,M, T )

• We say that H is an ϵ-bounded universal hash function, or ϵ-UHF, if UHFadv[A,H] ≤ ϵ
for all adversaries A.

• We say that H is a statistical UHF if it is an ϵ-UHF for some negligible ϵ.

• We say that H is a computation UHF if UHFadv[A,H] is negligible for all efficient
adversaries A.

Statistical UHFs are secure against all adversaries: no adversary can win attack game 4.1
against a statistical UHF with non-negligible advantage. Note that every statistical UHF is
also a computational UHF, but the converse is not true.

Theorem 6.2. Hpoly defined over (Z/pZ, (Z/pZ)ℓ,Z/pZ) is an (ℓ/p)-UHF. If p is super-poly,
that means that ℓ/p is negligible, so Hpoly is a statistical UHF.

Proof. Let m0 = (a1, a2, . . . , au) and m1 = (b1, b2, . . . , bv) be two distinct messages in
(Z/pZ)ℓ. We show that the probability that H(k,m0) = H(k,m1) is less than or equal
to ℓ/p, where k is chosen uniformly at random in Z/pZ. Define the two polynomials:

f(X) :=
u∑

i=0

Xu−iai

g(X) :=
v∑

j=0

Xv−jbj

in Z/pZ[X], where a0 = b0 = 1. Then, by definition of Hpoly, we need to show that the
probability that f(k) = g(k) is at most ℓ/p. Since m0 and m1 are distinct messages, we
know that f(X) − g(X) is a nonzero polynomial. Furthermore, its degree is at most ℓ;
therefore it has at most ℓ roots in Z/pZ. It follows that there are at most ℓ values of
k ∈ Z/pZ for which f(k) = g(k), so for a random k, there is at most a ℓ/p chance such that
f(k) = g(k).

Theorem 6.3. Let F be a secure PRF and assume |Y | is super-poly. Then F⊕ is a compu-
tational UHF.
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Proof. The proof consists of two attack games. We summarize Game 0 here, and we leave
Game 1 for [BS23].

Game 0: The challenger in this game computes k
R←− K, f ← F (k, ·). The adversary A

outputs two distinct messages U , V in X≤ℓ. Let u := |U | and v := |V |. We define W0 to be
the event that the condition

u−1⊕
i=0

f(U [i], i) =
v−1⊕
j=0

f(v[j], j)

holds in Game 0. Clearly, the probability of W0 occuring is UHFadv[A,F⊕].

6.2 Collision Resistance

We now formally define collision resistance with the following attack game:

• For a given hash function H defined over (M,T ) and adversary A, the adversary takes
no input and outputs two messages m0 and m1 in M .

• We say that A wins the game if the pair of messages yields a collision. The probability
that A wins the game is denoted as CRadv[A,H], and it is called the advantage with
respect to H.

• We say that H is collision resistant if the quantity CRadv[A,H] is negligible.

We first prove collision resistance of the Davies-Meyer hash function, then we move to
collision resistance of the Merkle-Damg̊ard function.

Theorem 6.4 (Davies-Meyer). Let hDM be the Davies-Meyer hash function derived from
a block cipher E = (E,D) defined over (K,X), where |X| is large. Then hDM is collision
resistant when E is an ideal block cipher.

Proof. Let A be a collision finder for hDM that makes at most a total of q ideal cipher queries.
We shall assume that A is ”reasonable,” meaning that before A outputs its collision attempt
(x, y), (x′, y′), it makes corresponding ideal cipher queries: for (x, y), either a Π-query on
(y, x), or a Π−1-query on (y, ·) that yields x, and similarly for (x′, y′). If A is not reasonable,
it can make at most two more queries in order to be reasonable. So from now on, we assume
that A is reasonable and makes at most q′ queries.

For i = 1, 2, . . . , q′, the ith ideal cipher query defines a triple (ki, ai, bi): for a Π-query
(ki, ai), we set bi := Πkiai. For a Π−1-query (ki, bi), we set ai := Π−1

ki
bi. Assume further that

A makes no extraneous queries, so triples do not repeat.
If the adversary outputs a collision, then by our reasonableness assumption, for some

distinct pair of indices i, j = 1, 2, . . . , q′, we have ai ⊕ bi = aj ⊕ bj. Call this event Z. We
thus have

CRadv[A, hDM] ≤ Pr[Z].

Our goal is to show that

Pr[Z] ≤ q′(q′ − 1)

2n
,
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where |X| = 2n

Consider fixed indices i < j. Conditioned on any fixed values of the adversary’s coins
and the first j − 1 triples, one of aj and bj is completely fixed, while the other is uniformly
distributed over a set of at least |X| − j + 1 elements. Thus, we have

Pr[ai ⊕ bi = aj ⊕ bj] ≤
1

2n − j + 1
.

So by the union bound, we have

Pr[Z] ≤
q′∑
j=1

j−1∑
i=1

Pr[ai ⊕ bi = aj ⊕ bj] ≤
q′∑
j=1

j − 1

2n − j + 1
≤

q′∑
j=1

j − 1

2n − q′
=

q′(q′ − 1)

2(2n − q′)
.

It is not too hard to check that the final fraction is at most
q′(q′ − 1)

2n
, finishing the

proof.

Now that we have shown collision resistance for hDM, we now prove collision resistance
for the Merkle-Damg̊ard hash function.

Theorem 6.5. Let L be a poly-bounded length parameter and let h be a collision resistant
hash function defined over (X×Y,X). Then the Merkle-Damg̊ard hash function HMD derived
from h, over ({0, 1}≤L, X), is collision resistant.

Proof. We digest the proof here; the remaining details can be found in [BS23].
First, we consider a collision finder B for finding h-collisions. To accomplish this, B

first runs A to find a collision for messages M and M ′. It then scans the two messages by
scanning each block, starting from the last block.

Let the mi and ti be the u blocks and u+1 chaining variables for M , and let the m′
i and t′i

be the v blocks and v+1 chaining variables for M ′. We know that h(tu−1,mu) = h(t′v−1,m
′
v).

If one pair of inputs is not equal, then we have a collision, and B terminates.
Otherwise we have tu−1 = t′v−1 and mu = m′

v. There are padding blocks in mu and m′
v,

so we have u = v.
We now consider the blocks of M and M ′ in reverse order. If there is a collision, B

terminates, or else we move back another block. Eventually, we reach the first block. There
is a collision at the first block, or else we have M = M ′, contradicting the earlier assumption
that M and M ′ produce a collision for HMD. So B breaks the collision resistance of h.

6.3 Attacks on Hash Functions

Even though the hash functions we studied are collision resistant, there do exist attacks
on such hash functions. We explore one of these attacks here.
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6.3.1 Joux’s Attack

We briefly describe an attack specific to Merkle-Damg̊ard hash functions. Let H1 and
H2 be Merkle-Damg̊ard hash functions that outputs tags in X := {0, 1}n, and set H12(M) =
H1(M) ∥ H2(M) ∈ {0, 1}2n. We would expect that finding a collision for H12 should take at
least O(2n). This would be the case if H1 and H2 were independent, random functions.

We say that an s-collision for H is a set of messages M1,M2, . . . ,Ms ∈ M such that
H(Mi) is equal for all i. Joux showed how to find an s-collision in O((log2 s)|X|1/2). Thus,
using Joux’s method, we can find a 2n/2 collision in O(n2n/2) time. Then by the birthday
paradox, it is very likely that some Mi,Mj is also a collision for H2. Thus, we have found a
collision for H12 in O(n2n/2) time.

To find an s-collision, let H be a Merkle-Damg̊ard function over (M,X) built from
compression function h. We find an s-collision M1, . . . ,Ms, where each of these messages
has b := log2 s blocks. For simplicity, let s be a power of 2, so log2 s is an integer. Let t0 be
the initial value used in the Merkle-Damg̊ard construction.

Next, we use the birthday attack b times on h. We spend 2n/2 time to find two distinct
blocks m0,m

′
0 such that h(t0,m0) = h(t0,m

′
0). Let t1 equal this common value, and we

repeat for m1 and m′
1. We continue recursively until we have our b pairs of blocks.

Now note that in the message m0m1 · · ·mb−1, we can swap an mi with m′
i without chang-

ing the chaining variables. Therefore, we have found a 2b collision in b2n/2 time.

7 Applications

We discuss some applications and case studies involving hash functions.

7.1 File Integrity

Collision resistance is frequently used for file integrity. Consider a set of n critical files
that change infrequently, such as a set of executables on disk. We want a method to verify
that these files have not been modified by some malicious code or malware. To do so we
need a small amount of read-only memory, namely memory that the malware can read, but
cannot modify. We place a hash on each of the n critical files in the read-only memory so
that this storage area only contains n short hashes. Now we can check integrity of file F by
hashing F and comparing the resulting hash to the one stored in read-only memory. If a
mismatch is found, then F is declared corrupt, which happens when the hash function H is
collision resistant.

7.2 SHA256

The SHA256 hashing algorithm is a Merkle-Damg̊ard function with ℓ = 512 and n = 256.
The initial value is set to

IV := 6A09E667BB67AE853C6EF372A54FF53A510E527F9B05688C1F83D9AB5BE0CD19,

when written in hex.
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We can truncate the result of SHA256; this is what SHA224 does. It uses a different
initial value, and it takes the leftmost 224 bits of the SHA256 output.

Next we describe the Davies-Meyer compression function. It is built from a block cipher
denoted ESHA256. Instead of using the XOR operator, the compression function uses addition
modulo 232. Set x0, x1, . . . , x7 ∈ {0, 1}32, and y0, y1, . . . , y7 ∈ {0, 1}32. Set x := x0 ∥ x1 ∥
· · · ∥ x7 and y := y0 ∥ y1 ∥ · · · ∥ y7. We define x ⊎ y as follows:

x ⊎ y := (x0 + y0) ∥ (x1 + y1) ∥ · · · ∥ (x7 + y7),

where all additions are done modulo 232. Then the SHA256 compression function is described
as

h(t,m) := ESHA256(m, t) ⊎ t ∈ {0, 1}256.

Our ideal cipher analysis in Theorem 6.4 applies to this function.

7.3 Identity Verification

Hash functions are also applicable to digital signatures and other forms of identity verifi-
cation. In order for Bob to verify that a message came from Alice, he can use a hash function
on the message and signature he receives. If the hashed signature has been tampered in any
way, he will instantly know that by looking at the hash

A similar method can be used in cryptographic voting. Eligible voters can only cast at
most 1 ballot, so the voting systems compute the hashed voter IDs for verification. Since a
hash function is deterministic, if a hash appears a second time in the queue, the vote will be
denied.
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